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ON THE UNIMODALITY OF HIGH CONVOLUTIONS

By PATRICK L. BROCKETT AND J. H. B. KEMPERMAN

The University of Texas at Austin and the University of Rochester

It has been conjectured, for any discrete density function {p,} on the
integers, that there exists an no such that the n-fold convolution {p;}*" is
unimodal for all n = n,. A similar conjecture has been stated for continuous
densities. We present several counterexamples to both of these conjectures.
As a positive result, it is shown for a discrete density with a connected 3-point
integer support that its n-fold convolution is fully unimodal for all sufficiently
large n.

1. Introduction. The limiting distributions of properly normalized sums of indepen-
dent random variables are called class L distributions (Gnedenko and Kolmogorov, 1954).
If the random variables are identically distributed, then the limit law is stable. The
problem of unimodality of the class L distributions, and the stable laws in particular, has
only recently been decided after numerous false proofs. Yamazato (1978) established that
all class L distributions are unimodal.

In view of the apparent unimodality of such limiting distributions, A. Rényi conjectured
for a discrete distribution { p;} on the integers that there is a number n, such that the n-
fold convolution {p;}*" is unimodal for all » = no. In a similar vein, P. Medgyessy
conjectured that for any continuous probability density £, there exists a number no such
that the n-fold convolution f*" is unimodal for n = n,. See Medgyessy (1977) for both
these conjectures.

If these conjectures were true, then it would be easy to deduce the unimodality of the
stable laws. Both are, in fact, false. We present two counterexamples to the conjecture of
Medgyessy. The first is a bounded and infinitely differentiable density with the property
that none of its convolutions is unimodal. We also exhibit a density on [0, 2«] which is
continuous and such that each of its convolutions is nowhere differentiable. Since unimo-
dality implies differentiability almost everywhere, this example disproves the conjecture
of Medgyessy.

As to discrete distributions, we construct one which has the nonnegative integers as its
support and such that none of its convolutions is unimodal.

As a positive result, we show in the final section that for any measure p with 3-point
support [0, 1, 2], the n-fold convolution p*” is unimodal over the full range {0, 1, - - -, 2n},
for all sufficiently large n. We conjecture the corresponding result for any measure with a
finite and connected support {0, 1, - - -, N}. Already this is an open problem for N = 3.

2. Discrete Unimodality. In the present section, we will be concerned with proba-
bility measure p on the integers Z. Let p; = u({j}) denote its mass at j. Such a discrete
distribution is called unimodal if the sequence {pj+1 — p;}*% has exactly one change of
sign. A discrete distribution { p;} is said to be strongly unimodal if { p;}*{g;} is unimodal
for any discrete distribution {g,} with connected lattice support. As was shown by Keilson
and Gerber (1971), this happens if and only if p? = p;-1p;+1 for all j € Z. For instance, the
Poisson, geometric and binomial densities are all strongly unimodal.

Counterexample I. Consider integers

(2.1) w=0<a;<az< -+ with ap+1/an—> ©ash— o,
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Let X be a random variable with range A = {ao, ai, az, - - -} and put p, = P[ X = a.], thus,
pr>0and Yupr = 1. Let X1, X5, - - be independent copies of X and S, = X; + Xo + - - -
+ X,. Observe that the range of S, includes ao = 0 as well as arbitrarily large positive
integers. Hence, S, can have a discrete unimodal distribution only if P[S, = x] > 0 for all
integers x = 0.

Claim 0. Let A and x be fixed positive integers such that a1 > na,. Then

(2.2) P[S,=x] =0 whenever na,<x < ap+1-
Moreover,
(2.3) P[S.=nax,]=p; and P[S.= ar+1] = npt 'pr+1.

Proor. Suppose P[S, = x] > 0. Then x must be of the form
x=Y%omja; with m;€Z* and Y- om;=n.

If m; = 0 for all j > A then x < ax Y% m; = nax. If m; > 0 for some j > h then x = m;,a;
= a; = ap+1. This proves (2.2). A similar proof yields (2.3).

To complete the counterexample, one only needs to note that there exists a positive
integer x with na, < x < ap+1 as soon as ap+1 > na, + 1. For each fixed n, this is true for
all large A. Therefore, S, is not unimodal for any n.

