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A LIMIT THEOREM FOR DOUBLE ARRAYS'

BY ANDREW R0OSALSKY AND HENRY TEICHER

University of Florida and Rutgers University

The main result establishes that row sums S, of a double array of rowwise
independent, infinitesimal (or merely uniformly asymptotically constant) ran-
dom variables satisfying lim sup | S, — M, | = M, < » a.c. (for some choice of
constants M,), obey a weak law of large numbers, i.e., S, — med S, converges
in probability to 0. No moment assumptions are imposed on the individual
summands and zero-one laws are unavailable. As special cases, a new result
for weighted i.i.d. random variables and a result of Kesten are obtained.

1. Introduction and main result. Let {X,;, 1 </ < k, — », n = 1} be a double
array of rowwise independent random variables with row sums S,= ¥ /2, X, n=1. Under
the standard proviso that {X,;, 1 = j < k,} are uniformly asymptotically constant or
equivalently that X,,; centered at their medians are infinitesimal (uniformly asymptotically
negligible), i.e.,

(1) lim,, maxi<jes, P{| X, — med X,,j| >€} =0, alle>0,

the main result, Theorem 1, asserts that if there exist constants M, for which lim sup,_.«| S»
— M, | = M, < « almost certainly (a.c.), then S, — med S, — 0 in probability. A surprising
feature is that the conclusion obtains in the absence of zero-one laws. No moment
conditions are imposed on {X,,;} which are constrained solely by (1), in whose absence the
theorem may fail.

The case of normed sums ai Y21 X;, n = 1 of independent random variables (rv’s) { X,

n = 1} and, in particular, of weighted i.i.d. rv’s X,; = 0,X,/ax, {X},j = 1} i.id,, 0. = 0(ax)
is of special interest. In the i.i.d. case (o, = 1), Theorem 1 is due to Kesten [5] who gave
a sufficient condition as well. Apart from absence of zero-one laws, the pattern of the proof
of Theorem 1 parallels that of Kesten and indeed the argument establishing (9) is virtually
identical. On the other hand, the proof of (5) is completely different and considerably
simpler than its counterpart in [5].

THEOREM 1. Let {X,, 1 =j < k, — o, n = 1} be a double array of rowwise
independent random variables obeying (1). If for some constants M, n = 0, the row sums
S, = Y1 X, satisfy

2) lim supy e | Sp — Mp| = Mo <, ac.

then the weak law of large numbers

3) S, —med S, —p0

obtains.
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Proor. Let S} = Y%.Y.,, n=1, where {Y,, 1 =j < k,} are a symmetrized version
of the {X,s}, that is, Y,; = X,,,— X;,; where {X,, L<j<kp,n=1} and{X}), 1 =j <k,
n = 1} are i.i.d. stochastic processes. Then {Y,;, 1 =j < k, — o} are infinitesimal rv’s
since (1) and the Weak Symmetrization Inequality ([6], page 245) ensure that

(4) lim, .. maxigi<s, P{| Y| >A} =0, allA>0.
It will be shown firstly that
(5) lim, . ¥ P{| Y| >A} =0, allA>0

or equivalently that

maXi<j<k, | Ynjl —p0,

in view of
1= exp{— Y% P{| Y| >A}} =% [1 = P{| Yui| > A}] = P(N%[| Y| =A])
=1-Y5h P{|Y.|>A).
Suppose, to the contrary, for some A, § in (0, 1) that
(6) P{U%,A,}>8 for infinitely many integersn = n(i), i = 1,

where A,; = {| Y.| > A}. By (4), for any integer m > 1 there exists an integer N,, such that
foralln = N,

)

7 P An' =T .
M { ’}<2m 1<j=<k,
For n = n(i) = Ny, let v; = vi(m, i) be the smallest integer v such thatP{Uj-; A,;} >
8/(2m). In view of (7) and (6), 1 < v, < k&, and since

