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WHEN IS THE CLUSTER SET OF S,/a, EMPTY?

By J. KUELBSs'

University of Wisconsin-Madison

We investigate the relationship between the bounded law of the iterated
logarithm and the compact law of the iterated logarithm for Banach space
valued random variables through the cluster set of S,/a.. Some rate of escape
questions are also examined.

1. Introduction Let B denote a real separable Banach space with norm || - ||, and
throughout assume X, X;, X, - - - are independent identically distributed (i.i.d.) B-valued
random variables such that E(X) =0 and E || X ||* < ». Asusual S, = X; + ..+ + X, for
n =1, and we write Lx to denote the function max(log x, 1). The function L(Lx) is written
LLx, B* denotes the topological dual of B, and a, = (2nLLn)*? for n = 1. The set of all
limit points of {x.} is denoted by C({x,}) and is called the cluster set of {x,}.

If {a.} is any sequence of nonzero constants, then it is an easy consequence of the
Hewitt-Savage zero-one law that with probability one the cluster set C({S,/a.}) is a
nonrandom set A depending on {a.} and the law of X (see Lemma 1 below). If {a,} is such
that lim sup, || Sx/a. || = 0, then we see A = {0}. However, if 0 < lim sup, || S./ax ||, the
nature of the almost sure cluster set A is much less obvious. The situation of interest in
this paper is the case of the law of the iterated logarithm (LIL), i.e., when «, = a, for
n = 1, but other normalizing constants «, are important as well. Of course, if X is not the
zero random variable, we always have 0 < lim sup, || S./a.||, and hence A is to be
determined.

Of course, A being a cluster set implies A is always closed, and since E(X) =0, E || X ||
< oo there is a canonical set K, depending only on the covariance function

T(f, 8 = E(f(X)g(X)) (f,.g€B*)
of X, such that we always have

o (e([E])ex) -1

For the definition of K we refer to Lemma 2.1 of [4], and mention that since E || X ||* < o
we have K compact. The proof that A C K or, equivalently, that (1.1) holds, follows from
[4], page 745.

In view of recent results on the LIL we say X satisfies the compact LIL if there is a
compact set D such that

([2]) )

and

(1.3) P(lim,, d(g2 , D) = O) =1
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378 J. KUELBS

Here d(x, D) = infyep | x — y ||, and we call D the limit set in the compact LIL.

If X satisfies the compact LIL with limit set D, then [4], Corollary 3.1 implies D = K
and hence the cluster set is completely determined in this case. However, some examples
of G. Pisier [7] show that a random variable X may fail to satisfy the compact LIL yet

have
< 00) = 1.

If (1.4) holds we say X satisfies the bounded LIL, and it is the purpose of this note to
examine the relationship of the compact LIL and the bounded LIL by examining the
nature of the cluster set C({S./a.}) in the examples of Pisier mentioned above. This
appears to be a rather modest goal, but the difficulties are substantial and one would hope
that future investigations could accomplish more.

One of our results states that for the “regular examples” of Pisier [7] satisfying the
bounded LIL, but not the compact LIL, the nonrandom cluster set A is empty. Combining
this information we easily obtain a natural rate of escape and a natural rate of growth for
these processes. For the example of [3], which satisfies the compact LIL but not the central
limit theorem (CLT), we prove a rate of escape result, as well as examine the related
cluster set.

Of course, a conjecture which immediately suggests itself is that if X satisfies the
bounded LIL, but not the compact LIL, then P(C({S./a.}) = &) = 1. In Section 4 we
provide an example which shows this conjecture to be false.

n

(1.4) P(lim sup.

Qan

2. Some notation and the statement of results. Let ¢, denote the separable
Banach space of all real sequences x = {x;} such that lim, x; = 0 which is normed by

(2.1) || x|| = supe| xe].
Lete, = {8;j:i=1} for j=1,2, -.. where §;; = 0 for i # j and 1 for i = j. Then we define
(2.2) X(w) = E,'=1 aje,-(w)e,

where ¢, &, - - - are independent random variables such that P(g, = £1) = %2 for j = 1, and
{a,} is a sequence in c.

If o, = (2Lj)""/2 then X satisfies the compact LIL but not the central limit theorem [3],
and if the a, are chosen as in [7], page IV 8, then X satisfies the bounded LIL but not the
compact LIL. It is these latter examples which we are most interested in, but before
describing them in detail we need a bit of terminology.

We say a positive increasing sequence {c,} = {c(n)} increases with logarithmic
regularity if lim, ¢, =  and for some p > 0 and p = 1 we have for y > 0 that

(2.3) L(c(c™(y) = 1)) = p(Ly)'”.
Here ¢7!(y) = inf{n : c(n) = y} is the definition of ¢ .