One may wonder whether S, with n large might be unimodal at least over its support.
The answer is negative in general since one can arrange that, for each large but fixed n,
one has

P[S. = an+1] = np8~'pr+1 > P[S, = nax] = p¥,

NP . 1
for infinitely many h. For instance, ps+1/po >; (pr/po)” for all large A as soon as p, =

c/(h® +1).

One may further wonder whether assuming P[X =j]>0forallj € Z* {0, 1, 2, -.-}
(connected lattice support) might be sufficient. The following example shows that also
here the answer is negative.

Counterexample II. Let X;, X,, - -+ and Y1, Y2, .- - be independent random variables
such that the X; are i.i.d. with their common distribution the same as in Counterexample
I, while the Y; are Poisson variables with mean A. Put S, = Y7, X, and T, = }7-1 Y.
Further,let Z;, = X; + Y;and S, = ¥ %1 Z; = S, + T.. Observe that Z; has the connected

lattice support Z*.
Let n be fixed and choose A so large that as+: > na,. We have from Claim O of
Counterexample I that '

P[S;, = Qp+1 — 1] = P[S,, = nah]eh = €,
where
en = enn = Max{P[T, =j]:j = an+1 — 1 — nan}.

Let b, = b, denote the smallest integer = an+1 — 1 — nax. If h is sufficiently large, then
br exceeds the mode [nA] of the Poisson variable T, hence, &, = e " (nA)®/b;!. On the
othér hand,

P[S, = ann1] = P[S, = an11P[ T, = 0] = np§ " 'pr1e”™.
Therefore,
(2.4) P[S; = ap+1 — 1] < P[S, = ap+1] for all large A,
as soon as e, = 0(pr+1) as h — oo, which is the same as

(nA)"/by! = 0(pr+1) as h— .
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For large h, b, = % a1 where {as}, and thus {b,}, increases faster then exponentially. It
follows that (2.4) holds as soon as { p,} does not decrease too fast: for instance, only at an
algebraic or exponential rate. In such a situation, P[S, = j] increases infinitely often. This
clearly rules out unimodality.

3. Continuous Unimodality. One can easily carry over the examples of Section 2 to
the absolutely continuous case. A continuous density function fis called unimodal if there
exists a value x, such that f is non-decreasing over (—, xo) and non-increasing over (xo,
). The following is an analogue of the above Counterexamples I and II.

Counterexample II1. Let {ps}¢ satisfy p, > 0, Zp; = 1 and let {ax}& be asin (2.1). Let
f(x) denote the density function which is obtained by distributing the mass p; uniformly
over (an — %, an + %). Thus, f(x) = ¥.§ pr¥(x — ar) with ¢ as the characteristic function
of the interval (—%, 14).

Let S, = Y71 X; where X;, X, - - - are i.i.d. with common density 7. The density f*" of
S, satisfies

3.1) f¥"(x) =0 for na,+n/2<x<an+1—n/2;

compare the proof of (2.2). Since an+1 > nay + n for all large A, it follows that f*” can never
be unimodal.

If a strictly positive density is desired such that f*" is never unimodal, one may start
with Counterexample II and afterwards spread the mass g; = P[Z = j] uniformly over the
interval [j — %, j + %].

Or, one can start with {X;} as the iid. sequence of Counterexample I. Further, let
Z; = X; + Y, with the X; and Y; independent, each Y; having density g. Thus, the Z; have
density

f(x) = Y=o png(x — an).

This density f is infinitely differentiable as soon as each derivative of g exists and is
bounded. Let us take g as the standard normal density ¢(x) = (27) % ™*/% Then S, =
Y21 Z; has density

(3.2) fu(x) = n72 570 P[S, = jlo((x — j)/n'’?),

where s, = Y11 X;.
Let n be fixed and % so large that A, > 0, where A, = (ax+1 — nax)/2. It follows from
(2.2) and (3.2) that

folaner — Ax) = n™%p(A, /n*?).
On the other hand, using (2.3),
fa(@rs1) = n72P[S, = ap+1]e(0) = (27n) " nps ' pre1.

One has ¢(Ax/n'?) = 0(pa+1) as b — oo, provided { p»} decreases only at an exponential
or algebraic rate. In this case, f,(@r+1 — Ar) < fa(ar+1) for all large A, showing that f, is not
unimodal.

