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THE ASYMPTOTIC DISTRIBUTION OF THE STRENGTH OF A
SERIES-PARALLEL SYSTEM WITH EQUAL LOAD-SHARING!

BY RicHARD L. SMITH

Imperial College, London

A classical result due to Daniels is that the strength of a bundle of parallel
fibres is asymptotically normally distributed. Extensions of this result are
obtained and applied to a series-parallel model consisting of a long chain of
bundles arranged in series. This model is of importance in studying the
reliability of fibrous materials. Improved approximations are also obtained
which reduce the error associated with Daniels’ approximation both for the
single bundle and for the series-parallel system.

1. Background.

1.1 Introduction. We consider a series-parallel model in which individual elements
are connected in parallel to form components which are connected in series to form a
system. A non-negative tensile load is applied to the system. Elements fail:in random
fashion and the load on failed elements is redistributed over unfailed elements within the
same component. The system is said to fail if all the elements of any single component fail
under their original or redistributed loads; otherwise the system survives. The general
problem is to determine the distribution of the strength of the system (i.e., the largest load
the system is capable of supporting without failing) given the distributions of the strengths
of the individual elements and the load-sharing rule which determines the pattern of
redistribution of load within each component. Particular interest focuses on asymptotic
theory as both the number of components and the number of elements per component
tend to infinity. Throughout we adopt the convention that the system load is measured in
terms of load per element, i.e., 1/n times the total load on the system if 7 is the number of
elements in each component. A similar convention is adopted with regard to system
strength.

The simplest model within this class consists of a single component of n elements in
parallel with the applied load shared equally among surviving elements. Then if the
strengths of the individual elements are denoted by X;, X, ---, X, and their ordered
values by Xy = X =< - .- = X(»), the strength of the system is given by

(1.1) QF = max{Xuy-(n—k +1)/n:1<k=n).

This model is appropriate for a bundle of parallel fibres stretched between two clamps.
The distribution of @ was investigated by Daniels (1945) under the assumption that the
fibre strengths X;, X,, ..., X,, are independent random variables with known common
distribution function. Exact and asymptotic (n — ) results were obtained. In particular,
Daniels obtained positive constants u* and o* such that n'/%(Q} — u*) converges in
distribution to a normal random variable with mean zero and standard deviation o*.

The generalization which is the principal subject of this paper consists of K independent
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components in series, each component behaving like a bundle of fibres satisfying Daniels’
assumptions. Thus, the strength of the system is the minimum of K independent copies of
Q. We obtain limit theorems as K — o, n — o simultaneously. This involves us in the
consideration of probabilities of large deviations in Daniels’ model. A secondary problem
concerns the rate of convergence to asymptotic normality in Daniels’ original model. This
is shown to be slow, but improved approximations are available which lead to significant
reductions in error.

The series-parallel model considered here was first proposed by Giicer and Gurland
(1962) as a model for a composite material consisting of strong, stiff fibres embedded in a
ductile matrix whose effect is to bond the fibres together. When a fibre breaks, it is of
course unable to support any stress at the point of the break, but nevertheless it is able to
support almost the original load a short distance away. Define the “ineffective length” & to
be (roughly) the total length of the region surrounding a break within which the fibre is
unable to support load. Then the system may be viewed as a long chain of short sections,
each of length 8, which behave independently as individual bundles of fibres. This is the
series-parallel model. The same model is used in the study of loose fibres twisted together;
here there is no matrix, but interfibre friction has the same effect. The model may even be
of interest in studying the molecular structure of polymers (Becht et al. (1971), DeVries
and Williams (1973), DeVries et al. (1975)). Polymer fibres are composed of long, thin
fibrils which consist of chains of molecules packed into alternately crystalline and amor-
phous regions. The weak amorphous regions may be viewed as bundles of molecular
“fibres” connected in series by the strong crystalline regions which act as crack arrestors.
However, little is known about the distribution of stress over the molecules within each
amorphous region; there is some evidence that it is highly nonuniform and this would
invalidate our model as a literal description of the system. On the other hand, polymers
with such molecular structure have been found to be much stronger than other fibrous
materials of comparable size and weight. The study of series-parallel systems gives some
insight into why this should be so, and may be important in the future development of
strong polymers.