If {¢,: j =1} is a sequence of independent random variable such that P(¢; = £1) = % for
J =1, we define
ler+ oo +&a| -

(2.4) M = sup, .

The examples of [3] and [7] depend on the fact tht for every 8 > 0 we have
(2.5) E(exp{BM?}) < o.

For the results of this paper we will need to know even more about the distribution of the
random variable M than is given in (2.5), and this will be established below in Lemma 2.
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Lemma 2 is also of interest in that it seems to be a new and rather unexpected result
about coin tossing proving that

lim,_,, log P(M > A)/ALLA = —1.
Let b, >0, ¥, b, < . Then we say the random variable X defined in (2.2) is a “regular
example” of Pisier if a; = 1/¢1, A1 =1 and forn > 1

1
(26) a,,,=—c— for A1+-~~+A,,_1<mSA1+~--+A,,
where {c,) is logarithmically regular such that for n sufficiently large
(2.7) PM > 2¢,) = b,P(M > c,)

and the A,’s are integers such that
1< ;
P(M > c,)

The existence of regular examples can easily be seen from Lemma 2 by choosing, for
example, ¢, = n'? or ¢, = e” when b, = '/ for large n. Many other choices are also
possible, but now we can state our theorem.

(2.8) An — <A,

THEOREM 1. Let X be defined as in (2.2) and assume X is a regular example of Pisier.
Then:

(1) X satisfies the bounded LIL, but not the compact LIL,

(2.9) (ii) P<C<{§f}> = @) =1, and

S, . Sn
(iii) 0 < lim inf, "—a—" < lim sup, Il(—z—ﬂ < oo,

The result (2.9-iii) gives us a natural rate of escape as well as a natural rate of growth
for the process {S, : n = 1} generated by a regular example of Pisier. For the example of
[3] we can prove the following contrasting result. Other rate of escape results for infinite
dimensional processes can be found in [1].

THEOREM 2. Let X be defined as in (2.2) with o = (2Lj)™""* for j = 1. Then:

(i) X satisfies the compact LIL, but not the CLT,

=1)=1,
oo {d((8]) o)

REMARK. The results in Theorem 2 also contrast with the situation that occurs when
X satisfies the central limit theorem. That is, if B is separable, and X satisfies the CLT,
then we have
= ) = ]_’

n

(ii) P(lim inf, 7

(2.10)
(iii) P(lim supr

(2.11) P(lim inf,

S,
vn
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as well as the more general fact that

o[5)-9)-

Here A denotes the closure in B of any subset A of B. The proof of (2.12) (and hence of
(2.11)) will be sketched in Section four following the proof of Lemma 5.

In Section four we also provide a counterexample to the conjecture mentioned at the
end of Section one. Indeed, for this example, which satisfies the bounded LIL but not the
compact LIL, we will show that not only is the cluster set nonempty, but as large as

possible, i.e.,
a,

In summary, then, we see that the relationship between the bounded LIL and the
compact LIL is rather subtle. One possible conjecture that would unify our view of these
matters to some degree is that if X satisfies the bounded LIL, then C({S./a.}) = D or K,
with probability one. If this conjecture is true, then, of course, it still remains to decide
when we have the cluster set empty and when it is equal to K.

3. Some lemmas and the proofs of Theorems 1 and 2. Our first result is a zero-
one law for the cluster set of {S,/a,}. Its proof is much like that of Kesten’s Theorem 1 in
[2] and in the form presented below it is due to A. Neidhardt [5].

LEMMA 1. Suppose V is a separable topological vector space (so that addition is
measurable); T is a second countable topological space, { .} is a sequence of measurable
mappings of V into T, and {X,} is a sequence of i.i.d. V-valued random variables on the
probability space (R, &, P). Then there is a nonrandom set A, depending only on the
distribution of X1, such that with probability one

3.1) M=t {/1C1 Xi(w)) :n=m} = A

ProOF. Let & be a countable base for T. Let S, = Y1 X,
% = {B€E A: P(fu(S,) €EBio.) =1},
and
B> = {B € B: P(fu(S,) € Bio.) =0}.

Thus % and %, depend only on the distribution of the process {S.}, and hence only on the
distribution of X;. Further, {f.(S.) € B i.0.) is a symmetric event, so the Hewitt-Savage
zero one law implies # = %, U %..

Let U = Upes,B, A= T — U, so A depends only on the distribution of X;. Let

={w:VBE %, [.(S:(w)) EBio. and VBE %,, [.(Sn(w)) €E B° eventually}.

