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The optional sampling theorem for martingales indexed by a partially
ordered set is true if the index set is directed. However, the corresponding
result for submartingales indexed by a partially ordered set is not true in
general. In this paper we completely characterize the class of stopping times
for which the optienal sampling theorem is true for all uniformly bounded
submartingales indexed by countable partially ordered sets. By assuming a
conditional independence property, we show that when-the index set is R” the
optional sampling theorem is true for all uniformly bounded, right continuous
submartingales and all stopping times. This conditional independence prop-
erty is satisfied in cases where the submartingales and stopping times are
measurable with respect to the two-parameter Wiener process. A counterex-
ample shows that the optional sampling result is false for R” when n > 2 even
if the conditional independence property is satisfied.

1. Introduction. Bochner (1955) formulated the martingale theory of Doob (1953)
for random functions on a directed’ index set with the intention of clarifying and simplifying
several probabilistic concepts in terms of martingale concepts. With this motivation he
defined martingales, submartingales and stopping times in the general context of a directed
index set and he stated general versions of the martingale convergence theorem and the
optional sampling theorem. Since that time several authors have studied these conjectures
and found that the general case of directed indices requires additional hypotheses to obtain
generalized versions of the results for linearly ordered index sets. On the question of
martingale convergence, Krickeberg (1956), Helms (1958) and Chow (1960) have obtained
generalized versions of Doob’s (1953) results for linearly ordered index sets. See also the
monograph of Hayes and Pauc (1970). More recently, Gut (1976) and Gabriel (1977) have
studied convergence of martingales indexed by directed sets and applied these results to
investigate the law of large numbers for multiparameter stochastic processes.

Using a restricted definition of stopping time, Chow (1960) proved that the optional
sampling theorem was true for martingales in the general case of directed index sets. Kurtz
(1977) removed Chow’s restrictions on the stopping time and extended the results to the
case when the index set is a topological lattice. In addition to proving an optional sampling
theorem for martingales with a directed index set, Chow (1960) also showed that the
analogous result for submartingales was false even for very simple examples. Nevertheless,
the optional sampling theorem is true for submartingales with a partially ordered index set
if suitable assurhptions are made. Haggstrom (1966), extending the work of Snell (1952) on
martingale systems theorems and optimal stopping problems, defined submartingales
indexed by a tree,’ a special type of partially ordered set which'is not directed. In addition,
he proved a version of the optional sampling theorem for a special class of stopping times
called control variables.’
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' A directed set is a partially ordered set with the additional property that every two elements in
the set have a common upper bound.

2 See Section 2 for these definitions.
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In the first part of this paper (Section 2) we consider the optional sampling theorem for
submartingales indexed by countable (but otherwise general) partially ordered sets. We
define the concept of reachability for pairs of stopping times and we reformulate Hagg-
strom’s problem for general partially ordered time sets. The concept of reachable stopping
times generalizes Haggstrom’s notion of control variable. We show that if a stopping time
7 is reachable from a stopping time o, then the optional sampling theorem is true for all
submartingales satisfying a uniform bound. Conversely, we show that if the optional
sampling theorem is true for the pair 7, o of stopping times and for any uniformly bounded
submartingale, then 7 must be reachable from ¢. Thus, we obtain a complete characteri-
zation of the case in which the optional sampling theorem is true for general submartin-
gales.

In the second part (Section 3) of this paper we assume that the increasing family of o-
fields satisfies a special conditional independence property that can be defined when the
index set is such that any two elements have a greatest lower bound. This is a straightfor-
ward generalization of the conditional independence property that Cairoli and Walsh
(1975) define for the index set R%.? Assuming this conditional independence hypothesis,
we can show that if the index set T is a tree with respect to its order relation < and if o,
7 are stopping times with ¢ < 7, then 7 is always reachable from o. Likewise, assuming the
conditional independence property, we can show that if o and r are stopping times on Z?
and o = 7, then 7 is reachable from ¢. Consequently, the optional sampling theorem is true
for all stopping times and all uniformly bounded submartingales defined on either a tree
or on Z? when the conditional independence property is satisfied. It is a simple matter to
extend the optional sampling theorem for the case of the index set Z* to the case of right
continuous martingales defined on R”. A counterexample reveals that the optional sampling
theorem is not true for Z" or R" when n > 2.

2. Optional sampling for submartingales indexed by partially ordered sets.

2.1 Notation, conventions and basic definitions. We will let T denote the par-
tially ordered index set in this paper and except for one case in Section 3, we will always
assume that T is countable. We will use < to denote both the partial order relation on 7'
and the usual linear order relation on the set R of real numbers, but there should be no
confusion as to which case is meant. Let (2, F, P) denote the underlying probability space
and {F(t):t € T} a family of sub o-fields of F indexed by 7. We will always assume that
F and each F(t) are complete with respect to the probability measure P. Following
convention, we omit “a.s.” from all equalities and inequalities between random functions,
although we implicitly assume that these relationships only hold almost surely.

