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CHARACTERIZING ALL DIFFUSIONS WITH THE 2M — X PROPERTY

By L. C. G. ROGERS

University College of Swansea

If (X:):=0 is a Brownian motion on the real line, started at zero, if M, =
max{X,; s<t} and if Y, = 2M, — X, for ¢t = 0, then (Y.): = o is a homogeneous
strong Markov process equal in law to the radial part of Brownian motion in
three dimensions. This result was discovered by Pitman, and recently Rogers
and Pitman have found other one-dimensional diffusions X for which 2M — X
is again a diffusion. This paper gives a complete characterisation of all such
diffusions X.

1. Introduction. Let Q be the set of continuous functions from [0, ») to R and for
each ¢ = 0 define the mappings X;, M, and Y, from Q to R, and Z, from Q to [0, ®) by

Xi(w) = w(t),

M,(w) = max{X;(w); 0=s=<1t},
Yi(w) = 2M(w) — Xi(w),

Zi(w) = (My(0) — Xi(w), Mi(w)).

For each ¢ = 0, define the o-fields % and %; of subsets of 2 by % = 6 ({X; 0 =<s =<t}) and
9, =06({Ys; 0 =s =t}). It is clear that ¥, C £. Defining = o({X;; s = 0}), we let € be
the collection of probability measures P on (£, &) such that
(i) P(Xo=0)=1;
(ii) under P, (X,, t = 0) is a regular conservative diffusion on an interval I C R, started
at 0;
(iii) under P, (Y;, t = 0) is a time homogeneous strong Markov process with respect to
{ gt} .
A diffusion X started at 0 is said to have the 2M — X property if its law is an element of
%.

This situation was first considered by Pitman (1975), who showed that Wiener measure
is in % (and, in that case, Y is a BES(3) process), and more recently, Rogers and Pitman
(1981) have found other measures in %, notably the law of drifting Brownian motion
(whether the drift be upward or downward) and a Brownian motion with mixed drift.
These results were of interest because they led immediately to the path decompositions of
the fundamental paper of Williams (1974), and it was natural to ask whether there were
any other elements of ¥ which might also yield striking decompositions of the paths of
one-dimensional diffusions. The purpose of this paper is to prove that there are essentially
no more elements of ¥ than those which appeared in Rogers and Pitman (1981). After
setting up notation and proving some simple preliminary results, we prove two results of
central importance (Lemma 3 and Theorem 1) from which we calculate the possible scale
functions and speed measures of elements of %. Theorem 1 tells us that, whenever
(2M, — X,):=0 is Markov, the sufficient condition of Theorem 2 of Rogers and Pitman
(1981) is operating. The main result, Theorem 2, gives a complete description of .

2. Notation and preliminary results. Statement (ii) in the definition of ¥ should
be understood in the sense of Freedman (1971); there exists a family {P*; x € I} of
probability measures on (£, %) such that (i) P = P° (ii) for each x € I, P*(X(0) = x,
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X, €IV t=0) =1 (iii) for each y € I, x € I°, P*(X, = y for some ¢ > 0) > 0 (iv) for each
{#.+} -optional time T, and each x € I, the conditional P*-distribution of (X7.¢):=0 given
Fr+ is PX7 on { T < }. We further require that for some x € I°, P%(X, = x for some ¢ > 0)
> 0, to exclude the trivial diffusion which remains at 0 for all time, It is well known (see,
for example Freedman (1971)) that a regular conservative diffusion is determined by its
scale function s and its speed measure m; this characterisation is essential to the proof of
the main result, since we shall identify elements of ¢ through scale and speed.

For any {%}-adapted process (W, ¢ = 0), with continuous paths, define the
{Z} -optional times

(W) = inf{¢; W; = x} xER
Ta0( W) = inf{t; W, & (a, b)} a<bER,

where inf @ = . Where convenient, 7.( W) (respectively 7.,( W)) will be shortened to 7

(respectively 7as).
For each «, B > 0, define the map S, 45: @ — @ by

(Sepw)(t) = aw(BE).