Then ; is the countable intersection of sets of probabﬂlty one so it has probability one.
Now for w € Q; we have

Clw) = M1 (fa(Sa(w)) :nZm} = A

That is, for x € A and any neighborhood N of x, there is a B € # with x € B C N, and as
x & U, B & %, so B € %,. Hence by definition of &, we have f,(S,(w)) € B i.0. Thus x €
C(w) and hence A C C(w) for all w € Q,. For x € U, there is a B € %, with x € B, so by
definition of Q; we have f,(S.(w)) € B¢ eventually. Hence x & C(w) and thus C(w) C A so
the lemma is proved.
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The next lemma gives us information regarding the tail behavior of the distribution of
the random variable M defined in (2.4).

LEMMA 2. For any 8 > 0 there exists A(8) such that A = \(8) implies
NLLA
1+68]°

(3.2) exp{—(1 + )A’LLA} = P(M > )\) < exp{—

Proor. It suffices to prove (3.2) for § < 1 so fix 0 < § < 1. Next observe that for all
=1

(3.3) P(M>A) = P13 g/ai] > N)
= exp{—(1 + 8§/2)A\’LLIl}

where the last inequality follows from [8,] page 262 with y = §/2, c =1/ VI, si=V1 provided
A is restricted to satisfy V2LLIA = e(8/2) andAvV2LLI/I < w(8/2).

We now attempt to maximize the right-hand side of (3.3) in / as a function of A subject
to the restrictions

(3.4) AV2LLl = £(8/2) and A #‘—l = m(8/2).

Given A, the right-hand side of (3.4) implies vI/2LLI = \(7(8/2)) so take I = [(A*4LL))/
(7%(8/2))] + 1. Then there exists 1(8) such that for A = 7(5) we have the left-hand side of
(3.4) and since LLA/LLl — 1 as A\ — o we have

[T - AV2 LIX_ A
2LLI~ 7(8/2) N LLI = 7(8/2)

Thus with [ = [4\2LLA/7%(8/2)] + 1 and A = 7(8) we have from (3.3) that there exists
8(8) such that A = 4(8) implies

N4LLA
- 2
35 PM>A) = exp{ (1+6/2)A LL<—772(8/2) + 1)}

= exp{—(1 + §)A’LLA}

since limy_. LL((A*4LL))/(7%(8/2))/LLA = 1. Thus the left-hand side of (3.2) holds for A
= max(1(8), 6(3)), so it suffices to prove the right-hand inequality in (3.2).
Let M, = supp=r| }j-1 €/ax|. Then M; = M and for ¢ = 1 + % & we have

P(Mr > A) = Zkzk(r)+1 P(maxc"‘lsnsck ' Z,'}=1 ej/anl = A)

: 1
where k(r) = max{j:c’=r} = [ o8 r}

log ¢
> A)

&

-

= Zkgk(r)+1 P<maxc"-lsnsc"

1
Q[ck-1]
=2 Ykt P( ] v _|> a[c’H]A>
) TVET T VI

by Levy’s inequality

<4 Yizroy+1 €xp{—A*[c*'ILL[c*']/[c*]} by the standard exponential
inequality for Rademacher random variables
(3.6) (see [6], Theorem 15, page 52)

1

A2/1+8/2
=4 Zkgk(r)+1 (2[7;2_—1]> provided k(r) = k()
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k-1
since [([:c k]] = TS for k sufficiently large
* dx )
=4 J;(r)_szlog_c))"m for k(r) = k, sufficiently large

}\2
= 4/(log C)AZ/H(I/?)& )‘_2+ 1)(k(r) — 2)(1+(1/2)5 _1)
1+ %6

for A > V1 + %8.
Now there exists 7; such that A = n; > v1 + %8 implies %([3\)) = max(ko, k), and

and l:log[3)\]:| - log A

. 3
= since ¢<-=.
log ¢ log ¢

SUPr<[ar]

ﬁ <A
Hence for A = n; we have
P(M; > )\) = P(Mz > A) + P(supn<gaa | D=1 &/@n| > A)
= P(Mps > M)

A? 2 A2
=4/(log c)1+(1/2>6<1 :\] - 1>(k([3)\]) — 2)1+(1/2)8 -

3.7) 128

log[3A]] _ log A
where k([3\]) = [—1%?!] > 1o§ -

4(log A — 2log c)

A? A2/1+(1/2)8 .
log c(l i 1)(log A—2logc)

Hence there is an 7 = m; such that A = 75, implies log(log A — 2 log ¢) >
(log log A)*+(/2%/1+8 and

2

1+6

(3.8) PM, >\ = exp{ LL)\} .

Taking A = max(ns, 7(8), 8(8)) we have both (3.5) and (3.8) so the lemma is proved.

LEMMA 3. Let X be a regular example of Pisier defined as in (2.2) through the
conditions in (2.3), (2.6), (2.7) and (2.8). If p is as in (2.3) and X, X, - - - are independent
copies of X, then for all e, 0 < e < 1/12p, and integers N there exists y > 0 and an
n(e, N) such that n = n(e, N) implies

(3.9) P< % < e) =exp{—(Ln)"}
" o, N
where
(3.10) | {xi} | v = SUPk=n-1 | Xe ({xx} € co).