It is straightforward to extend the usual definitions of increasing family, submartingale
and stopping time to the case of a partially ordered index set. Nevertheless, we assemble
these definitions here for the sake of completeness. The family {F(t):t € T'} is said to be
increasing with respect to < if s < ¢ implies that F(s) C F(¢). A mapping X: T X @ — R is
adapted to the family {F(¢):¢t € T} if w — X(t, w) is F(t)-measurable for each ¢ in T. To
be concise, let us denote the random variable w — X(¢, w) by X(¢). A mapping X is
uniformly bounded if there exists a nonnegative random variable X, with finite expectation
E(X.) such that | X(t)| = X for all ¢&. A submartingale X with respect to the increasing
family {F(¢):¢t € T} is amap X:T X @ — R such that X is adapted to {F(t):t € T}, such
that the expectation E(| X(¢)|) is finite for each ¢ and such that the conditional expectation
satisfies

2.1) X(s) = E(X(8)| F(s))
whenever s < ¢. Similarly, a martingale is a submartingale for which equality holds in

(2.1). Note that in this paper we will always assume that submartingales are uniformly
bounded.

® The reals and nonnegative reals are denoted by R and R., respectively, and the integers are
denoted by Z. The Cartesian products are denoted R", R and Z", respectively.
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A stopping time r with respect to an increasing family {F(¢t):¢t € T'} is a mapping 7:
— T which satisfies the measurability property {r = ¢} € F(¢) for all ¢. Corresponding to
each stopping time 7 there is a o-field denoted by F(7) and defined to be the o-field of sets
A in Fsuch that A N {r = t} lies in F(¢) for each . If o is a stopping time, let ST (o) denote
the collection of all stopping times  such that ¢ < 7. The optional sampling theorem gives
conditions under which

(2.2) X(o) = E(X(7)|F(0))

for a given 7 in ST (o) and for a given submartingale X. Let OS (o) denote the collection of
all 7 in ST (o) such that (2.2) is true for all uniformly bounded submartingales X. If the
index set is the set of integers ordered as usual, then standard theorems (see Neveu (1975))
imply that ST'(¢) = OS(c). As Chow (1960) showed with a simple counterexample, this is
not true for general partially ordered index sets, and in general one only has OS(s) C
ST (o). In the remainder of this section we are going to characterize OS(c) in terms of the
concept of reachability which we discuss next. In Section 3 we will show that in certain
special cases in which 7' is not linearly ordered we can still have OS (o) = ST (o).

2.2 Reachability. Throughout the following definitions and discussions let us assume
that the partially ordered index set, the underlying probability space and the increasing
family of o-fields are fixed. Thus, for example, “stopping time” will mean “stopping time
on T with respect to the increasing family {F(¢):t € T'}.”

DEFINITION 1. A decision function ¢ is a mapping ¢: T X @ — T satisfying

(2.3) t=¢(t w)
and
(2.4) {w:p(t,w) =s} EF(t)forallt,sE T.

Let D denote the collection of all decision functions. Note that D depends on T, < and
(F(¢):t € T)}. For any positive integer k let ¢* denote % applications of the random
function ¢. That is, ¢* is defined recursively by

(2.5) &5t w) = P(d*(t, w), w)

where we define ¢°(¢, w) = ¢ for all ¢ and w. Also, for a random function ¢:Q — T let ¢(o)
denote the random function w — ¢(0(w), w). Thus, $**! = ¢($*(£)) = ¢*(¢(¢)). The concept
of a decision function is central to our development of the notion of reachability. Having
defined decision functions, we can define several types of reachability as follows. In each
of the following definitions assume that o is a stopping time and that 7 is a mapping 7:{Q
— T such that {7 = t} is F-measurable for each ¢t in T.

DEFINITION 2. We say that 1 is finitely reachable from o if there is a decision function
¢ in D and an integer k& such that

(2.6) ¢*o) =1
Let FR (o) denote the collection of all  which are finitely reachable from o.

DEFINITION 3. We say that 7 is strongly reachable from o if there is a decision fuuction
¢ in D such that the limit

(2.7) limy . ¢*(0)

exists almost surely and is equal to 7. The limit (2.7) is interpreted in terms of the discrete
topology on T That is, for almost all w we have lim;-_,.¢*(6(w), w) = ¢ if and only if ¢"(o(w),
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w) = t for some integer n. Let SR (o) denote the collection of all + which are strongly
reachable from o.

DEFINITION 4. We say that 7 is reachable from o if there is a sequence {7;} of 7, in
FR (o) such that

(2.8) limp_, P (1p 7% 7) = 0.

Let R (o) denote the collection of all + which are reachable from o.
In general one has the following relationships between the collections of random
functions we have just defined:

(2.?) FR(o) C SR (o) C R(s) = OS(0) C ST (0).

In particular, note that the relationship R (6) = OS(0) characterizes those pairs of stopping
times for which the optional sampling theorem is true for uniformly bounded submartin-
gales. In the present subsection we will show that FR (o) C SR(6) C R(s) C OS(o) C
ST (o), and in Subsection 2.2 we will show the converse relation OS (o) C R (o). First we
prove the following simple theorem.

THEOREM 1. Suppose that o is a stopping time. Then the following relationships are
true: .

(2.10) FR (o) C SR (o) C R(s) C ST (o).

ProoF. Note that for ¢ € D and 7 € ST (6) we always have ¢(7) € ST (o). From this
one easily deduces that FR (o) C ST (o). The remaining inclusion relations can be deduced
easily from the definitions given above. [

The inclusion relations in (2.10) generally cannot be replaced by equalities. The
following simple examples illustrate this fact.

ExampLE 1. FR(o) # SR (o)

Let T dencte the set of positive integers ordered in the usual way. Let 7 be any random
function taking values in T such that P(r = ¢) > 0 for all ¢. Define F(t) as the o-field
generated by {r = s} for s = t. Let 0 = 1. Then with respect to { F(¢):t € T'}, o is a stopping
time and 7 is strongly reachable from ¢ but not finitely reachable from o.