Clearly, if P € %, then P-S;; € 4.
For each ¢ > 0, we define the measure A(£, -) on Borel subsets of [0, »)?, concentrated
on {(u, v); u+v=_¢}, by

(1) A4, A) =P(Zv) EA, 1e(Y) < )
and for £ = 0, A(¢, -) is a unit mass on (0, 0). We shall use the notation for £, x = 0
Ag(x) = A4 [0, ) X [0, x]) = P(M,(v) < x, 76(Y) < )

@)
Re(x) = P(ri(Y) < ®) — Ag(x).

We shall later see (Corollary 1) that 7:(Y) < o for all £ > 0 P-a.s. whenever P € %. This
makes A(:, -) into a Markov kernel from [0, «) to [0, )2 because 7:(Y) 1 1:(Y) as
x 1 ¢ P-as., and it follows, since Z is continuous, that if f: [0, )2 — R is bounded
continuous, then the function

t— Af(t) EfA(t, dy)f(y)

is left continuous, so measurable. Standard monotone class arguments now extend the
measurability to Af(-) for arbitrary bounded measurable f.

Notice that, if ¢: [0, )% — [0, ) by ¢(%, v) = u + v, and if ® is the Markov kernel from
[0, )2 to [0, ») defined by ®((u, v), A) = La(u + v), then the kernel A satisfies

AD =1,

which is condition (5a) of Theorem 2 in Rogers and Pitman (1981).

Our analysis begins with the remark that, since 0 € I, y = sup{x; x € I} is nonnegative.
Let % be the set of probability measures on (£, #) under which (X, ¢ = 0) is a diffusion
on some interval I C (—oo, 0], starting at 0. Thus if P € %, M, = 0 for all ¢ P-a.s. and
Y, = =X, for all ¢ P-as,, so P € %. % is a subset, albeit a dull one, of ¥. Henceforth, we

_assume that y > 0. ’

LEMMA 1. IfP € ¥ and y = sup{x; x € I} > 0, then inf{x; x €I} = —oo,

REMARK. If a = inf{x; x € I} > —o, then the value of M at the time 7;(Y) when Y
first reaches ¢ > 0 must be at least % (¢ + a) v 0, so whatever level ¢ < £ the Y process
subsequently dropped to, we would know that it could never go below % (£ + a) — but it
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is possible for Y to reach level ¢ without going up to £, and, if £, ¢ are chosen suitably, it is
possible for Y to drop below % (£ + a) after 7.(Y). This contradicts the strong Markov
property of Y.

Proor. Pick some b € (0, y A (—a)), and let £ = 2b — a. Now choose € € (0, %b) so
small thatc=b+2e € (0,y A (—a)). Thusa<a+2e<0<hb<hb+e<b—ec<b<
c=b+2<yA (—a)<{ and all of these real numbers, except perhaps the first and the
last two, lie in I°. Consider now the { %} -optional times

To=1(Y),
T, =inf{t > To; Y, = c},
T:=1.(Y),
and the #measurable events
A1 = {0 Thre(X) < Tar2e(X) < 7e(X) < o0},
Az = {w; Tp-e(X) <0, X, <0 for some Teip2(X) <t<Tp-e(X)}.

By the regularity of X, and the fact that « + 2¢, b + 2¢ = ¢ are in I°, it follows that
P(A1) P(A;) > 0, and for every w € A,, the path of Y. () rises to £ and subsequently
drops back to ¢, so P(T, < ©) = P(A,;) > 0.

Howeyer

Yr,=§=2Mr —~ X7, < 2Mr,~ a on {T)< x}

80 Mz, = b on { To < »}, and by the strong Markov property of Y

3) P(T'<o»,Yr.=b—€ forsome t>0)=0

=P(Ty<®):P(Yr,u=b—€ forsome ¢>0|T;<x)

since Yr, = ¢ = Y7, wherever T, and T are finite.
On the other hand, for each w € A, the path of Y.(w) rises to at least level ¢, and then
drops down to b — ¢, so, again by the strong Markov property of Y,

0< P(Ag) = P(T: < o, Yro=b—¢ for some ¢>0)
=P(T:<®).P(Yr.=b—¢€ forsome ¢>0|T;<x)

which contradicts (3). Hence a = —o,
Thus the interval I must be one of (~, y) or (—, y] for some 0 < v < o, or else the
whole of R. ‘

ProrosITION 1. If P € %, and y > 0, then for each b > 0, P(15(Y) < ®) > 0, and if
a>0,P(Y,+=afor somet=0|1,=1,(Y) <o) >0.

