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SELECTING UNIVERSAL PARTITIONS IN ERGODIC THEORY"

By JouN C. KIEFFER AND MAURICE RAHE

University of Missouri and Texas A. and M. University

Let 2 be the set of all k-atom measurable partitions of a standard
measurable space (2, #), and let T be an isomorphism of (§2, &) onto itself.
Given P € &, each probability measure pu on & stationary and ergodic with
respect to T determines a joint distribution under p of the k-state stochastic
process (P, T'). We say that P is universal for a property S (depending on p)
if the distribution of (P, T') satisfies S for all u. Theorems are given which
assure the existence of a universal P € #.

Introduction. Fix a standard measurable space (2, #) and an isomorphism 7:Q2 —
Q. Let 4T )(#.(T)) be the set of all probability measures on # stationary (stationary and
ergodic) with respect to T. Fix a finite index set A and let £ be the set of all partitions P
= {P' € #:j € A). For 9 C M.(T) and each p € 2, let 2, C 2 be specified. This paper
gives sufficient conditions on the {2} so that Nn,co 2 # J.

Intuitively, a partition P € N, £, is “universal” in the sense that if each %, represents
the partitions satisfying a certain property (depending on u), then P satisfies the property
for all u. One application of “universal” partitions, treated at the end of the paper, is the
extension of theorems of ergodic theory (such as the Sinai Theorem and the Ornstein
isomorphism theorem) from the ergodic to the nonergodic case. A second application has
an information-theoretic flavor. As is well known, each P € 2 induces under T a stochastic
process (P, T') with state space A (see [3] or the end of this paper). Suppose an individual
called the “sender” selects a P € £ and then transmits the resulting process (P, T') to
another individual called the “receiver.” We suppose that the receiver will be satisfied
provided the joint distribution of (P, T') is always A, say. However the joint distribution of
(P, T) depends on the measure p being used on % over which the sender may have no
control. Thus the sender needs to find a “universal” P so that the distribution of (P, T') is
A no matter what p is.

In the next section we present selection theorems which give the existence of “universal”
partitions. -

Some selection theorems. If P, @ € # and u € #(T), | P — Q | ., the partition
distance between P and Q relative to p, is defined to be % ¥ jca n(P/AQ’); for each p, p,
denotes the pseudometric on 2 such that p,(P, @)= |P—-Q | ,,P,QE 2

We make .#.(T) a measurable space by adjoining to .#.(T) the smallest o-field of
subsets of #.(T') such that for each E € % the map p — p(E) from #.(T) — [0, 1] is
measurable. Hereafter we use the notation 2 C .#.(T') to indicate that 2 belongs to this
o-field. If 2 C #(T), let #(2) denote the o-field of subsets of 2 induced by the o-field on
Me(T). Let N denote the set of positive integers.

THEOREM 1. Let 9 C .#.(T) and let ? C 2 be countable. Let {#, C P € D) satisfy
(a) forany PE #, {p € 2 :P € 2} € F(2); (b) forany p € 2, P € #,and Q € %, if
| @ —P|,=0then Q € 2,; and (c) forany pn € 9, . N P # D.

Then N,eq P, # .
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Proor. By [2, Lemma 5] pick {p.:w € R} C 2 such that (d) p{w:p, =p} =1, p € 9,
and (e) for each E € % the map w — p,(E) from £ — [0, 1] is measurable. For each p €
92, define A, = {w:p, = p}. Then {A,:p € 9} is a partition of @, each A, € & and p(4,) =
1,1 € 2. Let Py, P;, .- - be an enumeration of the elements of 2. Forn = 1,2, ...,set B,
= {w:P, €Z,}. By (c), U, B, = Q. Also each B, is in #and is a union of “ergodic sets” 4,.
Form the disjoint sequence C, = B, N[U}Z] Bl n=1,2,+... If P, = {Pj: j € A} define
P={(P:j€A}by P/ =U;, (P, NC,),jEA. Forp€ 9, A, C C, for a unique n, so by
definition of B,, P, € %,. But | P — P, | , = 0 since u(C,) = 1. Hence, by (b), P € &,.