8 ) 8
P{Ul—l Anj} = P{U.';l lAnj} + P{Anul} = + o T T

(6) implies v; < k,. Suppose, inductively, that 1 < v; < - -+ < v, < k, are defined for some
integer r in [1, m) so that v, = v,(m, i) is the smallest integer for which (set vo = 0)

v, 8 v ré
P(Ujiuq,l+1 Anj} >§—n—1’ 1< qQ=r, and P{Ujé] Anj} = —ﬂ-},-

Then (6) ensures that v, < k, and by subadditivity

r6 (m-—r)é
P{UJ vr+1A"J} =é- P{UJ lAru} >8—,_n‘——_m— 2m
implying P {U}_,,+1 A} > 8/(2m) for some integer v in [v, + 1, k). If Ur+1 = Upsa(m, 1) s
the smallest such integer, then v,+; > v, + 1 by (7) and furthermore
v Y Vet r6 & § (r+1)é

P{U A} = P{UE Ay) + P{UTI ALY + P{AL,, ) = — + o + s
Since r + 1 < m, (6) ensures that v,.; < k, and, moreover, thé procedure may be repeated
until » + 1 = m. Hence, for any integer m > 1, the negation of (5) implies that for every
choice of n = n(i) = N,,, there exist-integers 0 = vo < U1 < :++ < U < k,, (Which depend
on m and i) such that

)

(8) P{Ujz,_+1 An} > o’ l<r=m.

Consequently, for all integers m > 1 and n = n(i) = N,, it follows via Lévy’s inequality
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that
1
P{Sn(l) == mx} = { I:Zv,_|+l Yn] ] N [Eﬁ,’,‘,ﬂ Yan 0]}

1 m

Z§H7_1-P{|EU 1+1Ynjl> A}
1 1
= 310 P, o 128 10 V1> 11
1 1/8\"

ZEH,_l-P{maxv \<h=v, | Ynhl >A} > = 2 (8_77;)

by (8). Thus, for every integer m > 1

P{lim SUPn S¥ = % m}\} > P{S:(i, > %mx i.o. (i)}

1 1(8\"
= lim sup;.« P{ Siw = émx} =3 (-8—';>

contradicting the fact that (2) entails lim sup ,—..S% = 2M,, a.c. and thereby establishing

(5).
Next, it will be demonstrated that

9) al= Zfél EY%LI v, 1=11 = 0(1).

If rather, lim sup a, = A’ in (0, ], then for 0 < A < A’ and some subsequence n (i) — ,
necessarily a,.) = A, i = 1 whence setting Z,;= Y, v, <1, it follows via (5) for any A in
(0, 1) and n = n(i) that

a;3 Z,"zél ElZ,,j|3 = a,,3 (}\ 2,_1 EY",IHY |=A] + 2, 1 P{l Ynjl >>\}) = >\A + 0(1) -0

as first i — o and then A — 0. Hence if T,= Y /*; Z,;, noting ET,, = 0 = EZ,;, Liapounov’s
theorem for double arrays (Theorem 7.1.2, [3], page 200) ensures that T,..)/ani —
¢ N(0, 1). Thus, for any m > 0, if ® denotes the normal distribution function,

lim supio P{Trhy > m} = limg oo P{Tr;y > mani;/A} =1 —D(m/A).
Now, via (5), as 1 — o

P{Tu»>m} < P{Siy >m} + P{UY [| Yaw,;| > 11} < P{Sikw >m} + o(1)

implying for any m > 0 that
P{lim sup,. Sy =m} = P{S}; > m,i.o. (i)}
= lim; .. P{U5-, [Skn >m])
= lim sup;.« P{Skiy >m}=1—-d(m/A)

again contradicting lim sup,_..S» < 2M,, a.c. Thus, (9) is established.

Since EYyilj v, <1y = 0, it follows from (5), (9), and the Degenerate Convergence
Criterion ([6], page 317) that S} — 0 in probability which is equivalent to (3) (see e.g.,
.Corollary 1, [6], page 245).0

An infinitely divisible distribution F has bounded support iff F is degenerate ([1], page
413). Thus, if (1) holds and for some constants M, the rv’s S, — M, converge a.c. to a
nondegenerate rv S, necessarily S is unbounded. This also follows directly from Theorem
1 without invoking properties of infinite divisibility.
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COoROLLARY 1. Let S, = ¥/ a,X;, n = 1, where {X,, n = 1} are iid. random
variables and {a.;, 1 < j < k, > o, n = 1} are constants satisfying maxi<jzs, | Gnj| =
o(1). If lim supn—« | S» — M,.| < M, < «, a.c. for some constants M,, then S, — med S, —
0 in probability.