ExamMpPLE 2. SR (o) # R(0)

Let T= {0} U {1/n:n=1} and order T in the usual way. Let 7 be any random function
taking values in T — {0} such that P(r = ¢) > 0 for all ¢ # 0. Define F(¢) as the o-field
generated by {7 = s} for s < ¢, and let ¢ = 0. In this case F(0) is the trivial o-field and any
decision function ¢(¢) is almost surely constant at ¢ = 0. Thus, we must have ¢(o) = 1/n
for some n and there is always a non-zero probability P(r < 1/n) that ¢*(c) # 7 for all k.
Therefore, 7 is not strongly reachable from o. However, by choosing a decision function
with ¢(0) = 1/n for sufficiently large n we can make the probability that ¢*(c) # r for
some k arbitrarily small, and thus, 7 is reachable from o.

ExampLE 3. R(o) # ST (o)

We present an example from Chow (1960) to show that OS (o) # ST (s) by constructing
a stopping time 7 in ST (o) which does not belong to OS (o). In the next theorem we will
show that R (0) C OS(o) and thus, this stopping time 7 cannot belong to R (¢). Unlike the
previous examples which used linearly ordered index sets, to show R (¢) # ST (¢) we must
use a partially ordered index set. Let T' consist of three points a, b, ¢ with the order
relations a < b and a < c. Let 7 be a random function taking only the values b and ¢ each
with probability one-half. Let F(¢) be the o-field generated by 7 = ¢ for each ¢ in T. Then
F(a) is the trivial o-field, and F'(b) = F(c). If t = b or t = ¢, define X(¢) = 1 if ¢ # 7 and X(¢)
= —1if t = 7. Let X(a) = 0. Then E(X(b)|F(a)) = E(X(c)|F(a)) = X(a) and X is a
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uniformly bounded martingale on 7. However, E(X(7)| F(s)) = —1 < X(o) and hence 7 &
0S (o).

In special cases we can have some equalities in (2.10). For example, the argument of
example 2 is easily extended to show that R (¢) = ST (o) in case T, < is linearly ordered. In
Theorem 3 we will show that SR (o) = R (o) if the index set is a special type of partially
ordered set called a tree. In subsection 2.3 we will give a more general condition for the
equality SR () = R(s). Note that FR (¢) = SR (0) = R (c) whenever the index set is finite.

Intuitively, 7 is reachable from o if there is a finite sequence of decisions which reaches
7 from ¢ with arbitrarily large probability. The sequence is {¢/(0):0 < j < £} and the
decisions ¢’(0) must be nondecreasing with respect to the partial order (2.3) and each
decision ¢’ *!(¢) must be measurable with respect to the previous decision ¢”(o) as required
in (2.4). Given this definition of reachability, it is not surprising that the optional sampling
theorem is true for reachable pairs of stopping times. Indeed, one merely applies the result
for submartingales indexed by integers as we now show.

THEOREM 2. Suppose that ¢ is a stopping time. Then the following relationship is
true:

(2.11) R(0) C OS(0).

PROOF. Suppose that X is a submartingale uniformly bounded by X™, and let ¢ be a
decision function. It is easy to show that ¢(0c) € OS(s). Applying the principle of
mathematical induction, it follows that ¢*(c) € OS () for any k. Consequently, we have
FR(0) C OS(0). Applying this result to prove the theorem is straightforward. Let {7} be
a sequence in FR (o) which converges to 7 in the sense of (2.8). Rewrite X (1) as

(2.12) X () = X(7) + (X (1) — X (7)) 1o,
and note that we have already shown
(2.13) E(X(r:)| F(0)) = X (o)

for each k. By assumption, | X(7x) — X (7)| is uniformly bounded by 2X™*. Since P(r # ;)
— 0 as k — o, it follows that

(2.14) limy... E((X(2) — X(7)) 1sr, | F(0)) = 0.

The desired result E(X(1)| F (o)) = X(o) follows immediately from (2.12), (2.13) and
(2.14). ]

Before proceeding, let us discuss the relationship of reachability to Haggstrom’s control
variables. Haggstrom (1966) considered a special type of partially ordered index set, called
a tree, and a special type of stopping time which he called a control variable. A tree T, <
is a partially ordered set which consists of finite sequences (¢1, ts, - --, t,) where ¢; are
elements of some abstract set which we leave unspecified. The set 7" must have the
property that if (¢, ¢2, - - -, ¢,) lies in T, then so does (¢4, ts, -+ -, tz) foreach k, 1 = k < n.
The partial order < on T'is defined so that s < ¢ for two sequences ¢ = (¢4, t2, - - -, t,) and
s = (81, 82, *++, Sy) if and only if m < n and s; = ¢; for each i, 1 =i < m. Associated with
T is an increasing family which we denote by { F(¢):t € T'} as before. A control variable
7 is a random function 7:2 — T with the property that for each n = 1, the events {¢ = 7}
and {(¢y, t2, «++, tu, tus1) = 7} are F(¢)-measurable for ¢ = (¢y, t2, -- -, ). In addition,
include the empty sequence o in T and assume that the events {0 = 7} and {(¢;) < 7} are
F (0)-measurable for each sequence of the form (¢;) in 7' The following proposition shows
that Haggstrom’s control variables are equivalent to random functions reachable from the
constant stopping time ¢ = 0 in our formulation.