THEOREM 2. Let 2 C M(T), and let {P, C P:p € D)} satisfy: (a) for each p € 9, 2,
is nonempty and p,-open, and (b) for each P € #, {u € 2:P € 2.} € F(D).
Then n‘,e_@ % 7% @.

ProoF. In Theorem 1, take 2 to be p,-dense in 2 for each u € 9.

DEFINITION. Let 2 C #(T'). We say amap ¢:2 X 22— [0, ) is admissible if for each
P € 2, ¢(-, P) is measurable and for each p € 9, ¢(g, -) is p,-continuous.

LEMMA 1. Let 9 C M(T) and let $:2D X P — [0, ©) be admissible. Then for each ¢
> 0, there exists § = 8 from 2 X 2 — (0, 1] such that: (a) 8(-, P) is measurable for each
Pe? (b)ifpey, PeP {P)CPand | P,— P|,.— 0, then lim inf, ... 8(p, P,) > 0;
(c)ifue 2,P,QEP and | Q@ — P | . <8y, P), then | ¢(p, @) — ¢(n, P) | <e¢ and (d)
0u, Q) =8(p, P)if |[P-Q|,=0.

Proor. Fix ¢ > 0. For each P € &, 8 > 0, let E;(P) be the set of all p € 2 such that
| @ — P|,.<éimplies | ¢(p, @ — é(u, P) | < e. Es(P) is measurable; for if we let {@,
Q2, - - -} be partitions p,-dense in 2 for every u, then

EsP)=NZ {(pE2:|Q—P|,=8 or |o(n Q) —o¢(pP)| e}

Define the function 8 = §“® by 8(u, P) = sup{8 rational:u € E5(P), 0 = § =< 1}. Lemma 1
(a), (c), (d) easily follow. To see that (b) holds, fix P and p. Fix a positive rational « such
that | @ — P |, < o implies |D(p, @) — ¢(p, P) | <e/2. Fix@sothat | @ — P |, <
a/2. Then 8(y, @) = a/2.

For the proof of the following lemma, the reader may consult {2], proof of Theorem 3.

LEMMA 2. Let 9 C MAT) and let {P, € #:n € N} satisfy Yn-1 | Pn = Pn+1 | n <,
1 € 9. Then there exists P € ? such that | P, — P | ,— 0, p € 2.

DEFINITION. If y € #4(T), 2 C 2 is nonempty, and P € &, let p (P, 2) = inf{ | P ~
Q| .Q€E 2}

THEOREM 3. Let 9 C M(T) and let {P.:p € D} be a family of nonempty subsets of
2 such that: (a) for each P € 2, the map p—> p,(P, ?.) is measurable, and (b) there exists
a sequence {¢n} of admissible functions from 9 X P — [0, ) such that P € %, if and only
ifinf, ¢pn(p, P) =0, pn€E Y, PE 2. .

Then N,co P, # .

‘ProoOF. Let {a;})7 | 0. For each i, j € N, let 8/ = §°%’, Inductively, we will construct
partitions {P,:n € N} and subsets {D;,...; : (i1, -+, i) EN*, n=1,2, ...} of 2 such that
(a) {2i:i € N} is a partition of 2; (b) for eachn € N and (i1, +--, i) €E N", {D,...i0i,,  bnr1
€ N} is a partition of 9;,....,; (¢) p € Z,,...., implies ¢; (p, Pn) < an,n=1; (d) p € Z;,...;,
implies | P, — Ppoy | 4 < Milics=n1 0% (1, P)/277°", n = 2; and (e) p € 2;,...;, implies
0u(Pr, ) < mini<s<, 8% (n, Ps)/2" %%, n = 1. First, we construct P; and {Z;:i € N}. Let
2 be a countable subset of 2 which is p,-dense in 2 for each p € 2. For each i € N, let