COROLLARY 2. Let S, = Y}-1 Xj, n = 1, where the independent random variables
{X.} satisfy

(10) lim, .. maxi<j<. P{|X; — med X;| > Aa.} =0, allx>0
for some sequence {a.} of positive constants. If

(11) P{lim supse | Sy — ¢n|/an <} >0

for some constants c,, then the weak law of large numbers

(12) (S, — med S,)/a, —p0

obtains.

ProoF. Note that in the nontrivial case where at least one X is nondegenerate, (10)
ensures that a, — ®, whence by the Kolmogorov 0-1 law and (11), lim sup,—« | Sx — ¢»|/
a, = M, a.c. for some constant M < . If X,; = (X; — n"c,)/a@n, 1 =j < n, n = 1, then (10)
is tantamount to (1) and so (12) follows from Theorem 1. 0O

2. The weighted i.i.d. case. Of particular interest is the weighted i.i.d. case consist-
ing of sequences {0,Y,, n = 1} where {Y, Y.} are i.i.d. random variables and {c.} are
nonzero constants. Let {a., n = 1} be arbitrary positive constants and set

an=°fo, l1<j=n.

n

When a, = s, (log log s2)"/2 where s =Y} 67— ® and EY = 0, EY? < o, conditions
for the classical law of the iterated logarithm (LIL)

2i%Y, _ opyrpz ac

fim 8P 5, =l S0P Tiog Tog 577

have been given by Chow and Teicher [2] and Teicher [9], [10]. When EY? = , and Y is
symmetric, a nonclassical LIL has been proved by Rosalsky [8].

Without any moment conditions on Y, if (*)a. 1 ®, 6, = o(a.) then (see e.g. (24))
maxi<j<» | 0;| = 0(a.) and so Corollary 1 guarantees that

. 1
lim SUpPn—sw a— 27:1 ijvj -M, =M
< ®, a.c. implies P [Y710;Y; — med Y- 6,Y;] —pO.
The next theorem? which makes no initial assumptions about a. such as (*), asserts
that a weak law of large numbers prevails provided a generalized LIL holds for some choice
of constants a,. It is convenient to first treat the case of symmetric Y.
THEOREM 2. Let S, =Y 0;Y, and s%=Y% o}, n = 1 where {0, n = 1} are nonzero

constants and {Y, Y,, n = 1} are symmetric i.i.d. random variables such that either Y is

2 This is one of several theorems in the Ph.D. thesis of Rosalsky (see [8]).
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unbounded or o = o(sZ). If for some sequence of positive constants a.,,

(13) lim sup,—.« S./a. =1, a.c.
then the weak law of large numbers
(14) S./a,—p0

obtains.

Proor. It will be shown firstly that if EY? < o, then
(15) st — o,

Now, if (15) fails, (13) and symmetry guarantee Y nondegenerate with EY = 0. Since 0 <
Y1 E(0,Y,)? < », the Khintchine-Kolmogorov Convergence Theorem ensures that S,
converges a.c. and in quadratic mean to a nondegenerate random variable S with ES = 0
which contradicts (13) since P{S < 0} > 0.

Next, it will be shown that

(16) ap —> o,

Otherwise, a.# < M for some M in (0, ) and some subsequence n(k) 1 «. Then via (13)

0 = P{lim sup,.» Sp/a. =1+ M™'}

= limpso P{Ur [Sny = M + 1]}

= lim sups.o P{Spmy =M+ 1} =0
and consequently
17) limp o P{Sny =M + 1} =0.
However, if Y is unbounded,