ProOF. Fix ¢ > 0 such that ¢ < 1/12p and let N be given. Let

(3.11) I, = max{l: o> e ,2L:n}.

Then I', converges to « and for I', > N we have

p([E] =)=
o,N

£+ o0 + £

Vn

Qn a

<= ~/2LLn>
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g+ -+ &
Jn

>< 2LLn)}
g
3 2
= [Tk, {1 - exp{— i?LLn}}

by [8], page 262 with y = 1/2 provided (e/a;) V2LLn = X(1/2), (¢/a;) V(2LLn/n) < w(1/2)
<1/2,s, = Vn, and ¢, = 1/Vn. Hence oy < ev2LLn /A(1/2) and o; = (e/7(1/2))-
v2LLn/n, so u, = max(N + 1, a (e¥(2LLn/A(1/2))) = N + 1 for n sufficiently large,
and v, = min(l,, « '((¢/7(1/2)) v2LLn/n)) = T, as m(1/2) < 1/2 where o (y) =
max{l a;>y} for0<y=<a;and a”'(y) =0 fory > a.

Thus there exists ni(e, N) such that n = n,(e, N) implies

2

P( Ss)s]'[}l‘Nﬂ{l-exp{-%LLn}}
n [44
(3.13) N !

(3.12) = H};'Nﬂ {1 - P(

44

r 3¢’
=< expy — Yin+1 €Xpy — 5a? LLn
l

sincel —x<e“forx=0.
Now for n sufficiently large

r 3¢? 3¢’ 2
(3.14) Yizn+e1 expy — —5 LLn ; < Arexpy — —csLLn
2&1 2
where
(3.15) j* = max{k: ev2LLn cx < Vn}.

Now A; > 1/P(M > c;) = exp{c}LLc;/2} by Lemma 2 for ¢, sufficiently large, so for n
sufficiently large (3.14) implies

3¢? LLc» 3
SiENe exp{— 27412LLn} = exp{c,% { 3 L — 3 szLLn}}

(3.16)
= expq ck iLLn _3 e2LLn
- " 4p 2
provided
(3.17) LLc¢j = i LLn.
2p

To see that (3.17) holds observe that

1 n 1 n
-1 — - — * —1f -
(3-18) ¢ (s V2LLn) 1=r<e (e V2LLn)’

so from (3.18) there exists nz(e, N) sufficiently large so that n = na(e, N) implies (3.14), ¢;-
=1, and by (2.3) that

= Al r )
(3.19) LLc; —LLc<c (8 5IIn 1

1
=-—LLn.
2p n

Thus for % £ < 1/8p we have for n = ns(e, N) that (3.16) gives
2
(3.20) SN exp{— % LLn} = exp {y LLn})
o)

for y = 1/8p. Inserting (3.20) into (3.13) we have for n = max(n(e, N), na(e, N)) that (3.9)
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holds, and the lemma is proved.

ProOF oF THEOREM 1. If X is defined as in (2.2) and X is a regular example of Pisier,
then (2.9-i) holds by the argument in [7] since Y 7-1 b, < ® and hence w.p. 1

lim sup, || — || < .

n

Thus to complete the proof of the theorem it suffices to show (2.9-ii) since we then also
have w.p. 1

Sn

lim inf, >0,

n

or otherwise zero would be in C({S,./a.}).
If (2.9-ii) does not hold, then by Lemma 1 there exists d € ¢y such that wp. 1 d €
C({S./a.}). Hence for alle > 0, e < 1,

Sn ..
——d”<el.o.mn>=1,
Qn

(3.21) P(

and thus by the Borel-Cantelli lemma for all b > 1

% —-d " < ¢ for some n € [b* bk+l)) = o,

n

(3.22) T P(

Since d € co there exists N such that sup.=n+1 | dr| < € and hence if d € C({S./a.}) we
must have