THEOREM 3. Suppose that T, < is a countable tree and let 7:Q — T be a random
function. Then 7 is a control variable if and only if it is reachable from the constant
stopping time o = o. Moreover, in this case SR (¢) = R ().
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ProOF. Suppose first that 7 is a control variable. Then for each ¢ = (¢, ¢, - - -, ¢,) in
T define ¢(¢) as

(2.15) o(t) = (L, ta, «++, tu, tas1)
if (t1, to, oo, ln, tn+1) =T, and
(2.16) o(t) =t

if (1, ta, + -+, tn, tas1) Z 7 for any f,.1. Note that since T, < is a tree, the events {(¢1, ¢,
*++, tn, th+1) = 7} are disjoint for different ¢,.; and hence, ¢ is well-defined. To see that ¢
is a decision function as defined in Section 2, we must check that (2.3) and (2.4) are
satisfied. Property (2.3) is clear from the definition of ¢. Since r is a control variable, the
events {(t1, t2, + -+, tn, ta+1) < 7} are F(t)-measurable for ¢ = (¢, 3, -+, t,) and hence,
property (2.4) is satisfied. Now let us show that lim,_,..¢* (o) exists and is equal to 7, so that
7 € SR (0). Consider the events {t £ 7} and {t < 7} as follows. If ¢ £ 7(w), then by
construction we have ¢(¢, w) = ¢ and hence, lim,,.¢*(f, w) = ¢t. If ¢ < 7(w), then by
construction we have t < ¢(¢, w) < 7(w). If ¢ = (¢4, t2, -+ -, £,) and 7(w) = (11(w), T2(w), +- -,
Trr(@)), then (11(w), T2(w), « -+, Taey (W) = ¢/(¢, w) for 1 =j < k. Hence ¢*(¢, w) = 7(w) and
limiw¢*(¢, w) = 7(w). Thus, we see that lims_..¢*(f, w) = 7(w) whenever ¢ < 7(w). In
particular, we must have that lim;_..¢*(0) = r. It follows that r is strongly reachable from
0.

To show the converse, assume that 7 is reachable from 0. We must show that {¢' < r}
is F'(t)-measurable for ¢ = (¢1, t3, -+, ¢,) and ¢’ = (¢1, L2, + ++, ta, ta+1) in T. First suppose
that r is finitely reachable from o so that 7 = ¢*(0) for some decision function ¢ and some
integer £ = 0. Thus, we have

(2.17) (' =7} =Uko {¢7(0) = ¢, t' = $'*'(0))}.

As we proved in Theorem 1, ¢”(0) is a stopping time for each j and hence, {¢’(0) = s} is
F (s)-measurable and hence F'(¢)-measurable for all s < ¢. Since ¢ is a decision function,
the event {t’ = ¢(s)} is F(s)-measurable, and hence F (¢)-measurable for s < ¢. We can
write

(2.18) {¢7(0) = t, ¢’ = $’*(0)} = Us=: ({$7(0) = 8} N {t' = ¢(5)})

and thus, the event {¢/(0) = ¢, t’ = $/*'(0)} must be F(¢)-measurable. From (2.17) it
follows that {¢' < 7} is also F(¢)-measurable, and consequently, each 7 in FR (o) is a
control variable.

To see that 7 in R (o) are also control variables, let {7} be a sequence in FR (o) which
converges to 7 in the sense of (2.8). We have just showed that {¢’ < 7} is F (¢)-measurable
for each k. It is not hard to deduce that {#’ < 7} is also F (¢)-measurable. Hence, each 7 in
R (o) is a control variable.

Thus, we have shown that all control variables are strongly reachable from o and that
all 7 which are reachable from o are control variables. Using the result SR (o) C R (0) from
Theorem 1, we see that in fact SR(0) = R(0) in this case and the notions of strongly
reachable, reachable and control variable are equivalent. 0

2.3 Optimal Stopping Problem and Converse Optional Sampling. We now turn
to proving the converse optional sampling theorem, namely that OS(¢) C R (¢). To do this
we first consider an optimal stopping problem, defined on partially ordered index sets,
which is a generalization of Haggstrom’s (1966) stopping problem on trees.

THEOREM 4. Suppose that the mapping ¢: T X € — R is uniformly bounded and
adapted to { F(¢):¢ € T'}. For any random function 7: Q2 — T define = (¢, 7) as

(2.19) (L, 7) = E(c(1)| F(¢)).
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Define #(t) as
(2.20) 7(t) = ess inf{7(¢, 7):7 € R(¢)}

and let = denote the mapping from 7T X € to R defined by (2.20). Then = satisfies the
equation

(2.21) 7(¢) = inf{ E(n(s)| F (t)), c(t):t < s}

for all ¢ in T. Furthermore, for any stopping time ¢ and € > 0 there exists 7 in SR (¢) such
that

(2.22) 7(0) + €= m(o, 7).

Proor. Note first that
(2.23) ess inf{7(¢, 7):7 € R(¢)} = ess inf{n (¢, 7):7 € FR(t)}.
Define 7 (t) as
(2.24) 7(t) = inf{ E(7(s)| F(t)), c(t) : t <s}.

It is easy to show that #(¢) =#(¢). In order to do this, let 7 be an element of FR () and let
= ¢*(¢) for the decision function ¢. Then it is a straightforward computation to show

(2.25) E(c(1)|F(t)) = 7(¢t).

Since 7 € FR(¢) in (2.25) was chosen arbitrarily, the relations (2.20) and (2.23) imply that
w(t) =7 (¢).