Proor. Let B=!%(y A a), a = —(b v a), both in I°, Regularity of X implies P(4) >
0, where A is the event {7.,5(X) = 7,(X), 74(X) < o}, and for each w € A the path of
Y.(w) visits b, and later a.

LeMMA 2. Suppose P € € and vy > 0, and let (', (F,, t = 0), F') be a copy of
(@, (#, t = 0), F). Then there exists a family {Q*; x > 0} of probability measures on
(R, #') such that

(i) {@*; x> 0} is a regular diffusion on (0, ®);

(ii) The P-distribution of (Y,,4:, t = 0) conditional on {7.(Y) < 0} is the same as the

Q*-distribution of (X, t = 0), for each x > 0.
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ProOF. Fixx>0,let 2, = {w € Q; 7.(Y) < ®} € Fand define ¢: Q. — & by ¢(w) (2)
=Y, +(w)fort=0, w € Q.. Then¢ ~*(F;) C %, .+ for each ¢ = 0, ¢ is measurable, and we
define @* on (¥, #') by Q“(A) = P(¢™*(A)|r:(Y) < x). By the above proposition,
P(1:(Y) < o) >0, so this is well-defined, and condition (ii) is satisfied, by construction. To
check the first condition, the regularity of the diffusion follows from Proposition 1 also,
and only the strong Markov property need be checked. But if 7" is a { #/.} -optional time,
7:(Y) + T' o ¢ is a { ¥}.}-optional time, and the strong Markov property of (X, ¢t = 0)
follows from the strong Markov property of (Y;, ¢ = 0).

COROLLARY 1. For each x >0, 7.(Y) < o P-a-s.

Proor. Since { Q% x > 0} is a regular diffusion on (0, ), it follows for each n € N,
Q7 (T1/nn (X') < ) =1 (see Freedman (1971) page 112) so, by Lemma 2, using the Markov
property of (Y., ¢t = 0) at the time 1, and the fact that M, > 0 P-a.s. we learn that

P(for large enough n, 3 ¢, = 1 s.t. either Y,, =nor Y, =n~') =1

But inf{ Y;; t = 1} = M, > 0 P-a.s,, so there can be only finitely many n € N such that
Y, = n"! for some ¢, = 1, P-a.s.

COROLLARY 2. There exists a continuous strictly increasing function p: [0, ©) —
[0, ) with p(0) = 0, lim, .0 (£) =  and, for 0 < a < b,

Q°(ra(X') < ®) = p(a)/p().

ProOOF. Let o be the scale function of the diffusion {@*; x > 0}. Forany 0 < a < b,
Q°(75(X’) < ®) =1 by Corollary 1, so lim, a(€) = — and, since it is easy to see that there
exists 0 < a < b s.t. @°(12(X’) < ®) < 1, it must be that lim, .., 6(¢) < ®, so without loss of
generality lim, ... 6(¢) = 0. Now let p(¢) = —a(¢)~* for ¢ > 0, p(0) = 0.

3. Two key results. As explained earlier, the following results play a central role,
particularly Theorem 1. Proposition 2 is a technical result, a springboard to the all-
important Theorem 1.

PRrOPOSITION 2. Suppose B > 0, and r is a continuous strictly decreasing function
from (—, B] to [0, ). If G is a right-continuous function of bounded variation on [0, B]
such that G(0) = 0 and

f G(du) ru—a) =0 0<a<B,
0, a]

then G(u) =0 for0 = u < B.

Proor. For 0 < a < B, write ro(u) = r(2u — a) (u < a). We are told that for
a €0, B),

a

0= f G(du)r(u) = G(a)r(a) — f ra(du) G (w)
©,a]

0

= G(a)r(a) — f r(dy)G(a -20—y)

so

j —r(dy)G(a ;y ) = —G(a)r(a) 0<a<B.
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Suppose sup{| G(x) |; x € [0, B)} = § > 0. Then for 0 =< € < §, we define
a. = inf{¢; | G(¢) | > €}.