P{Suw=M+1}=P{aY1 =M+ 1}.-P(3 % 0;Y; = 0}
=%UP{|oY1|=M+1} >0,
contradicting (17). On the other hand, if Y is bounded, then via (15)
Tilog] = (T o)/ = oo
and thus K may be chosen large enough so that
2o | =(M+1)/c

where c is a positive number satisfying P{Y > ¢} > 0. Hence, if A; = {Y] sign(g;) = c},
Jj=1land k> K,

P{S,» =M+ 1} =P{S, s =M+ 1} 'P{EZIIIE()HI GJY'] =0}
= Y%P{Sux =T HF |oj| ¢} = BP{NKO A)
= %(P{A;})"® >0

again contradicting (17) and thereby proving (16).
It will now be shown that

(18) lim sup,. Sp/ak =1, a.c.

where
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(19) a} =infj., a; 1 .

Clearly a; 1 ©,a,=ay >0,n =1, and lim sup, .. S./a is degenerate by the Kolmogorov
0-1 law. Consequently,

(20) 1 =lim sup,_.« S./@, < lim sup,_.. Sp./a} = L < wx, a.c.

If L > 1, choose A in (1, L). For each n = 1, a} = a;(») for some j(n) = n. Now for all £ =
n = 1, interpreting Y% 2.1 6; Y, as 0, the event {/%),; 0;Y; = 0} and the class of events
{{S,>Aajw)} :r=n, - -, k) are independent. Moreover, P{Y4¥ ¢;Y; =0} = %. Thus, by
the Lemma for Events ([6], page 246),

P{U5-n [Siwy > Aty 1} = P{UZ=n ([Sk > Aajin] N [Ti%41 0: Y = 0]))
= %BP{U%-n [Sk > Aajn 1},
whence via (20), the choice of A, and j(k) = &
Yo =%P{S,/a¥>A10.(n)} = Y lim,o P{U%-. [Se > Aajx) 1}
= lim, . P{Ui- [Sj) > Aajry ]} = lim,. P{UZ, [S;> Aa;]}
=< P{lim sup,_.» S,/a. = A}

contradicting (13) and thereby establishing (18).
Hence by symmetry,

(21) lim supy—« | Su|/@x = lim sup,—« | S:|/aX =1, a.c.

Thus, |0, Y. |/ax <|Su|/ak + | Su-1|/ak-1, entails lim sup, .« |0, Y,|/ar < 2, a.c. and
consequently via the Borel-Cantelli lemma

(22) a1 P{|Y|>Xak/|on|} <», ali>2.
Next, it will be demonstrated that
(23) o, =o(ay).

If Y is unbounded, it follows from (22) that P{| Y| > 3a}/|0.|} = o(1) implying (23). If
rather, Y is bounded, the hypothesis of the theorem asserts that ¢2 = 0(s2) and moreover,
82— o by (15). It is well-known that EY = 0,0 < EY? < o, 52 — o, 02 = 0(s2) entail the
classical Lindeberg condition for asymptotic normality of S./(s2EY?)'/* and, a fortiort,
Sniiy/ (82 EY?Y? 5, N(0, 1) as k£ — o for any subsequence n (k) — . Now, a* = s, for
all large n since otherwise a ) < sn(x) for some subsequence n(k) — o« implying

0 <limp, o P{Snty > 28ny } < limpo P{UZs [Snii) > 28201}
=< P{lim sup,.» S»/a,; = 2}

which contradicts (18). Thus, (23) holds recalling that o, = o(s.).
Finally, (19) and (23) ensure

(24) maxisj= | 6j|/a@n < Maxicjom | 0| /@} + MaXnsj=n |0;|/a} = sUpjzn |0;]/a} S 0.
But then for all A > 0,
maxi<j<» P{|0,Y;| > Aa.} = P{| Y| > Aan/maxi<j<. | 6;|} = o(1),

whence (10) obtains and so (14) follows via (21) and Corollary 2. O

REMARK 1. It follows from (24) and (9) that s, = o(a,.). Moreover, (22) guarantees
that lim sup,_.« @./(no2)"? = 0 if EY? = o,

REMARK 2. Under the hypotheses of Theorem 2, the distribution of Y belongs to the
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domain of partial attraction of the normal law, i.e.,
(25) lim inf, . y*P{| Y| > y}/H(y) = 0
where H(y) = EY I} v|=y, ¥ = 0. This generalizes the finding of Heyde [4] and Rogozin
[7] for o, = 1. It has been shown by Kesten [5] in the i.i.d. case that (25) is sufficient for the
existence of a sequence 0 < b, | o for which lim sup,_.« b;' ¥ 1 Y; = 1, a.c. The proof is
similar to that of Heyde.