(3.23) S P< 5 <2  forsome n € [b* b’“”)) = oo,

N

Let S(¢) = Sig and a(t) = ag for ¢ = 0. Next define r = min {¢: | S(¢) | o v =< eal(t), t = b*}.
Then

bR+2
E{J I{|S(s) | wn < 2ea(s)} ds}
b

k

prt2
(3.24) ZE{J I{|S(s)|wn=2ea(s)} ds = bk“}

lZas=3
= E{E(J IT|S(s) + y|wn = 2ea(s + £)] dS) | y=sryr=65 T =< bk“} .
0

When y = S(r) and b* < t = r < b**! we have
|S(s) + ¥|on = |S(s) |y + ealt),

SO

bkt2—y
J I[|S(8) + ¥|wn =< 2ea(s + t)] ds

0

2y
(3.25) = J I[|S(s) | wn < £a(t)] ds
0
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bk+2_bk+l
ZJ I[|S(s) | wn < ea(b¥)] ds
0
since a(t) is monotonic increasing. Hence by Fubini’s theorem we have

bk+2
J P(|S(8) | wn = 2¢a(s)) ds
b

k&

(b—1)bk+1
=P =r=b"") J P(|S(8) |en= ea(b®)) ds
0

(3.26)
=P(|Sp|on=<¢a, forsome n €& [b* b))
(b—1)bk+1
. J P(|8(5) | oy =< ea(b¥)) ds.
0
Thus
S" kpk+1
P . <e¢ for some n € [b", b*)
(3.27) =N

pR+2
J P(|S(s) | =N = 2ea(s)) ds
bk

= -] ‘
j P(|S(s) | wn < ea(b")) ds
0

Since X satisfies the bounded LIL we have a 8 > max(, ¢) such that P(| S(«) | =y =< fa(u))
= 1 for all u = 0. Hence

(b—1)bk*!
j P(]|S(5) | o < ea(b*)) ds
0

[\

1
(3.28) =3 J' ds
J

12"
>
2 6
where

J={s:0=s=(b—1)b*"' and ea(db*) = bal(s)}

e2b*
) {8:0535 (b —1)b**! and 3572—}
sincee < 1, L = 1 and s < ¢2b*/6? implies sLLs < (2b*/8*)LLs < (¢?5*/6%) LLb* as £*/6*
=<1
Therefore from (3.27) and (3.28) we get

ME

" < ¢ for some n € [b*, b“l))
202 bk+2
(3.29) = W Zi=b" P(| Sj 'm'N = 26(1,)

o,N
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20% ,
5?"1)_" b*(b* — 1)exp{—k’(log b)"}

where the second inequality follows from Lemma 3 with y > 0 provided n is sufficiently
large. Hence

Sn <e¢ forsome n € [b* b’”l))

oo
(3.30) e

2
= zei; (5% — 1) Yr exp{—k"(log b)?} <

and the theorem is proved because A # & implies (3.23), and 0 < ¢ < 1 was arbitrary.

Proor oF THEOREM 2. The result (2.10-i) follows from [3], so we will first prove that
foralle>0,e<1,

(3.31) lim inf, 7_; >1—e¢,
and (3.31) will hold if for all e > 0, e < 1,
(3.32) Yo P(|Su]l = Vn (1 —¢)) < .
Now
P(|Snll = Vn (1 — ) =[]z P< 2;;176_’- < VeLk (1 - e))
n
(3.33) where I', = inf{j: V2Lj (1 — &) = Vn}

= [Tk [1 - P(z,"»=1 75_’; > oLk (1 - e)ﬂ
=< [lu,=t=v, [1 — exp{—Lk(1 — &)*(1 + ) }]

by [8], page 262, with y = ¢, c» =%, sn=+n provided
n

2Lk (1—9) _
vn

and v2Lk (1 — €) = A(e) = 2. Hence in (3.33) if V2Lk (1 — &) = A(e) = 2 we must have

A2(e) _ A2(e)
Lk = m SO Un = exp{m} .

(el =1

If V2LE (1 — €)/vn < m(e) = 1 we must have

nI1%(e) — minfT all%e) |\ _ nl1%(e)
m SO U, = min n, €Xp 2—(1—_—:)—2 = exp —-2(1 — 6)2

since I1%(e) < 1.
Hence there is a ¢(e) < « such that

Lk =

1
P(ISA I = VA (1= &) = 12 <hes, [1 —]

T RU—of+o
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< n ___._._1
= exp Zunsksv,, F(—o2(1+e)

vl (1- 5)2(1+s)+ 1 (1=e)2(1+¢)
3.34 =
(8:34) e"p{ 1-(1—e’(+e)

1—(1—¢)2 (1+e)}

nri(e)(1 — (1 — )*(1 +¢))
= c(e)expy —exp 20 = o)°

=< c(e)exp{—vn

and hence (3.32) holds.
The proof of (2.10-ii) will be completed by showing that for all ¢ > 0

e 1Sl
(3.35) liminf,—=<1+c¢
Vn

To prove (3.35) we define the independent events

A, = {"Sﬂ_ "kl”<1+£}

ny

where n; = k* Then ¥, P(A:) = » and since X satisfies the LIL by [3] we have

Il Sryi I
Lk

lim =0,
Ve
so (3.35) follows from the Borel-Cantelli lemma.
To show Y P(A,) = © we observe that
P(Ax) = []i%: ( =< (1 +e¢) V2Ll

where I';, = inf{!: VoLl (1 + €) = «/—77}
=1+ Jz—u)]