Counterexample IV. Observe that a unimodal density function is necessarily differ-
entiable almost everywhere. In this example, we exhibit a continuous density function f
supported on [0, 27] such that the n-fold convolution £, of f is nowhere differentiable for
every n. Actually, Bogdanowicz (1965) already showed that nearly each continuous function
f on [0, 27] has this property. More precisely, in the space C[0, 27] with supremum norm,
the collection of f € C[0, 27] with each convolution f, nowhere differentiable is the
complement of a set of first category.

Let us now exhibit an explicit density with this property. It is based on the following
result due to Freud (1962). A short proof may be found in Kahane (1964).
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THEOREM (FREUD). Let g(x) = Y5-1 cx cos(bex), where {b:} is a sequence of positive
integers satisfying Hadamard’s lacunarity condition by.1/bx = q > 1. Then g being
differentiable at some point implies that c, = o(bi') as k — .

To construct our example, let f be a probability density on [0, 27] and let £, be its n-fold
convolution. Note that f, is carried by the interval [0, 27n]. Consider the essentially finite
sum

8n(x) = Y3 o fu(x + 27h).
Since g, (x + 27) = g.(x), one may regard g, also as a function on the circle group T of the
reals modulo 27. Relative to the additive group T, the function g, is a probability density

equal to the n-fold convolution of g:. The easiest way to calculate g, is to calculate its
characteristic function. For each integer m,

J e™ g, (x) dx = {J' e™g; (x) dx} = {J' e™*f(x) dx} ;
T T R

In other words,

(3.3) &n(x) = (2m)" ' Zp(ym) €™

as soon as ’

(3.4) fx) =Y yme™™ for 0<x<2m
Let us take

f(x) =co— X%-1¢rcos bpx for 0=x=2m,

while f(x) = 0, otherwise. Here, the b, are as in the above Theorem. Further, ¢, = 1/ (2m)

and ¢ > 0(k = 1) such that ¥§-: ¢z = ¢. Thus fis a continuous probability density with

£(0) = g(2m) = 0. It is of the form (3.4) with yo = co, vs, = v-5, = —C+/2 when &k >0, while
- ¥m = 0, otherwise. Thus (3.3) yields that

(3.5) gn(x) = 2m) " H(co)™ + 27" V-1 (—cr)™ cos brx).

Suppose f, were unimodal. Then f, is differentiable almost everywhere. The function
2. (x) restricted to (0, 27) is the superposition of the finitely many translates f. (x + 27k),
(#=0,1, ---, n — 1), and thus would also have a derivative almost everywhere. By (3.5)
and Freud’s theorem, this would imply that (cx)"” = 0(b;') as &k — .

Consequently, if we choose b, = 2* and c; = ¢/k*(k = 1), we have an example of a
continuous density f such that none of its convolutions f, is unimodal. (In fact, no
convolution is anywhere differentiable.)

It is interesting to note that, for any ¢ > 0, one can find a density f. uniformly closer
than ¢ to the standard normal density, and such that the n-fold convolution " of f, is not
unimodal and nowhere differentiable for any n. To construct such an f,, we start with a
random variable X with a density f as outlined in Counterexample IV. Since X has a
compact support, it follows from well-known local limit theorems (e.g., Petrov (1975),
Theorems 7 or 15 of Ch. VII) that the density Ax of Zﬁ.l (X; — Nw)/ (o\/ﬁ ) is uniformly
within & of the standard normal density as soon as N is sufficiently large. Since Ay is
linearly related to the previous fw, this density Ay is not unimodal or differentiable and
neither is any of its convolutions 4 #". Thus, the reasoning behind the original conjectures
of Rényi and Medgyessy is faulty. The central limit effect is much too weak for the
property of exact unimodality of high convolutions.

4. Positive results and conjectures. Let us now investigate what positive results
can be obtained concerning the eventual unimodality of sums of independent random
variables. Also in view of the counterexamples, we shall restrict our attention to an integer
valued random variable X having a finite support A with A C {0, 1, .-+, N}. Let p; =
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P[X =j]thus A = {j € Z:p;> 0}. We will assume that po > 0 and py > 0 and further that
the members of A have their greatest common divisor equal to 1.
Let

fr()) = P[¥i1 Xi =]

be the n-fold convolution of { p;}. The support of f, is precisely the n-fold sum A4, =
A+ A+ ...+ Aof the support A of {p;}. One has A, C {0, 1, --.,nN} and 0 € A,.; nN
€ A,. In order that f, be unimodal, it is at least necessary that A, be connected, that is, A,
={0,1, ---,nN}.One has A, C A,+, while G = U,, 4, is precisely the semigroup generated
by A. Hence, in order that f, be unimodal for n sufficiently large, it is necessary that G be
connected, thatis G=Z* = {0, 1, 2, - . .}. This rules out a situation like A = {0, 6, 10, 15}
since in this case G has the holes {1, 2, 3, 4, 5}, {7, 8,9}, {11}, {13, 14}, {17}, {19}, {23} and
{29}.