PRroOOF OF (25). If (25) is invalid, then there exists § > 0 such that for all large y
(26) Y'P{|Y|>y} = 8H(y).

Let Y, = Y. I, Yil=3ai/lal]; n =1, where a} is as in (19). Now (23) and (26) ensure that for
all large n, E(0,Y,/a¥)? < 967'P{| Y| > 3a}/|o.|} and so Y51 E(6.Y;/a})? < » by
(22). Then by the Khintchine-Kolmogorov Convergence Theorem and Kronecker’s lemma
Y71 0;Y}/a% — 0, a.c. But the Borel-Cantelli lemma guarantees that P{¢,Y, # 0,Y,
i.0.(n)} =0, whence S,/a; — 0, a.c. contradicting (18). O

The next corollary eliminates the symmetry assumption of Theorem 2. The proviso a.
— o cannot be dispensed with according to the ensuing Example 2.

COROLLARY 3. Let S, = Y%, 0;Y;, s = Y21 o}, n = 1, where {o.} are nonzero
constants and let {Y, Y,} be iid. random variables such that either Y is unbounded or
o2 = o(s). If for a, — » and some constants c,

27) lim sup,—« |Sr — ¢n|/an =1, a.c.
then the weak law of large numbers
(28) (S, — med S,)/a, —p0
obtains.
Proor. Let Si Y %1 6/(Y; — Y}), n = 1, be a symmetrized version of {S.}. Then by

(27), lim sup,—« |S¥|/a» < 2, a.c. implying via a, — %, the Kolmogorov 0-1 law, and
symmetry that for some constant C, 0 < C < 2,

lim sup,—« S¥/a, = im sup,—« | S%|/a. = C, a.c.
If C > 0, then Theorem 2 (with a, replaced by Ca.) ensures that
(29) Sx/a,—p0
and this holds trivially if C = 0. But (29) is equivalent to (28) (Corollary 1, [6], page 245). O

3. Two counterexamples.

ExampLE 1. The following example of weighted ii.d. random variables shows that
Theorem 1 (resp., Theorem 2) can fail if (1) is violated (resp., if 02 # o(s2) and Y is
bounded). Let 6, = ¢b", n =1, ¢ > 0, b > 1 and let Y’ be symmetric with ess sup Y =
(b — 1)Y%/(b + 1)/ It follows from Theorem 2 of [8] that lim sup,.. Y. /~1 0;Y;/s. =
1, a.c. and so (2) and (13) obtain with M, = 0, n = 1 and @, = s., n = 1. Since s,/0, —
T b/(b% = 1)V < oo,

lim inf, e P{| 321 0;Yj/sn| > A} = lim inf, .. P{[0,Y»> As,] N [T} oY, = 0]}
= lim inf, o UP{| Y| > Asp/0.} >0
provided A > 0 is sufficiently small, and consequently both (1) and (3) fail.
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ExaMPLE 2. Apropos of Corollary 3, this example shows that a, — o cannot be
replaced by ¢, > 0. If P{Y =0} =P{Y=1} =% and o, =2"",n=1,then S, =Y 1 0;Y;
converges a.c. to a random variable which is uniformly distributed on [0, 1] and, moreover,
med S, = % for all n = 1. If ¢, = a, = n for n even while for n odd, ¢, = 0 and a, = 1, then
(27) obtains but for 0 < A < % and n odd

P{|Sy = %|/an>A} = P{|Sn — %|>A} > 1 — 21 >0

and so (28) fails. This example is, of course, rather extreme in the sense that S, converges
a.c. whereas infinitely often c, lies well beyond the support of the distribution of S,. It is
not clear whether a more natural example can be constructed wherein S, diverges a.c. or
ch=medS,,n=1.
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