(3.36)

=

1+ 6)22Ll N
=[x [1- - . .
I_Il 1 [ 2 exp{ 2 ne — nk_l}}

The inequality in (3.36) follows immediately from the well-known exponential inequality

([6], page 52) implying
}\2
> A 52exp{——}.
«/E ) 2

(3.37) (
Hence there is a ¢ > 0 such that for k large
2
P(Ax) z c[][#s ,:1 —m]

for some § > 0. Thus P(Ax) = y > 0 for & sufficiently large, and hence (2.10-ii) is proved.
Now (2.10-iii) follows immediately from (2.10-i) since K contains nonzero elements, and

hence we turn to (2.10 — iv).
If d = {d;} € ¢o and d € C({S,/ Vn }) with probability one, then for all ¢ > 0 we must

have
= e) = 0,

(3.38) s, p(

Z"k 1</=ny \/]—

X1

2 _d

Sy ’
vn
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and this is a contradiction. That is, fix 0 < e < 1/3 and choose N such that sup;-n | d; |
< & Then

(3.39) P< % —-d " < e) =%~ P( Yo —;_”-l = 26«/2LK).

Since 0 < ¢ < 1/3 the argument in (3.34) applied to the right-hand side of (3.39) gives a
¢ (¢) > 0 and p(e) > 0 such that

S»

——-d " = s) =< c(e)exp{—exp{np(e)}}.

Jn

Thus (3.38) fails for 0 < £ < 1/3 and the theorem is proved.

(3.40) P(

4. A counterexample to the conjecture of Section one. In view of Theorem 1 it
seems natural to guess that if X satisfies the bounded LIL, but not the compact LIL, then
C({S,./a,}) = O with probability one. The example we present here, however, shows that
this is not always the case.

The example X is again defined as in (2.2) through the conditions (2.6), (2.7) and (2.8)
with ¢, = ¢(k) where c(k) is such that log, c¢(k) = % and log; x is the log function iterated
k times. Recall the definition ¢™*(y) = inf{r:c(n) = y} and set I, = [(c(k)"? c(k)] for k =
1. Then for y € I, k = 2, we have

(4.1) cNy)—1=k—1,

and we see that {c;} is not regularly increasing since (2.3) does not hold.
We now have the following
THEOREM 3. If X is defined as indicated above, then.:

(i) X satisifes the bounded LIL, but not the compact LIL;

(4.2) (ii) P(C({%}) = K) = 1, and with probability one
(iii) 0 = lim inf, | = || < lim sup, || — || < .

To show (4.2-ii) we need some lemmas. The first gives us a way to check if b €
C({S./a.}) and partially follows [2], pages 1176-1178.

LEMMA 4. Let X;, X;, - -+ be independent identically distributed B-valued random
variables. Then b € C({S./a.}) with probability one iff for every ¢ > 0

(4.3) Yk P< S _ b “ <e  forsome n €2 2"“)) = oo,

Qn

Proor. If b € C({S./a.}) with probability one, then for every ¢ > 0 (4.3) must hold
by the Borel-Cantelli lemma. Hence assume (4.3) holds for some b € B and all ¢ > 0. Now
fix ¢ > 0 and choose an integer s = 6 such that (|| b +1)/v2°% =e¢/4.

Define the stopping times

& -b I’ = e} .

n

}\=min{n:n22k,

where we take A = ® if || (S./a.) — b|| > ¢ for all n = 2*. Then P(A < ) > 0 since for any

j > k we have P(A\ < ©) = P(]|(Sn/a») — b]| < ¢ for some n € [2/, 2/*")) and the latter
probabilities must be positive for infinitely many j because the series in (4.3) diverges. On
{A < o} we have || (Sx/ar) — b] = eso
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Dks{ é-b”x forall n= 2+, Ae[z’“,z’”l)}

an
o) { (S"“ - b) - (§i - b) ” =2 forall n=2"°—)\ A€E[2 2’*“)}
(4.4) Qpir ap

={ (ﬂi’l__s)l_b).'.s)‘( 1 __l_)+b
Qn+a Ag+n  Qx

=2 forall n=2¥°—}, AE[Q’“,Q’”‘)}

Q{ S"—“‘-_——S—)‘—bl’zk forall n=2%°—), }\G[Qk,2k“)}
QAn+\
since
1 1
SA( ————)+b”5€+ S
A4 an QAn+
=e+ N ﬂ
Qn+a || QA
_  dbl+e_3
=t et
Now || ((Sn+r — Sr)/an) — b || > 6 implies
Spir — S, n n
(4.5) —“——*—b“>6e z —||b|||1— 2
An+a An+a Qpin

and since A € [2%, 2¢*') and n = 2¥** — X with s = 6 we have

an’ _ nLLn
@i, (m+MNLL(n+M\)

o1 LLn

=T TLmn N
1=

1 LLn
> .
- 2k+1
1+— LLn+—
n nLn

where the last inequality follows from the mean value theorem. That is, if f(¢) = LLt then
for t = e® we have f’(t) = 1/(tLt) so the mean value theorem implies LL(n + A) = LLn
+ A/(nLn). Hence we have :

