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GENERALIZED POISSON SHOCK MODELS!

By SHELDON M. Ross
University of California, Berkeley

Suppose that shocks hit a device in accordance with a nonhomogeneous
Poisson process with intensity function A(¢). The " shock has a value X;
attached to it. The X; are assumed to be independent and identically distrib-
uted positive random variables, and are also assumed independent of the
counting process of shocks. Let D(xy,..., x5, 0) = D(x1,..., %, 0,0,0,...)
denote the total damage when 7 shocks having values x,, . . . , x, have occurred.
It has previously been shown that the first time that D exceeds a critical
threshold value is an increasing failure rate average random variable whenever
(i) J& A(s) ds/t is nondecreasing in ¢ and (ii) D(x) = Y x;. We extend this result
to the case where D (x) is a symmetric, nondecreasing function. The extension
is obtained by making use of a recent closure result for increasing failure rate
average stochastic processes.

1. Model and Result. We consider a unit subject to shocks which occur in accord-
ance with a nonhomogeneous Poisson process with intensity function A(z), ¢ = 0. We
suppose that the ith shock has a random value X; associated with it. The X;, i = 1, are
assumed to be independent positive random variables each having distribution F. They
are also assumed to be independent of the counting process of shocks. We suppose that
there is a function D such that if exactly n shocks having values x3, . . ., x, have occurred
by time ¢, then D (x, .. ., x», 0) represents the damage to the unit at time ¢, where D is a
nonnegative function whose domain is {(x1, xz,...), x; = 0,i=1,2,...}, and 0 = (0,
0,...). We suppose that the unit will fail the first time its damage exceeds some constant
C, and we let T denote the failure time. We have the following theorem.

THEOREM 1. If

(i) T < oo with probability 1,
(ii) 6 A(s) ds/t is nondecreasing in t,
(iii) D(x1, ..., %, 0) = D(xi, ..., x;, 0) whenever (i, ..., i.) is a permutation of 1,
2,...,n, for all n,
(iv) D is nondecreasing in each of its arguments,

then T has an increasing failure rate average distribution.

Before proving the above theorem we need some preliminaries.

2. Preliminaries. We start with some definitions.
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DEFINITIONS.
(i) The nonnegative continuous random variable X having failure rate function

r(t) = (% P{X= t}) / P{X >t} is said to have an increasing failure rate average

distribution if [§ r(s) ds/¢ is nondecreasing in ¢.

(i) The nondecreasing real valued stochastic process {X(¢), ¢ = 0} is said to be an
increasing failure rate average (IFRA) stochastic process if T, has an increasing
failure rate average distribution for all a, where T, = inf{¢:X(¢) > a}.

For an example of an IFRA stochastic process, let { N(£), ¢ = 0} be a nonhomogeneous
Poisson process with intensity function A(¢) where f§ A(s) ds/t is assumed to be nonde-
creasing in ¢. Further, suppose that there is a value X associated with the " event. The X,
i = 1, are assumed to be independent random variables each having the same distribution
H, and they are also assumed to be independent of { N(¢), ¢t = 0}. Define X (¢) by

_ max(Xy, ..., Xne) ifN(@)=1
x(t)= {o if N(2) = 0.

Then it is easy to see that the failure rate function for T, = inf{¢:X(¢) > a} (= + if X(¢)
=< a for all ¢) is given by

r(t) =A(£)(1 — H(a))

and so X (¢) is an IFRA process. We call it a “record process with value distribution H and
intensity function A (¢), £ = 0.” We say that an event of the record process occurs whenever
an event from the related Poisson process occurs. (Note that the value of X (¢) need not
change when an event occurs.)

The following theorem was proven by Ross in [3], for nonincreasing IFRA processes.
Its proof in the nondecreasing case is similar.

THEOREM 2. If {Xi(t), t =0}, i=1,..., m are independent nondecreasing IFRA
stochastic processes and if ¢ is a nondecreasing function, then {$(Xi1(2),..., Xn(?)), t
= 0} is also an IFRA process.

We are now ready for the

PRrOOF OF THEOREM 1. Let m be large and fixed and consider m independent record
processes each having value distribution F and intensity function A(¢)/m—call them
{X.(¢t)},i=1,..., m. Now the shock model under consideration can be generated from
these record processes by saying that a shock occurs whenever an event (from any of the
m record processes) occurs and by letting its damage be the value associated with the
Poisson event. Let N denote the number of shocks it takes until the component fails. Now
if we define ¢ by

¢(x1)""xm) =D(xl)"')xm’g)

then it follows from Theorem 2 that the first time D(X,(2), ..., Xn(¢), 0) exceeds C has
an increasing failure rate average distribution. But as long as the first N shocks all come
from different record processes this will be exactly the time the unit fails. Hence, as the
probability that all shocks until unit failure come from different record processes can be
made arbitrarily close to 1 by letting m be large, the result follows by letting m go to
infinity since the limit of increasing failure rate average random variables is also increasing
failure rate average.

REMARKS:
(i) The special case where D (x) = Y7x; was previously considered in [1] and [2].
(i) The symmetry condition ((iii) of Theorem 1) on D is needed in the proof because
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if D is not symmetric (that is, if the damage at any time depends not only on the
set of shock values that have occurred by that time but also on their order of
appearance) then, even if all shocks come from different record processes, the
damage at time ¢ need not be D(X,(¢), ..., X,.(¢), 0) since there is no guarantee
that the ™ shock to occur was from the i-th process, i = 1, 2, ..., m. In fact, it is
easy to construct counterexamples to Theorem 1 if the symmetry condition on D
is dropped. For instance, if A(¢) = A and the damage only depends on the shocks
numbered %, 2%, 3k, ... (as it could if D were not assumed symmetric) then the
arrival process of relevant shocks would be a gamma (%, A) renewal process, which
by appropriately choosing % and A, could be made to approximate a deterministic
renewal process. For such a process of shocks, it is clear that T could not be IFRA
(as its failure rate falls to 0 between the deterministic times at which shocks occur).
An example of D which might be of practical interest is one of the form

_J¥xifmaxxi< A
D) = {maxam, Y x;) if max x; > A.

By taking ¢ = 100, the above would represent a model for a unit which would fail
whenever the value of any single shock is greater than A or if the sum of all shock
values is greater than 100. Similarly, if the unit were to fail if hit by any single
shock of value greater than A,, or, if the sum of any 2 shocks were greater than A4,
etc., then its failure time would be IFRA.
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