&= {”‘ € 2: forsome Q € @’ pM(Q’ %) < 6}(/"’ Q)/22 and ¢i(”‘a Q) < (11}-
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Now U & = 2. For, if not, we may fix a u € 2 such that p is not in any &;. Since &, #
@ we may select P &€ #,. Fix i. Since for each @ € 2 either pu(@ Z) = 8ilp, Q)/22 or
iy, @) = a1, we obtain, by approaching P by a sequence from 2 and using Lemma 1(b),
that either p,(P, 2.) > 0 or ¢:(u, P) = a;. The former inequality is impossible and so ¢:(u,
P) = o for each i. This is impossible since inf; ¢:(u, P) must be 0. Consequently the {&}
cover 2 and so we may choose a partition {Z;:i € N} of 2 such that 9; C &, i € N.
Applying Theorem 1 we may obtain P; € 2 such that if u € 9; then p,(P1, 2,) < 8i(p, P1)/
22 and ¢:i(p, P1) < ay.

Now suppose {Pi, ---, P,} and {D,,...;,: (i1, -+, ix) € N*, 1 = k < n) have been
constructed. We show how to construct P,,+1 and {D;,...i,,: (i1, ++ +, lnv1) € N™). Fix (i1,

*, in) € N". For each i,+; € N, define &;....; ; ,, to be the set of all B E D,...;, such that for

some Q@ € 2 we have (f) | P, — @ |, < mini=,=n 8% (1, s)/2"_3+2, (g) éi,,, (1, Q)
< ane1; and (h) pu(Q, A) is less than 82%! (1, @)/2 and less than min;<.<,8% (i, Ps)/2" 2,

Now %,,....,,=U?, -1 &,...i,,,. For, if not, fix u € Z,,...;, such that p is not in any
8. ipyy- FiX iny1. For each @ € 2, either (f), (g), or (h) fails. Hence by Lemma 1 (b), for
each @ € Z, either (f) fails, or (g) fails, or p,(Q, Z) > 0. Now by (e), (f) holds for some @
€ Z,. For this @ we must have then that (g) fails for every i,.:, which is impossible since
mf,w ¢i,., (1, @) = 0. Consequently we may find a partition {Z;....;.,: in+1 € N}
of 9;...; such that &,...,,,, C é&,....,,, . Applying Theorem 1, we obtain P,,; € 2 such that
if p E D...1,.,» then (f), (g), (h) hold for @ = P,,;. This completes the inductive
construction of {P,}T and {Z;...;;:(i1, --+, ) EN",n=1,2, --.}.

Now from (d) we have Y51 | P, — Pos1 | , <o for every p € 9. Therefore by Lemma
2, find P such that | P, = P | ,— O for all p. Let p € 9. Pick (i, iz, -- ) such that u €
D,....,n EN.Thenby (d), | P, — P |, =X2n | Pi— Pir1 | , =32 8% (n, Po)/27 "% =
27187 (p, P,). Applying Lemma 1 (c), ¢;, (1, P) < i, (4, Pr) + an < 2a,. We see that infip(y,
P)=0andsoPE %,. Thus, PE n, A..

LEMMA 3. Let 9 C MT) and let {P.:p. € D} satisfy the hypothesis of Theorem 2.
Then for each P € &, the map p— p.(P, 2,) is measurable.

ProoF. Let .@1, @’2, - -+ be an increasing sequence of finite subsets of .@ whose union
2 is p,-dense in 2 for every p. For each p, P, p,(P, 2.) = p(P, Z. N 2) = lim,_«c pu(P, 2,

N 2,). For each P, the map p — pu(P, 2.) is measurable because it is a limit of a sequence
of measurable functions.

THEOREM 4. Let 2 C M(T) and $:2D X P — [0, ») be given. Suppose: (a) there exist
admissible functions {¢,} such that ¢ = inf, ¢,; (b) for each p € D and ¢ > 0, there exists
8 > 0 such that if P € 2 and ¢(p, P) < § then there exists @ such that | P— @ | ,<eand
¢(p, @) = 0; and (c) for each p € 9, there exists P € P such that ¢(p, P) =0

Then, there exists P € P such that ¢(u, P) = 0 for all p € 2.