FFT ° oF+T
nLnLLn

—=
QAn+r
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1

2k+1 22
<1 + 2k+s — 2k+1)

SO @n/@nix =1 — %*! when n = 2¥** — A and s = 6. Inserting this estimate into (4.5) we see
§=6, (| b +1)/vV2"? <¢/4, and || ((Snsr — Sh)/ax) — b|| = 6¢ imply that

Snix — Sy

Qn+a

= 4e.

Hence for = 6 and (|| b| + 1)/v2°* < ¢/4 we have from (4.4) that
SIH—)\ - S)\

(4.6) D, D {
an

b”zﬁe forall n=2"°—}, Ae[zk,z’f“)}.

From (4.6) we see that

P(D,) = P( M - b” = 6e forall n=s"*—-X, A€E[2 2”“))
Sn s—1 ko _k+1
=P a——b = 6e forall n=2""|P(A€E[25s)).

Now from the definition of D, we easily see that at most s of the events D, can occur at a
single time, so

o > s= E#D, which occur)

= Yk P(Ds)

% -b H =6¢ forall n= 2”_1)P(}\ € [2%, s**1))

n

=% P(

= #(

Thus P(|| (S./a.) — b|| < 6ei.0.) = 1 and since ¢ > 0 is arbitrary we have b € C({S,/a.})
and the lemma is proved.

%—b“zﬁe for all n22s'1)-oo.

LeEmMMA 5. Let X1, X;, --- be independent identically distributed B-valued random
variables. Then b € C({S./a.}) with probability one if for every ¢ > 0,

4.7) Z,,P( %—b||<e>/n=w.

Proor. If (4.7) holds for all € > 0, then

S #{ [0 <)

b
Q,
k+1l _ ok
52____2_P<

Sn
2F PR
and hence (4.3) holds so b € C({S./a.}) with probability one.

‘ <e¢ forsome n € [2% 2“1))

PrOOF OF (2.11) AND (2.12). Since X satisfies the CLT we have thatS,/ vn converges
in distribution to a mean zero Gaussian measure u on B determined by the covariance of
X. Furthermore, it is well known that the support of p is Us—; nK and hence lim inf,
P(| (So/Vn) —b|| <) =p(x: ||x — b <e) >0 for all b € Us- nK. Hence for all ¢ >0
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Y P(|| (S./vn) — b || < & for some n € [2*, 2**)) = », and if we follow the proof of Lemma
4 we see that this implies b € C({S,//n}). Since b was an arbitrary pointof Ug_; nK this
gives (2.12) and hence (2.11).

Proor oF THEOREM 3. That X satisfies the bounded LIL, but not the compact LIL,
is given by the argument of Pisier in [7]. Hence (4.1-i) holds and (4.2-iii) will then follow
if we verify (4.2-ii).

To verify (4.2-ii) we first will show that for all ¢ > 0 there exists no(e) such that for n
= no(e) satisfying

1 n
(48) ; Em (S Ik(n),

we have a y > 0 such that

=egl=y.
=)=

49) p(

Hence fix ¢ > 0 and observe that for infinitely many n we have k(n) such that (4.8)
holds, i.e., to see this just observe the growth of the left-hand side of (4.8) in comparison
to the growth of {c(k)}. In fact, if

v . 1./
(4.10) Jj¥= max{k ce(k) < . 2LLn} s

then (4.8) implies that Iy = Ij»41 50 k(n) =j* + 1.
To verify (4.9) we first choose ni(e) such that n = n;(e) implies

2 2L
(4.11) 4 exp{— ¢ Lfn} =4 exp{— ¢ fn} < log 2.

oy ag
P( i = e) =Tk P( == JzLLn)
n oy

[2L
(4.12) where I', = max{l T >E 2 nLn}
82
= [Tk {1 -2 exp{—— —2LLn}}
al

where the inequality follows from the standard exponential inequality (3.37). Hence, since
1— (x/2) = e ™ for 0 = x < log 2 and (4.11) holds for n = n,(¢), we have from (4.12) that

&

then for n = ni(¢) we have
Sn AR
JL IR

(4.13) P(]| S, || = earn) = exp{—4Z,}
where

e2

Z, =Y exp{— - LLn} .
a;
Recalling j* from (4.10) and I', as in (4.12) we see from (2.6), (2.7) and (2.8) that

(4.14) Z, = Y1 Ajexp{—¢’c} LLn).
Taking § = 1 in Lemma 2 we thus have an H < « such that

(4.15) A, + 1= H exp{2c/LLc;})

<1
PM > ¢))
for all j = 1. Combining (4.14) and (4.15) we have since the {¢;} are increasing that
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2
(4.16) Z,< HYI, exp{Zc}{LLcjt - % LLn}} .
Now j* = ¢ ((1/e) vn/2LLn) — 1 and since n satisfies (4.8) we have k(n) = j* + 1 so
1 n "
(4.17) ?n2252Lanc(] + 1).