It follows that a. < B and for € > 0
a‘ a.+y
- r(dy)G 3

= f — r(dy)-e

2ay—a,

0<r(a)-€=<|r(a)G(a.)| =

= e(r(2ao — a.) — r(a.)).

Hence 2r(a.) < r(2a, — a.). Now let € | 0; a. | ao and by continuity of r we get 0 < 2r(ao)
= r(ao) which is impossible. Thus G(u) = 0 for 0 =< u < B.
The next result is stated in slightly greater generality than we need.

LEMMA 3. Suppose I is an interval of R with sup{x; x € I} = y >0, inf{x; x EI} =
—co, and suppose { P*; x € I} is any regular diffusion on I, with scale function s. Then for
each b > 0, taking P = P°, A, has the explicit form

Ap(u) = eXp[— j s(dy){s(y) —s(2y — b)}“]
(1]

(4) —P(15(Y) =) for O0=u<bAy
=0 for u=>bnAxy.

Proor. We begin by noting that, since y > 0 and the diffusion is regular, A;(0) = 0.

It is plain from the definitions of A, and y that A,(x) = 0if u = b A vy, so we have only
got to account for Ay on [0, b A y). Fix > 0, and let £ € (0, b A y). By the strong Markov
property of Z at the P-a.s. finite { %} -optional time 7,(Y) A 7_,(X) we see that

P (1-5.(X) = 7-5(X)) = (s(¢) — s(0))/(s(¢) — s(b))

=j Ap(dy) PP (1-54(X) = 7-5(X))
0,2)

= ] Ap(dy)(s(t) — s(2y — b))/ (s(2) — (b))
0,t)

whence
(5) s(t) — s(0) = s(¢) Aw(t=) — j As(dy) s(2y — b).

(0,¢)

Now this is true for all 0 < ¢ < b A v, and the left side of (5) is a continuous function of
¢ in this range, and the jump of the right side at £ € (0, b A y) is {s(¢) — (2t — b)}A As(¢)
= 0. Strict monotonicity of s implies that A Ay(¢) = 0 sp A, is continuous on (0, b A y).
Now differentiate each side of (5) to learn that

(6) s(dt)(1 — As(2)) = (s(t) — s(2t — b)) As(dt).
The unique bounded solution to (6) satisfying As(0) = 0 is given by

1—Au(t) = exp[ - J’ s(du){s(u) — s(2u — b)}"] 0<t<bAy
0

from which (4) follows.
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REMARKS. If b < vy, 76(Y) = 7_4,,(X) < o P-as., simplifying (4). Perhaps a little
surprisingly, it is possible for A, to be discontinuous at b if b < vy, though it must of course
be continuous elsewhere, by (4) and continuity of s. As an example of such behaviour, take
vy = oo, fix b > 0 and let the diffusion on R have scale function

s(x) = —e "0 (x < b), s(x) = e (x> b), s(b) = 0.

Henceforth, we shall suppose that P € €, y > 0, and that s is the scale function of the
regular diffusion (X,, ¢ = 0). We have to consider separately two cases:
(I) s(—%) > —o. In this case, we suppose s(—x») =0, s(0) = 1,so thatfora < b < y,

P%(15(X) < ) = s(a)/s(b).
(II) s(—) = —oo. In this case, P*(1s(X) <x) =1foralla<b<y.

THEOREM 1. Suppose P € ¥ and y > 0. Let T be a { %:}-optional time. Then on
{T < »}, A(Y7,-) is a regular conditional P-distribution for Zr given %r.

ProoF. Define the process (V;, t = 0) by V, = inf{Y,; s = ¢} and use the notation
E (U; A) for E(UI,) for any U € L* and #measurable A. We consider firstly case I, where
s(—o) =0, s(0) = 1.
Let U be a bounded %r-measurable random variable, and let 6 > a > 0. Then

(7 E(U;Vr=a,T<», Yr>b)=E(UQ' (Vo< a); T<x, Yr>b),

by the strong Markov property of (Y,, ¢ = 0). But by the strong Markov property of
(Zb t = 0)’

E(U;Vr=a, T<ow,Yr>b)=E{UP(Vr=a|%r); T<o, Yr> b)

s@2Mr — Yr)
= <a) o , Y
(8) E(UI(MT_, S@Mr—a) T<ow, Yr> b)
_ S(ZMT— YT) .
= E(UE(I(MTsa) m—l {47->, T<o,Yr> b).