The opposite inequality, 7(¢) < 7(¢), is slightly harder to prove, but it follows easily
once we show that (2.22) is true for constant stopping times. As shown in Chow, Siegmond
and Robbins (1971), the essential infimum (ess inf) has the property that it is almost surely
equal to an infimum over a countable collection of random variables. Using (2.20) and
(2.23), we see that there is a countable set {7:} of random functions in FR (¢) such that

(2.26) a(t) = inf{x (¢, ) : k= 1}.

In Theorem 1 we proved that FR(¢) C SR(t) and therefore, there exist decision functions
¢r such that for each &

(2.27) lim, ¢k (t) = Tz.

Define the integer-valued random function £* to be the least integer £ = 1 such that 7 (¢)
+ € = w(t, 7). The random function £* is thus defined almost everywhere and it is F'(¢)-
measurable. Let ¢ be defined so that ¢(r) = r for all r such that ¢ £ r, and such that ¢(r)
= ¢+ (r) for ¢ = r. Then the mapping ¢:T X € — T is defined for almost all w and by
defining ¢(r, w) = r where k*(w) is not defined, one easily sees that ¢ € D. Moreover,

(2.28) lim,, . ¢"(£) = Tp~.

Hence, 7.+ must be in SR (¢) and by definition of 2* it must be true that #(¢) + € = = (¢,
Tk* )

We can now show #(¢) < #(¢) as follows. For € > 0 and for s such that ¢ < s, choose 7
in SR (s) such that

(2.29) 7(s) + e=n(s, 7).

Let 7 = lims,~¢*(s) for ¢ € D. Define a new decision function  as Y(r) = ¢(r) for s=r,
Y(t) = s and Y(r) = r for all other r. Then limy_.y*(¢) = lims_.. $*(s) and hence, 7 is an
element of SR (¢) and also an element of R (¢). Conditioning (2.29) with respect to F'(¢) we
obtain E (n(s)| F(t)) + € = #(t, 7) and consequently, E (7(s)| F(t)) + € = w(t). Since € was
arbitrary, we obtain E (7(s)| F (£)) = #(¢). It is clear that c(¢) = #(t), and thus, we have
7(t) = w(¢t).
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To finish the proof we must demonstrate the inequality (2.22) for arbitrary stopping
times o. From above we know that for each ¢ there exists 7, € SR (¢) such that

(2.30) a(t) + €= w(¢t, 1)
for a given € > 0. Let ¢, € D be such that
(2.31) lim_ % (t) = 7..

Define a new decision function ¢ such that ¢(¢) = ¢,(¢) if r <t and o = r, and ¢(¢) = ¢ if
¢ £ ¢. In this case the limit 7 = lim,_..¢*(0) exists and is equal to lim,_..¢*(r) whenever
o = r. Thus, 1 € SR (o) and from (2.30) it follows that #{(0) + € = 7 (o, 7). O

THEOREM 5. If o is a stopping time on T, < with respect to { F(t) : t € T} then OS(o)
= R (o).

Proor. We have already shown in Theorem 2 that R (o) C OS (o). Thus, it suffices to
show OS (o) C R (a). Suppose that € OS(s). We apply Theorem 4 to the optimal stopping
problem with cost function c(¢) = 1,.,. It follows that «# in (2.20) is a submartingale
uniformly bounded by 1. Since we assume that 7 € OS (o), the optional sampling inequality
(2.2) is true for X = 7 and thus E (n(7)| F'(6)) = m(0). Since 7(7) is clearly 0 by definition
of ¢ and since 7 (o) = 0, we have (o) = 0. From (2.22) there exist 7, in SR (o) such that for
each positive integer %

(2.32) w(c) + % = (o, Tr).

Noting that 7(¢) = 0 and = (o, 7:) = P(7x # 7| F(0)) in (2.32), we obtain the following
result:

(2.33) mn#ﬂFw»s%

Taking the expectation of (2.33) gives P (7, # ) < 1/k. Since each r; is strongly reachable
from g, according to Theorem 1 it is also reachable from o, and hence there are 7, € FR (5)
such that P (7% # 7.) < 1/k. It follows that P(r} # 1) < 2/k for each %k and consequently
T € R(o). 0

The following corollary, which follows from (2.33), improves the approximation (2.8).

COROLLARY 5. For each v € R (o) there exist 7. € SR (o) such that
(2.34) limy o P(tx # 7| F(0)) =0

where the convergence in (2.34) is uniform on a set of probability one.

When the infimum in (2.21) is a minimum, we may refine the results of Theorem 5 and
in some cases prove that all reachable random functions are in fact strongly reachable. We
present these results below in Theorem 7 and its corollaries. The following simple theorem
shows that the infimum is actually a minimum for a large class of index sets. If T, < is a
partially ordered set and ¢ € T, then we say that s is an immediate successor of ¢ and write
t<-sift = sandif ¢t < r =< s for no r other than ¢ or s.

THEOREM 6. Suppose that the partially ordered index set T, < in Theorem 4 is such
that each t in T has at most a finite number of immediate successors. Then the infimum
in (2.21) is a minimum. 0

Proor. Note that since = is a submartingale we have that E(w(s)|F(t)) =<
E(n(r)| F(t)) for each t = s < r. Since for each r such that ¢ < r there is an immediate
successor s of ¢ such that s < r, we have
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(2.35) inf{E (w(s)| F(t)), c(t):t < s} =inf{E (n(s)| F(¢t)), c(¢t) : t < s}.

The infimum on the right hand side of (2.35) is taken over a finite set of s by assumption,
and consequently it is a minimum.