Furthermore, letting e;(x) denote the inverse of log; x we have ¢; = ¢(j) = ¢;(j) and hence
forj=3

(4.18) LLc; = ej—s()).
Using (4.17) and (4.18) we next take no(c) = ni(e) such that n = no(e) implies j* = 3 and
e?LLn = ¢’ LLe%c(j* + 1)
=& LLe(j* + 1)
—2

eo-1(J* +1)

IR

(4.19) =

= 4ej—o(J*)
=4LLci = 4.
Hence for n = no(¢) and satisfying (4.8) we have by combining (4.16) and (4.19) that
Z, < H YL, exp{2cXLLcj» — 2LLcj)}
(4.20) = H Y%, exp{—2c}}
= H; < .
Thus for n = no(e) and n satisfying (4.8) we have
(4.21) P(|| S, || = ea.) = exp{—4H,} = v,

and hence (4.9) holds as claimed.
Given X as in the theorem Lemma 2.1 of [4] easily implies

b2:
{{b} Eco: Z,-1—< 1}
Since C({S./a.}) is closed and with probability one contained in K, ([4], page 745), we
thus have (4.2-ii) if we show that all & € K of the form
(4.22) b=(b1y MY bNy 01 01 "’)

with p = ¥¥; (b}/a}) < 1 are in C({S./a,}).
To do this we apply Lemma 5. That is, fix ¢ > 0 and take b as in (4.22). Then for all n
sufficiently large we have

<

- [N P (

=T, P
(4.23) == (

5 .
Yo, L -2 BlIn| <L
\/_ [+4] [+4]
8 )
< —
o
b

= \BLLn
[47]

>

(|5

2LLn)

S l

n

S, )
<e]j.
a

n

<& aiin )p(

Y —= \/—
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Combining (4.21) and (4.23) we see there exists an n,(¢) such that n = n,(¢) and n satisfying
(4.8) implies

(4.24) P( Sn_ bl < e) = P< w2 Y BiIn| <2 2LLn)y.
Qn \/; a a
Now N is fixed so the Berry-Esseen estimate ([6], Theorem 4, page 111) implies
N &b £
[1p P( P T w V2LLn | < o «/2LLn)
(4.25) o [ e o
. = =1 @ T \/2—7; nl/2

bi
exps —— LLn
aj

1
—+ 0| —
ev2LLn (n” 2)

= H?;l

for all n sufficiently large since
_(bﬁ_a2)

b —s22
J’e dszle“‘z/z[l—e ? ]
. Vor b

when 0 < a < b, and ¢, is some positive constant

_exp{—pLLn} 1 B
-a (e2LLn)Y + O(nm) = (Ln)*(LLn)Y

for all » sufficiently large with p = ¥, b7/a? < 1 and some 8 > 0.

Combining (4.24) and (4.25) we have for each « satisfying 0 < p < a < 1 an ns(e) such
that for n = ns(e) and n satisfying (4.8)
© (4.26) P( Sy
Qn

1
P —
‘ < s) =1 L) .
To finish the proof let J = {n : n satisfies (4.8)}. Then Lemma 5 implies b € C( {S./a.})
with probability one since

1

4.27) S i =

To verify (4.27) let J, = (n : (1/e) Vn/2LLn € I,} and recall I, = [(c(k))/% c(k)]. Then
J = Uy J; and for large &
LLn
(4.28) 2 {n:n € [2e%c(k)LLc*(k), e*c*(k)LLc*(k)]}
={n:n € [x, ]}

g = {n 2 e 2e%(k), 2ezcz(k)}

Furthermore, for & large (4.28) implieé

1 1
(4.29) Z"GJk n(Ln)® = Z”G[lkvyk] n(Ln)®

1
= i {(logyr)' ™ — (log xx)*™*).
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Using the mean value theorem on f(x) = x'™ we see that for large %

1 1 (lo — log «x,
e, >_( g yr — log xx)

n(Ln)* ™~ 2 (log yr)~

1
== (log c(k))'™.
4
Hence J = U,, J; implies (4.27) and the theorem is proved.
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