Comparing (7) and (8), since U € %r was arbitrary, we conclude that, on
{T< o, Yr>b},

S(2M T YT) __ Yrp
9) E<I(Mﬁa)ml ‘J’T) =Q""(Vo=a) P-as.

If we let (P|%r): & % #([0, ©)) — [0, 1] be a regular conditional P-distribution for
M7l (7<) given %, then from (9) and the definition of {@”; y > 0}

s(2u— Yr) _ sQu-—-Yr)
o[, emen EmTe [ A SEET

P-as.on {T< oo, Yr> b}.
Thus there exists a P-null subset N € ¥%r where (10) fails for some rational a < b, and
_right continuity in a of each side of (10) implies that, for w & N, (10) holds for all 0 < a
< b. By Proposition 2, taking r = s™, (P| 9r)((0, x]) = Ay,(x) forall w § N,and 0 = x <
b A vy, and hence we conclude that for all w not in some P-null set V',

(11) (P|%r)((0,x]) = Ay, (x) forall 0=sx<YrAy on {T<oo}

This proves the result in case I; in case II, V, = M, V¢ = 0 P-a.s,, so the argument is
even easier. The details are left to the reader.
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COROLLARY. Zr is conditionally independent of %r given Yz, with A(Yr, -) provid-
ing a regular conditional distribution for Zr given %r.

4. The scale function. Here we exploit Lemma 3 and Theorem 1 to determine
possible scale functions. As before, we suppose y > 0, P € 4, s is the scale function of X
under P, and we consider the two cases separately.

Case I, s(—») = 0, s(0) = 1. We define the positive continuous strictly decreasing
function r: I — (0, ®) by r(¢) = s(¢)™". The analysis begins from the crucial, but obvious,
equality valid for 0 < a < b,

(12) p(a)/p(b) = J' Ao(du)s(2u — b)/s(2u — a)

0,ary]

which holds since each side is equal to P(Y,s+: = a for some £ > 0). Notice that we can
deduce from (12) and (4) that, if y < , then s(y—) = «, and so y & I; by fixing b > y in
(12), and letting a 1 y, monotone convergence and continuity of p imply that As is
continuous at y, so, since s(y) — s(2y — b) is bounded away from 0 on [0, y], (4) and
continuity of A, imply s(y—) = «. Now we apply Theorem 1 using the { ¢r}-optional time
T=inf(t>7(Y); Y,=a}.Forx=saAy,

P(T < o, My < x) = P(T < ). P(Mr < x|T < ®)
= P(T < ®)Aq(x)
= p(a)p(b)'Aa(x)

(13) = J Ay(du)s(2u — b)/s(2u — a),
0

the last line coming from considering the value of M at 75(Y). Now using the differential
equation (6) satisfied by Aa, As, we learn that
s(du)Ay(u) sQu—>b)  s(du)A.(u)  pla)

s(u) —s@u—b) sQu—a) s —s@u—a) p(b)’ Osu<ahy,

and since s is strictly increasing, we deduce that

Ro(up(d) As(w)p(a)
rQu-b) —r(u) rQu-—a)—ru)’ O<u<ahy.

(14)

Put another way, for any 0 < B < y and for each 0 = u = B,

Ab(u)p(b)
rQ2u — b) — r(u)

By taking u = 0 in (15), we see that there exists a nonzero constant ¢ such that

p(b) =c{r(-b) — 1} forall b=0.

(15) is the same for all b<B.