THEOREM 7. Let o be a stopping time with respect to { F(t):t € T} and let r € R (o).
Let 7 be the uniformly bounded submartingale defined by (2.20) in Theorem 4 with the
cost function c(t) = 1.<,. Suppose that there exists ¢ such that

(2.36) w(t) = E{m(¢(t))| F(t)}

for each t and ¢(t) = t if and only if =(t) = c(t). Then r € R(¢*(0)) for each k, and in
particular, $*(6) < r for all k. Furthermore, whenever the limit lim;_,.$"*(0) exists, it is
equal to 7.

Proor. If p is a stopping time, then from (2.36) it follows that
(2.37) 7(p) = E{n(¢(p))| F(p)}.

Letting p = ¢*(0) successively for 2 = 0 we see that {n(¢*(0))} is a one parameter
martingale with respect to { F'(¢*(0))}. Since r € R (o) implies that 7(¢) = 0 and since 7
= 0, we see that 7(¢*(a)) = 0 also for each k. Using the same argument as in Theorem 5,
we deduce that r € R (¢*(0)). It follows that ¢*(6) < 7 a.s. from the definition of R (¢*(s)).
Finally, to prove the last assertion of the theorem suppose that lim,_,..¢*(o) exists so that
¢*(0) = ¢**!(0) for some k. The condition that o(t) = t if and only if #(¢) = c(¢) implies
that 7(¢*(0)) = c(¢*(0)). Since 7(¢*(0)) = 0, it follows that c(¢*(s)) = 0'and hence, ¢*(o)
=T ‘ 8]

The following corollaries are immediate consequences of Theorems 6 and 7.

COROLLARY 7.1. Assume the same conditions as in Theorem 7. Suppose that the
index set T has the property that for any s, t in T with s < t, there is no infinite sequence
{r.} in T such that s < r, < ry+1 < t for all n. Then for the decision function ¢ satisfying
(2.36) we have

(2.38) lim¢*(0) = 7.

COROLLARY 7.2. If the partially ordered index set T, < is the set of integer n-tuples
Z" with the coordinate-wise partial ordering, then SR (o) = R (o).

COROLLARY 7.3. If the partially ordered index set T, < is finite, then FR (o) = SR (o)
= R (o).

3. Conditional Independence and Optional Sampling. For particular types of
index sets 7T, < and increasing families {F(¢):¢ € T'} it may be true that for any pair 7, ¢
of stopping times with ¢ < 7 that 7 is reachable from o. For example, this is true if T, < is
countable and linearly ordered. In this section we present two other general cases where
this is also true and where the index set is not linearly ordered.

To begin we make two assumptions, one concerning the index set T, < and the other
concerning the collection {F(¢):¢ € T} of o-fields. Namely, assume that for any two
elements ¢, s of T there is a greatest lower bound ¢ A s of ¢ and s with respect to the partial
ordering of 7' This is true, for example, if T, < is a tree, as defined in Section 2, or if T,
< is a lattice such as Z" or R" with the coordinate-wise partial ordering. In the second
case, the ith coordinate of ¢ A s is min{¢;, s;} where ¢; and s; are the ith coordinates of ¢ and
s respectively. The second assumption we make is that {F(¢):¢ € T'} satisfies the following
conditional independence property. '
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DEFINITION 5. The increasing family {F(t):¢t € T} satisfies the conditional indepen-
dence property if for each s and ¢ in T, the o-fields F(s) and F(t) are conditionally
independent given F(s A t).

This conditional independence property was defined for the case of T'= R% by Cairoli
and Walsh (1975) in their study of stochastic integrals on the plane. The multiparameter
Wiener process on R”, defined by Park (1970) generates o-fields which satisfy the condi-
tional independence property. If T, < is an index set with the property that any two
elements of T have a greatest lower bound, then we can construct a simple example of a
collection of o-fields with the conditional independence property as follows. Let {x(f):¢t €
T} be a collection of independent random variables and let F(¢) be the o-field generated
by the collection {x(s):s < t} of random variables. It is not hard to see that the collection
{F(t):t € T} so defined satisfies Definition 5.

We will show that if T, < is either a tree or Z? with the coordinate-wise ordering and if
{F(t):t € T} satisfies the conditional independence property, then SR(s) = ST(o) for all
stopping times o. The first case we consider is that for which 7T, < is a countable tree as
defined in Section 2.

THEOREM 8. Suppose that T, < is a countable tree and that the increasing family
{F(t):t € T} has the conditional independence property. If o is any stopping time, then
SR(o) = ST(0).

Proor. Having proved that SR(0) C ST'(o) in Theorem 1, we need only prove ST(o)
C SR(0). For a given stopping time 7 we will construct a decision function ¢ such that for
any stopping time o with o < 7, the limit lim_.. ¢*(o) exists and is equal to 7.

Fix ¢t in T and define ¢(t): 2 — T as follows. For each immediate successor s of ¢, let A
denote the F'(¢)-measurable event

3.1) A; = {w:P(s < 7| F(t)) > 0}.
Note that for each s the definition (3.1) implies that
3.2) PA;N {s=171}) =P({s=1}).

Suppose that s and s’ are immediate successors of ¢ with s # s, and let s<rand s’ <r’.
Because T, < is a tree, we must have r # r’ and r A r’ = s A s’ = t. Thus, the conditional
independence property implies that

(3.3) P(r=r|F@)P(r=r'|F()) =0.
Summing (3.3) over all r, r’ such that s < r and s’ < r’ gives
(3.4) P(s=1|F(t))P(s’< 7| F(t)) = 0.
From (3.4) and (3.1) it follows that for each s # s’

(3.5) P(A; N Ay) =0.