Proor. Set Z, = {P € 2:¢(u, P) = 0}, p € 2. By (c) each 2, # &. By (a), assumption
(b) of Theorem 3 holds. The result will follow if we can show u — p,(P, 2.) is measurable
for each P. For each n € N and p € 9, let = #; {P:¢(u,.P) < n™'}. The map p —p,(P,
Py) is measurable by Lemma 3. It is not hard to see that assumption (b) implies that
pu(P; 2.) = liMy e pu(P, 2}), glvmg the desired measurability of the left-hand side as a
function of p for fixed P.

THEOREM 5. Let 9 C M.(T) and let {P.:u € D} be nonempty subsets of P such that:
(a) each 2, is p,-closed and (b) for each P € P, u— p,(P, #.) is measurable.
Then Nyeq P, # O,

Proor. Note p, (P, Z,) = 0 if and only if P € £,. Also the map (u, P) — p.(P, Z) is
admissible, so (a), (b) of Theorem 3 hold.
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Applications. Let (A”, %) be the measurable space consisting of A”, the set of all
doubly infinite sequences from A, and ¥, the usual product o-field of subsets of A*. T4:A”
— A* will denote the shift transformation. Define the families .#.(T4), #(T4) by analogy
to the definition of 4.(T), #,T). Let #/A(T) (resp Ne(T), Ns(Ta), #e(T4)) denote the
nonatomic measures in #(T') (resp Me(T'), MT4), #.(T4)). If P € Z, by the process (P,
T') we mean the map from & — A” such that (P, T')(w); = j if and only if T'w € P/. If p
€ M(T), dist (P, T') € M(T4) denotes the distribution of (P, T') under p.

For each n € N, let X":A” — A" be the map X"(x) = (x1, + -+, Xa). If p, v € M:(Tn)
define |p—v| =Xn-127" Yaear | p[X" =a] —[X" =d]|.

THEOREM 6. Let 9 C N(T) and let {v,:p € D} C M(T4) be such that for each E €
%, the map u — v,(E) is a measurable map from 2 — [0, 1]. Given ¢ > 0, there exists P
€ P such that | dist (P, T) —v,| <& p € 9D

ProoF. Foreachu € 9, let #, = {P: | dist ,(P, T) — v, | <e}. By[3], Lemma 5, page
22, each 2, # . Apply Theorem 2.

The following is an immediate consequence of Theorem 6 and the ergodic decomposition
theorem [2], Lemma 5.

COROLLARY 1. Let @ = NJ(T), v € M(T4) and e > 0. There exists P € P such that
| dist (P, T) —v| <& pn€ D

The following strengthens Rohlin’s Theorem [4], page 16.

COROLLARY 2. Let 9= N)T), n € N, and ¢ > 0. There exists F € & such that F, TF,
«eo, T"'F are disjoint and p(FU .- UT" 'F)>1—¢,pnE 2.

PRroOF. Fix v € #,(T4) and a finite dimensional cylinder set Fin A® such that F, TLF,
..., T%'F are disjoint and the »-measure of the union is 1. By Corollary 1, obtain P €
such that | p[(P, T)"'F] — w(F) | <e/n,p € 2. Take F = (P, T)7'F.

. DEFINITION. Call u € A4(T')(Ne(T4)) Bernoulli if T(T4) is a Bernoulli automorphism
of (, Z W ((A>, %, ). If p € M(T Y M(T4)), HAT)(H,(T4)) denotes the entropy of T(T4)
on (2, Z w) (A", %, p)).

THEOREM 7. Let 9 C N(T). Let {v,:n € 2} C N(Ta) be Bernoulli measures such
that for each E € 9, the map p — v,(E) is measurable. Suppose H, (Ta) = H,(T), p €
9. Then there exists P € 2 such that dist (P, T') = v,, n € 2.