Returning to (4), monotone convergence implies that for gach O=su<y
limyAs(u) = r(u)/r(0) = r(u) € (0, 1].
This implies, returning to (15), that for each 0 = u <y,

i r=b) -1 M8 . s
Mo o — 5y —r @) @) Y

exists, is finite and =1, and & is an increasing function of u € [0, y). Moreover, if w1, u2 and
u; + us are all in [0, y), we see that

h(u)h(u2) = h(uy + us)
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so there exists p = 0 such that A(u) = e (0=u<y). Thusforany0<su<b Ay,
(16) Ap () (r(=b) — 1) = e*™r(u)(rQu — b) — r(u)).
Taking logs, using (4) and the notation r,(«) = r(2u — b), we obtain after rearrangement

dpu = J’ (2r(dv) — rs(dv))(rs(v) — r(v))™ O<su<bny.
0

Hence

17 2r(u) — r(Qu — b) = J' 4u(rp(v) — r(v))dv + 2 — r(-b),
0

valid for 0 < u < b A y. ris a continuous strictly decreasing function on (-, y) and as such
is differentiable a.e. If 0 < u < y, pick some b € (u, y) such that r is differentiable at
2u — bo. Then, from (17), r is differentiable at u. Similarly, we conclude that r is
differentiable in (—o, y), so, differentiating (17) with respect to u gives

2r'(u) — 2r' 2u — b) = 4u(ru — b) — r(u)) O=su<bnry
and by setting ¢ = b — u, we have that
(18) r(u) —r(u—-c)=—2ur(w) —r(u—c)) O=<su<vyc>0.
Accordingly, since r(0) = 1,
(19) r(u) —r(u—c) = (1 — r(—c))e " 0=su<y,c>0
so, dividing either side by c¢ and letting ¢ | 0, we conclude that

r(u) = r(0)e 2 O<u<y,

and this implies that

(20) r(u) = A, + B,e " O=su<y) if p>0,
r(u) = Ao + Bou O=u<y) if p=0.

By using (18), we can extend r to the whole of (-, y) and the requirements that
r(0) = 1 and r(y—) = 0 when y < » determine the constants A, and B,. We can conclude
that there are essentially only three possibilities in case L.

(Ta) y < o, u > 0, and for x € (—, y)

r(x) = s(x)! = (e — 1)(e™ — )7L

In this case, for 0 < x < b A y, Ap(x) = r(u — b)r(y — w)/r(y — b);
(Ib) y < o, p = 0, and for x € (-, y)

r(x) =y7'(y — %).

In this case, for 0 = x < b A v, Ap(x) = x(y + b — x)/vb;
(Ic) y = o, there exists, some 0 < ¢ =< 1, with p = 1 — g, such that

r(x) =p + qe =,

In this case, for 0 < x < b, A,(x) = r(x)(e** —=1)r(b)*(e®* — 1)\

Case II. As with Case I, we begin with the equation analogous to (12), which is even
simpler in this case:

(21) p(a)/p(b) = J Ap (du) 0<a=b

0,anry]
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Strict monotonicity of p implies immediately that y = o is the only possibility in this
case, and that A,(a) = p(a)/p(b) for 0 < a < b. From (6),

p(d) —p(a)

5(a) —sa —b) 0<a<b

p(da) = Ap(da)-p(b) = s(da)

whence we conclude that, for each a > 0,
(22) (p(b) — p(a))/(s(a) — s(2a — b)) is the same for every b > a.
Letting a | 0 shows that for some positive g,
p(b)(s(0) —s(=b))"' =B Vb>0.
Substituting into (22) gives for each a > 0, b > aq, that
%;(;‘(;_b;))= Aas a constant depending only on a.
Writing £ = b — q, this says that for all £ > 0,
(23) s(—=¢ — a) = Aas(—£ + a) + s(—a) — Aas(a).

Writing ¢ for s(—a) — A, s(a), considering ¢ and a as fixed and writing x,
s(—¢ — (2n — 1)a) for each n =0, 1, 2, . . ., it follows from (23) that

Xn+1 = AaXn + C.

Either A\, = 1, when x, = x0 + nc, or A\, # 1, when x, = ¢’ + Az(x—¢'), ¢ =
¢(1 — A,)"'. Holding £ fixed and successively halving a, we deduce from the continuity of
s that, at least on (—o, —¢], in the first case s is linear, and in the second case, s(x) = A
+ Be ™ ®* for some A, B, n € R. Since a > 0 was arbitrary, we deduce that this holds
throughout R, so in case II, there are but two possibilities:

(ITa) s(x) = x (As(x) = x/b for 0 < x < b);
(ITb) s(x) = —e™**  for some p > 0 (As(x) = (e** — 1)(e** — 1) for 0= x < b).