Since G contains all sufficiently large integers, one easily shows that, for large n, the
support A, of f, has only a few holes all located at the very beginning and very end of A,.
One might therefore conjecture that, for n large, f,.(+) is unimodal at least over the “solid”
part of A,,. However, even this can be shown to be false. Because of that, we will restrict
our attention to the case of a connected lattice support

A={0,1, ..., N}.

Thisis, p;>0forj=0,1, - -., N and p; = 0, otherwise. The results so far, as well as certain
numerical calculations, lead us to make the following conjecture.

CONJECTURE. Let { po, p1, - - -, pn} be a finite discrete distribution with p;> 0 (i =0,
1, - - -, N). Then the n-fold convolution f,(-) of { p;} is unimodal for all sufficiently large
n.

If N = 1, then this convolution is a binomial law and thus always unimodal. Nothing
seems to be known for the case N = 2, not even in the symmetric case.

The conjecture, if true, would have further consequences. For instance, applying it to
the discrete density p; = ¢,p;t’ with ¢ > 0 fixed, it would follow that £, (j) = ¢?f.(j)#’ also
becomes unimodal in j for n = no(t).

For density functions, we make an analogous conjecture: if f is an analytic density on
the finite interval (a, b) with only finitely many modes, then for n, sufficiently large, the n-
fold convolution f, of f is unimodal over the full range (na, nb).

The major result of the present section is that the first conjecture is true when N = 2.

THEOREM. LetX;(i=1,2, --.) be a sequence of i.i.d. discrete random variables with
connected lattice support {0, 1, 2}. Then S, = }.7-1 X; is unimodal for all n sufficiently
large.

PROOF. Let p; = P[X =i], thus p; > 0 for i = 0, 1, 2 and p; = 0, otherwise. Let £, (/)
= P[S, =j] thus

(4.1) fu() >0 for j=0,1,..-,2n; f.(j)=0, otherwise.
Moreover, )

42) for1() = S0 pifa G = b).

Let us introduce the ratios

4.3) pn()) = (G + D/f()),

letting p,(j) = o for j = 0 and p.(j) = 0 for j = 2n. Note that unimodality of S, above an
integer mode mo(n) is equivalent to p,(j) = 1 for j < mo(n) together with p,(j) = 1 for
J = mo(n).
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LEMMA 1. We have p,.(j + 2) < p.(j) for allj.

Proor. We shall proceed by induction. The stated result is equivalent to
(4.4) Wb +3)<fu(h+ 1)f,(h+2) forall h.

Since f,(h) = 0 if A < 0 or A > 2n, (4.4) is obviously true if A < —1 or A = 2n — 2, and
therefore for n = 1.

In view of (4.2), inequality (4.4) with n replaced by n + 1 is equivalent to showing for
allj

(4.5) oD (=1 Yiopsfi(j+3—98) = 3=oprﬁ;(j +1-1Yopsfa(f+2—5).
We must show that (4.4) implies (4.5). Rearranging terms, we see that (4.5) is equivalent
to

(4.6) 0 = Zg=0p§[fn(1+ 1- r)fn(j"' 2 _r) _fn(.]_ r)ﬂl(j"' 3—- r)] +2r<sprpsF}'—r,j—s,
where

@47 Fpup=fG+DHE+2)+LG+DAHE+1) —LDAE+3) =L+ 3 ().

Applying (4.4) with A = j — r, we see that the first sum in (4.6) is non-negative. Hence, it
suffices to show that F;;_1 =0, F;;_2 =0 and F;_; ;-2 = 0.
From (4.7), condition Fj;_; = 0 reduces to

f%z(]"' 1) an(.]_ l)fn(]"' 3)

One may as well assume that 1 <j < 2n — 3 so that £,.(j) f.(/ + 2) > 0. Now, applying (4.4)
with A =j and A =j — 1 and then multiplying the results, one obtains

LG=D6G+2AWDAG+) =LDAG+DAG+ DG +2).