ProoF. Define ¢(y, P) = d(dist .(P, T), ), p € 9, P € 2, where d is the d-metric on
M(T4) [1]. Assumption (c) of Theorem 4 holds by the Sinai Theorem and (b) follows from
[3], Proposition 8, page 26.

We can now extend the Sinai Theorem to nonergodic automorphisms.

COROLLARY 3. Let v € #;(T4) be Bernoulli and let p € N;(T). Suppose there exists a
probability space (S, % \) and a family of measures {py:6 € 'S} in MAT) such that: (a)
the map 0 — py(E) is measurable for each E € F; (b) p(E) = [s po(E) dN(8), E € F; and
(c) H,(T) = H/(T4) for A\-almost all 6 € S. Then there exists P € 2 such that dist .(P, T')

=

DEFINITION. For p € #(T) we say P = {P’: j € A} € Zis a p-generator if given E
€ F there exists E’ in the o-field generated by {T'P’:j € A, i =0, £1, £2, - - -} such that
wWE'AE) =0.If P € # and C = {C’: j € E} is a partition of A®, define C(P) = (cwPy:j
€E}byC(PY=(P,T)'C’,jEE.
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THEOREM 8. Let 9 C N(T) be a set of Bernoulli measures and let {v,:p € 9} C
Ne(T4) be Bernoulli measures such that for each E € ¥, the map p— v,(E) is measurable.
Suppose H(T) = H, (T4), p € 2. Then there exists P € 2 such that for every u € 9, (a)
dist ,(P, T') = »,, and (b) P is a p-generator.

Proor. Forj=1,2, ---, we define finite measurable partitions @, = {Qj :i € E,} of
Q so that the smallest o-field containing all the sets in all the @,’s is & We also suppose
Q,+1 refines Q;,j = 1, 2, - --. For each j, let C{’, C?, ... be an enumeration of all the

measurable partitions of A” indexed by E, whose atoms are all finite dimensional cylinder
sets. If p € 2 and P € 2, define ¢(u, P) = Y51 27 infi|CY (P) — @], + d(dist (P, T'),
v,). Note that ¢(p, P) = 0 if and only if (a) — (b) hold. Assumption (b) of Theorem 4
follows immediately from [3], Proposition 8, page 26, and Proposition 11, page 31.
Assumption (c) is Ornstein’s isomorphism theorem [3].

The following generalizes the Ornstein isomorphism result to nonergodic automorph-
isms.

COROLLARY 4. Let p; € MAT), p2 € M(Tn). For i = 1, 2, suppose there exists a
probability space (Si, %, \;) with (S, &) standard and a family 9; = {pi:a € S} of
Bernoulli measures (9, C N(T'), 2o C N:(Ta)) such that: (a) the map a— pf is measurable
and one-to-one and (b) p(E) = [s, pi(E) dAda), for each measurable set E. Suppose there
is a one-to-one measurable map ® of S, onto S; such that (c) A2 = A\-®' and (d)
H,(T) = Hy(T4), o € S1. Then there exists P € 2 such that (e) dist , (P, T') = p2 and
(f) P is a pi-generator.

ProoF. Applying Theorem 8, we may obtain P such that (g) dist, (P, T') = ud®, a
€ 81, and (h) P is a p$-generator, a € Si. From (c), (g), we get (e). Let g:2; — 2 be the
measurable map such that g(u$®) = pu¢. Let @ = {Q’:j € E} be a fixed partition of 2. Let
& be the set of all partitions C = {C’: j € E} of A” indexed by E. Fix ¢ > 0. For each » €
Do, let 4, = {C E %: | C(P) — Q | g < €}. Since P is a g(v)-generator, %, # <. Also %, is
open in the partition distance on % induced by ». By Theorem 2, there exists C € € such
that | C(P) — Q | ¢ <&, v € 2;. Equivalently, | C(P) — @ |5 <& a € S:. Integrating,
| C(P) — @ | ,, <e. Since @ and ¢ are arbitrary, (f) holds.
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