REMARKs. Ila gives the scale function of Brownian motion, IIb the scale function of
Brownian motion with drift ¢ > 0 upward and Ic, with ¢ = 1, gives the scale function of
Brownian motion with drift p > 0 downward. If 0 < ¢ < 1, we get the Brownian motion
with the mixture of drifts u upward and u downward: this process is discussed in detail in
Rogers and Pitman (1981)—it has generator (%)D? + u tanh(ux + 8)D, where pg ™' = e*.
Ia and Ib are also the scale functions of diffusions considered in Rogers and Pitman (1981);
if (R, t = 0) is the radial part of a three-dimensional Brownian motion with drift of
magnitude p = 0, and if T = 1,(R), where y > 0, then the process (y — Rr4,, t = 0) is a
diffusion on (—, y) starting at zero. If u > 0, the scale function of this diffusion is given by
Ia, and if p = 0, its scale function is given by Ib. It is proved in Rogers and Pitman (1981)
that for each of these diffusions, (Y}, t = 0) is a strong Markov process. Now our task is to
prove that there can be no diffusion with one of these scale functions, but a different speed

measure, for which (Y, ¢ = 0) is a strong Markov process.

5. The speed measures. In this section, we use Theorem 1 to identify possible speed
measures for elements of 4. The main results on speed measures appear in Freedman,
(1971), and we state here briefly the relevant properties, in a form best suited to the

present application.
Let { P*; x € I} be a regular diffusion with scale function s on interval I. Fora < b €

I°, define the Green’s function G: [a, b] X [a, b] — [0, ) by
©4) Garlx,y) = (s(0) — s(a)'(s(x) — s(a))(s(d) — s(y)) for as=zx=y=<b
= (s(b) — s(a)) " M(s(y) — s(a))(s(b) —s(x)) for a=y=x=<b.



570 L. C. G. ROGERS

There exists a strictly increasing right continuous function m:I° — R such that for any
a<x<bel’

b
(25) E¥(rap(X)) = f m(dy)Gas(x, ¥),

and

b
E*(1ap(X); 76(X) < 10(X)) = J m(dy)Gas(x, y) P’ (r6 < Ta)
(26) ¢

b
=f m (dy)Gas(x, y)(s(y) ~ s(a))(s(b) — s(a))".

REMARK. If we define the functions A, and Az on I° by Ai(x) = [ s(dy)m(y) and ha(x)
= [i m(dy)(s(x) — s(y))(s(y) — s(a)), the strong Markov property of (X;, ¢t = 0) implies
that (25) and (26) are equivalent (respectively) to the statements that (h(X;) - ¢, ¢ = 0)
and (h2(X;) — (s(X:) — s(a))t, t = 0) are local martingales. Martingales such as these have
been considered by Arbib (1965).

Let us now combine (25) and (26) with Theorem 1 to give the result we seek. Firstly, we
shall consider Case I, where s(—x) = 0, s(0) = 1. As before, Case II is a lot easier. The idea
is to exploit the fact that M7 is conditionally independent of %, given Y7; this means, in
particular, that looking at the time spent by (Y;, 0 < ¢ < T') in various regions should tell
us no more about the value of Mrthan we would learn by looking just at Y. So let us fix
0 < a < x < b, and define the {%}-optional times T} and T by

T, =inf{t > 7.(Y); Y:€& (a, b)}
T, =inf{t > 1.(Y); Y,=a}.
By Theorem 1,iff0<u<a A vy,
@7 E(Ty = 1(Y); T: < 0, M, < u) = E(Ty — 7(Y); T2 < ) Aa(u)

and, by the strong Markov property of (Z;, t = 0) at 7,.(Y), the left side of (27) is equal to

f A(dV){E® ™ (T20-b20-0 T20-a < T20-8)

(28)
+ B (Topb20-a} T2o-5 < T20-a)8(20 — b)/5(20 — a)}.