Using the assumed completeness of F(¢) and redefining the A, on sets of measure zero
if necessary, we deduce from (3.2) and (3.5) that

(3.6) {s=71} CA;
3.7 AsNA, =0
for all s, s” such that t < s, t < s’ and s # s’. Let A, denote the event in F(t) defined by
(3.8) A= (Q - {Asit < s}) U {7 =1¢}.
We can define ¢(t) in terms of the sets A, and A; for ¢ < s as follows.
3.9) o, w) =t ifw€EA

(3.10) ot w) =5 ifwEA —A.
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Property (3.7) and the definition (3.8) ensure that ¢(¢) is a well-defined function. Property
(3.6) ensures that if ¢ < 7, then ¢(¢) < 7. Furthermore, if £ < 7 and ¢(¢) = ¢, then ¢t = 7. If
o is any stopping time such that ¢ < r, then ¢*(6) =< 7 for each k. Since 7| < is a tree and
has the property mentioned in Corollary 7.1, the limit lim,_... $*(0) exists almost surely. By
construction this limit p is such that p < 7 and ¢(p) = p. Consequently, p = 7. 0

The property of a tree that makes Theorem 8 possible is that for each s, s’ such that ¢
< s, s and s # s” we have {r:s<r} N {r':s’ = r’} = @. This property will not hold for
more general partially ordered index sets such as T' = Z". Nevertheless, we can adapt the
proof of Theorem 8 to the more general case of T = Z>.

THEOREM 9. Suppose that T = Z* and < is the coordinate-wise partial ordering of
Z*. Furthermore, suppose that the increasing family {F(t):t € T'} satisfies the conditional
independence property. If o is any stopping time, then SR(o) = ST(o).

Proor. As in Theorem 8, for a given stopping time 7 we will construct a decision
function ¢ such that lim_... ¢*(s) = 7 for any stopping time o with ¢ < 7.
Fix ¢ = (t1, t2) in Z? and define ¢(t):Q2 — Z? as follows. Define the events K; and K as

(3.11) K, =Upso {7= (&1, &2 + 1)}
(3.12) K; = Npso {1 = (t: + m, t2)}.

The conditional independence property implies that F((¢;, t. + n)) and F((¢; + m, £)) are
conditionally independent given F((¢1, ;) for any m, n = 0. Thus, we have

(3.13) Pir=(t, b+ n)|F@))P(r = (b + m, &) |F(t)) =0
for all n, m > 0. From (3.13), (3.11) and (3.12) it follows that
(3.14) P(K,|F(t))P(K:| F(t)) = 0.

Define the F(t)-measurable events A, s,+1 and Ay, +1,4,) as

(3.15) A+ = {w: P(K:1 | F(2)) > 0}
(3.16) Aprryy) =0 — A ).

It is not difficult to see that

(3.17) P(A¢ o1 N K1) = P(KY)
and that

(3.18) PAy 0 NK2) =0.

From this point, the proof follows Theorem 8. Using the assumed completeness of F(¢)
and redefining A, ,+1 and A¢ +14) on sets of measure zero if necessary, we deduce from
(3.17) and (3.18) that

(3.19) K, CA¢,+n
(3.20) K> C A1y

where A"p’z"’” n A(¢|+1,12) = @ and A(‘p‘z"'l) V] A(tl+1,;2; = Q Let A(;p;z) = {’T = (tl, tz)} and
define ¢((t1, Z2)) as:

(3~21) ¢((tl) tZ)) w) = (tly t2) ifw € A(l,,tz)
(3.22) o((t, 8), w) = (L + 1L, ) if wE€ Ay — Ay

(3.23) O((t, ), w) = (b, e+ 1) if w € Ay ey — A p-
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For this decision function, ¢*(s) =< 7 for any stopping time o such that ¢ < 7. Since Z2 also
has the property of Corollary 7.1, the limit lim,_... $*(0) exists almost surely and is equal
to 7. 0

We cannot extend the proof of Theorem 9 to the case of T'= Z" for n > 2. The following
example shows that in fact the result is not true in general for n > 2.

ExAMPLE 4. R(o) # ST(o) when T = Z* and when the conditional independence
property holds true.

Without loss of generality, we construct the example for the index set T defined as the
Cartesian product {0, 1} X {0, 1} X {0, 1}, a subset of Z% namely the vertices of the unit
cube. One can easily extend this example to one on all of Z* or to Z" for some n > 3. Let
Q = {w;:1 = i = 8} with P({w;}) = 1/8 for each i, and let F be the collection of all subsets
of Q. Define three random functions a, 8, y from £ into {0, 1} as follows.

alwr) = a(wz) = alws) = a(wy) =0
a(ws) = a(ws) = alwr) = alws) =1
Blw1) = Blwz) = Blws) = Blwe) =0
Blws) = Blws) = B(wr) = Blws) =1
Y(w1) = y(ws) = y(ws) = y(wr) =0
Y(we) = y(ws) = y(we) = y(ws) =1

It is not difficult to check that a, B, y are independent random functions. We can now
define the o-fields {F(t):t € T'} in terms of these random variables. Let F((0, 0, 0)) be the
trivial o-field {2, J}. The o-field F((1, 0, 0)) is generated by «, F((0, 1, 0)) is generated by
B, F((0, 0, 1)) is generated by vy, F((1, 1, 0)) is generated by a and 8, F((1, 0, 1)) is generated
by « and vy, F((0, 1, 1)) is generated by B8 and vy, and F((1, 1, 1)) is generated by all three
random variables—hence, F((1, 1, 1)) = F. Since «a, B, and y are independent, it is easy to
check that {F(t):t € T} satisfies the conditional independence property.