Dividing by £, () f.(j + 2), one obtains the desired result. Replacing j by j — 1, one also has
F;_1j-2=0.
From (4.7), condition Fj ;-2 = 0 reduces to

fn(.]_ Z)fn(]"' 3) an(.]_ l)fn(] + 2)

One may as well assume that 2 <j < 2n — 3 so that f,(j) f»(j + 1) > 0. Applying (4.4) with
h =j — 2 and h = j and then multiplying, one obtains that

fn(.]_ 2)fn(] + l)fn(l)fn(.]"' 3) an(] - l)fn(l)fn(]"' l)fn(.]"' 2)

Dividing by £.(/)f.(j + 1), one obtains the desired result. This completes the proof of
Lemma 1.

REMARK. Lemma 1 is related to the paper “A Hurwitz matrix is totally positive,” by
J.H.B. Kemperman, which is to appear.

1t follows from that Lemma 1 that p,(j) is monotonically decreasing if j runs through
the even integers, and also when j runs through the odd integers.

As to the Theorem, it suffices to prove that, for all sufficiently large n, there exists an

integer k = k(n) such that
4.8) prk—2)=1; p(k—1)=1L pu(R)=<L pu(k+1)=1

For afterwards we have from Lemma 1 that p,(j) = 1for allj < . — 1 and p, (j) < 1 for all
J = k, implying that £, (-) is unimodal about %.

In other words, it only remains to show that, for n sufficiently large, the restriction of
f»(+) to some 5-point set

(k—2,k—1,kk+1k+2)
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is nonzero and unimodal about the central value k. We will do this by using a local limit
theorem. In the sequel, p = EX, 62 = Var X while y; denotes the jth cumulant of X. Further,
B denotes positive constant with B > | ys|/(2¢%) + 1.

LEMMA 2. For n sufficiently large, n = no(B), the restriction of f,(-) to the interval
|J — np| = B is unimodal about one of the two integers neighboring the value ny —

3/ (20%).
ProoF. Let n be large but fixed and let j satisfy | j — np| < B. Further put
A=1/(ovn); x=(j=nw/@Vn)=(j—npA.
By a local limit theorem for discrete distributions (Petrov 1975, pages 207 and 139) one has
0(2mn) *f()) = g (x) €™ + Ru (),
where |R.(x)| = Cn™%2,
with C as a constant independent of x or n. Moreover,
&.(x) =1+ [(x* — 3x)ys/(66°) In~"/2
+ [(x* — 6x% + 3)y4/(240*) + (x° — 15x* + 45x% — 15)(y3)%/(726°)In "
Since x = O(n"?) and e ™*/2 =1 — x2/2 + O(n?), it follows from an easy calculation that
0 (2mn) £, (j) = 1 — x2/2 — xAy3/(26%) + Bn~" + O (n™?),

where 8 = y.1/(86*) — 5(ys)?/(246°) is a constant.
Replacing j by j + 1 amounts to replacing x by x + A. Therefore,

@) [ fu (G + 1) = ()] = —A[x + A/2 + Ays/(20°) + O(n7")].
Here, x = (j — np)A. It follows that

f(G+1 <f.(j) assoonas j>nu—"'%—vs/(26%) + O(n™'"?).
Similarly,

fr(G+1)>f(j) assoonas j<np—%—ys/(26%) —O0(®m™"?).

We conclude that the restriction of f,(-) to the interval | j — nu| < B is strictly positive
and unimodal about the intger 2(n) closest to the value nyu — ys/(26%), with one exception.
Namely, there is a constant K > 0 such that for integers n satisfying

[np — vs/(20°) — % — k(n) | < Kn™"7%,

with k(n) as a (unique) integer, one can only say that the above restriction is unimodal
about one of the two values £(n) or k(n) + 1.

REMARK. It should be noted that, under mild side conditions, the Theorem and its
proof carry over to the case of independent random variables Xi, X5, ... which are not
necessarily identically distributed, each having either {0, 1} or {0, 1, 2} as its support. In
fact, all that is needed is that for n sufficiently large there exists an integer k£ = k(n) such
that the distribution of s, = X; + ... + X, restricted to the 5-point set {k — 2,k — 1, &, &
+ 1, £ + 2} is unimodal about k. Conditions for this may be derived from local limit
theorems for sums of independent, non-identically distributed random variables; cf. Petrov

(1975).
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