In each of cases Ia, Ib and Ic, the right side of (27) is a C* function of u € (0, a A y) so,
differentiating (27) and (28) with respect to u, and using the notation ¢; = E(T — 7.(Y);
To<®),a=2u—a,¢{=2u—x B=2u— b, we have

() _1_\_afu_) s(a) = s(@)E*(Tpa; Ta < Tg) + S(B)E (185 T8 < Ta)

29) A(w)

_ f m(dy)Gpal&, 3)s(3).
B

Now in each of cases Ia, Ib and Ic, there is some constant c; (depending on a, x and b, but
not on u) such that

(30) Aa(u)/As(u) = c2 s(£)/s(a).
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Putting (29) and (30) together gives that for some ¢ independent of «,

3
cs(£)(s(a) — s(B)) = (s(a) — S(£))f m(dy)(s(y) — s(B))s(y)
31) ?

+ (s(§) — s(B)) j m(dy)(s(a) = s(y))s(y).
¢

From here, the three cases proceed their separate, but similar, ways. In each case we
differentiate either side of (31) with respect to u, using the differential equations satisfied
by s (in case Ia, take r(x) = e*"™® — 1, when s’ = 2us(s + 1); in case Ib, take r(x) =
y — x, when s’ = s% in case Ic, taking s = 1 + tanh(ux + ) where pq~"' = %, gives s’ =
us(2 — s)). Then we eliminate ¢ from (31) and its derivative. As an example, in case Ib,
differentiating (31) with respect to u € (0, a A y) then eliminating c yields

« ¢
(32) J $(3)’m(dy)s (@) (s(@) — s(£))™" =J 8(3)’m(dy)s(B)(s(B) — s(€))".
¢ (]

Now if we regard u, x and b as fixed, the right side of (32) is independent of a, so the left
side of (32) is the same for every u < a < x, or, put another way, there is some finite
positive constant k; such that for all a« € (£, w),

(33) f s(y)’m(dy) = ki(s(a) — s(£))s(a)™".
¢

From (33), we deduce that m is differentiable, and differentiating and substituting for
s gives the result that for some finite positive constant &, for all « € (¢, u),

m(da) = k(y — a)® da.

The extension to a € (—, y) is routine, and cases Ia and Ic are similarly proven; in
each case, m is absolutely continuous with respect to Lebesgue measure, with density
proportional to sinh*s(y — x) in case Ia, proportional to cosh’(ux + ) in Ic if ¢ < 1, and
proportional to e ** in Ic if ¢ = 1.

Turning now to Case II, we consider the same two stopping times T and T, for which
(27) is, of course, still valid, but the equation (28) following from the strong Markov
property of (Z,, t = 0) collapses to

(34) J Ax(dv)Eszx(TZU—b‘Zv—a)a
0

and the analogue of (29) becomes

«

A= Ee(TBa) = J’ m(dy)Gpa(i, y))
B

where A is constant depending on a, b and x but not #—in this case, the ratio A (w)/A%(w)
does not depend on u. A few calculations now prove that the only possible measures in
Case Ila are multiples of Lebesgue measure, and, in Case IIb, multiples of the measure
with density e** with respect to Lebesgue measure.
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REMARKS. For each of the five possible types of scale function discovered in Section
3, we have proved that there is, to within a multiplicative constant, only one speed measure
corresponding to each scale function which might give rise to an element of 4. That these
measures must be the speed measures of the corresponding diffusions discussed in Rogers
and Pitman (1981) follows from the fact proven in that paper that these diffusions are in
%; that they are the speed measures is a comfort.

Finally, we state what we have proved.

THEOREM 2. Using the notation of Rogers and Pitman (1981), the elements of € are
precisely the following:

all elements of %o, the set of laws on (R, F) under which (X,, t = 0) is @ nonpositive
diffusion started at 0;

all measures obtained by one of the deterministic transformations S.p of time and

space from one of the following:
(i) the measure on (R, &%) under which (X,, t = 0) is Brownian motion;
(ii) the measure on (R, F) under which (X, — t, t = 0) is Brownian motion;
(iii) the measure on (R, #) under which (X, + t, t = 0) is Brownian motion;
(iv) any convex combination of the measures (ii) and (iii);
(v) the measure on (2, &) under which (y — X,, t = 0) is a BES”(3) process, where y

is any positive real;
(vi) the measure on (R, ) under which (y — X,, t = 0) is a BES(3, 1) process, where
v is any positive real.
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