Define a submartingale X on T as follows. Let X((1, 1, 1))(w3) = X((1, 1, 1))(we) = —1
and let X((1, 1, 1))(w;) = 1 for i # 3, 6. Define X(¢) = 0 for ¢ # (1, 1, 1). To check that X is
a submartingale, it suffices to show that E(X((1, 1, 1)) | F(¢)) = 0, for ¢ = (1, 1, 0), (1, 0, 1),
(0, 1, 1). A simple calculation shows that E(X((1, 1, 1)) | F((1, 1, 0))) is equal to 1 if w = w1,
w2, w7, wg and it is equal to 0 if w = ws, w4, ws, ws. The other conditional expectations are
similar.

Finally, define 7(w) = (1, 1, 0) if w = w1, we; let 7(w) = (1, 0, 1) if w = ws, wr; let 1(w) =
0, 1, 1) if w = w4, ws; and let 7(w) = (1, 1, 1) if w = w3, we. It is easy to check that 7 is a
stopping time. Let o = (0, 0, 0). Then a simple calculation shows that

EX(1)|F(o)) = EX(7)) = (=1) %4 + (0) % = — % Z 0 = X(0).

Consequently, € OS(o) and from Theorem 2 it follows that 1 & R(s). Thus, R(c) #
ST(o).

To conclude the results of this paper we state an optional sampling theorem which
follows easily from Theorems 8 and 9 and Theorem 2.

THEOREM 10. Suppose that T, < is either a countable tree, Z* or R Let the increasing
family {F(t):t € T} satisfy the conditional independence property, and let X be a
uniformly bounded submartingale with respect to this increasing family. If T = R? then
also let X be right continuous in the sense that

limg_.,c<s X (s) = X(¢) for all t
If o and 7 are stopping times with o < 7, then E(X(7) | F(0)) = X(0).
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ProoF. For T = Z?or T a tree the proof follows immediately from Theorems 8, 9 and
2. For T = R? note that a stopping time 7 is a random function 7:Q — R” such that {r =
t} is F(t)-measurable for each ¢ in 7. This is equivalent to the definition of stopping time
in Section 2.1 if 7 takes only countably many values. To prove the theorem for 7'= R? one
proceeds as for R' by taking limits of stopping times taking only countable many values in
R? and using the result for T = Z% Since there are very few changes from the one-
parameter case, for example as given in Neveu (1965), we omit the proof. 0

4. Conclusions. We have shown that for a given pair o, 7 of stopping times such that
¢ < 7 on a countable partially ordered set, the optional sampling inequality

4.1 E(X(1)| F(0)) = X(o)

is true for all uniformly bounded submartingales X if and only if 7 is reachable from o.
This result stands in sharp contrast to the martingale versions of Chow (1960) and Kurtz
(1977). If X is a uniformly bounded martingale and if the index set is directed, then (4.1)
is true for any stopping times o, 7 such that o < 7. Note that our result does not require
that the index set be directed.

Our characterization of the collection OS(s) of stopping times 7 for which (4.1) is true
shows that optional sampling is intimately associated with sequential sampling problems—
namely, reachable stopping times are defined in terms of sequential decision functions as
described in Section 2. Thus, even for the case of a partially ordered index set, the optional
sampling theorem is necessarily a one-parameter result. As we have shown in Section 2,
the optional sampling theorem is true for general uniformly bounded submartingales if
and only if the stopping times are reachable and hence if and only if the theorem can be
reduced to its one-parameter version.

In certain special cases discussed in Section 3 it is possible to show that the optional
sampling inequality (4.1) is true for all stopping times and all uniformly bounded submar-
tingales. To obtain such results we assumed that the increasing family of o-fields satisfied
a conditional independence property originally given by Cairoli and Walsh (1975). This
property is possessed by o-fields generated by multiparameter Wiener processes, for
example. Thus, we proved the optional sampling theorem for the special cases when T'is
a tree or when T = Z?2 or R% The counter-example of Section 3 shows that the theorem is
not true for T = Z°,

The preceding results completely characterize the situations in which the optional
sampling theorem is true with no restriction on the submartingales other then uniform
boundedness. If further restrictions are placed on the submartingales, it may be possible
to obtain different optional sampling results. For example, if X has a Doob decomposition®,
it is easy to apply Kurtz’s (1977) result to show that (4.1) is satisfied for all stopping times.
Thus, suppose X(t) = M(t) + A(t) where M is a martingale and A is an increasing process
in the sense that A(s) < A(¢) if s < ¢ in the partially ordered index set. Then if the index
set is directed, Kurtz’s result implies that E(M(7) | F(o)) = M(o) for all stopping times o,
7 such that o < 7. It is clear that A(o) < A(r) and hence E(A(7) | F(o)) = A(o). Thus,
E(X(7) | F(0)) = X(o) is also true.

Of course, the fact that the optional sampling theorem is not generally true in the case
of partially ordered index sets means that not all submartingales have such Doob decom-
positions. Indeed, if  is not reachable from some stopping time o where ¢ =< 7, then the
submartingale 7 of Theorem 5 has no Doob decomposition. For otherwise (4.1) would be
true for X = « and the argument of Theorem 5 would imply that 7 is reachable from o, a
contradiction.
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