In this paper the assumption of equal load-sharing (within each component) is made;
this assumption, however, is certainly not true for all materials. For many kinds of
composite materials the load is concentrated on those elements near to broken elements.
This phenomenon of local load-sharing has been the subject of much attention in recent
years; see Smith (1980) for a review and for recent results. We also assume the fibres are
homogeneous and all of the same length. A generalization of Daniels’ model to allow such
features as mixtures of fibre types and random slack in fibres was discussed by Phoenix
and Taylor (1973). It is an open problem to extend the results of the present paper to the
Phoenix-Taylor model. Finally, no allowance is made for the time-dependence of failure
phenomena. An extensive discussion of fatigue models is contained in two recent papers of
Phoenix (1978, 1979), based on the pioneering work of B. D. Coleman. Borges (1978)
studied the series-parallel model for a particular special case in which fibre failure times
are exponentially distributed and the bundle failure time may be represented as a sum of
independent random variables. Borges’ thesis contains an extensive discussion of the
relation between large deviations theory and extreme value theory.

1.2 Preliminary results. We assume the fibre strengths X;, .-, X, are independent
random variables with continuous distribution function F satisfying F(0) = 0 and
J& x* dF (x) < o. Define the empirical distribution function

Fox)=n"%{i:1<i=<n,X; < x).

(Here “#” denotes cardinality.) Then (1.1) may be rewritten as

(1.2) QF = sup{x(1 — F,(x)):x = 0).
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Writing g (t) for F~'(¢) and U, (¢) for F,(F'(¢)) in 0 < ¢ < 1, this is equivalent to
(1.3) QrF =sup{qg(t)-(1 - U,(#)):0=t<1}

where {U,(t), 0 < ¢ < 1} is equivalent in distribution to the empirical distribution function
associated with n independent random variables uniformly distributed on [0, 1]. Define
Qn(t) =q@)-(1 — U.(8), n(t) = q(t)-(1 = t), 6%(t) = g*(t)-t(1 — t). Then Q,(¢) has mean
p(t) and variance n"'6%(¢). Suppose the maximum of ;i (¢) is achieved at a unique point ¢*,
and let p* = p(t*), o* = o(¢t*). Then n'*(Q.(t*) — p*) converges in distribution to a
normal random variable with mean zero and standard deviation o*. The same result will
be true of n'/*(@} — u*) provided nV%(Q,(t*) — Q%) —, 0. It will be shown that n*/%(Q, (t*)
— Q%) is 0,(n""%), and moreover that this result is independent of the values of @, (t*)
provided n'4(Q.(t*) — pu*) is o(n'/®). These results form the basis of the whole paper.
They imply, for instance, that the rate of convergence to normality is no faster than
O(n'9). It is confirmed in Section 3 that this is the exact rate of convergence; however, a
correction based upon the asymptotic distribution of n**(Q} — Q.(t*)) leads to an
improved approximation.

The problem considered here is a special case of the more general problem of determin-
ing the probability that a random walk or empirical distribution function crosses a curved
boundary. Daniels (1945, 1973, 1974) has approached these problems by a renewal argu-
ment, applying asymptotic analysis to the resulting integral equation. Our approach is to
embed the process in the appropriate Brownian process and use a rescaling to study the
local fluctuations around ¢*. The method has been previously used by Barbour (1975).
The key features of our approach are the use of the Komlés-Major-Tusnddy embedding
theorem (restated as Lemma 2.2) and some boundary-crossing inequalities for Brownian
motion (mostly derived from Lemma 2.5) to obtain explicit error estimates.

Before proceeding with the asymptotic analysis, we mention Daniels’ recursive formula
for F.(x) = P{Q} < x},

(L.4) Fo(x) = ¥ (—l)k“(Z) F(x)*Fo(nx/(n — k)).

In the author’s experience (using APL), this formula is useful for n up to about 40.
Beyond that, numerical instability problems become overwhelming. For this range of n, a
direct comparison is possible between the exact probability of failure and the normal
approximation, and it will be seen that the error involved in the approximation is
considerable.

1.3 Notations and conventions. Throughout the paper K, K;, K3, - - - , denote positive
constants. We use the notations x, = max(x, 0), x- = max(—x, 0), I{E} the in-
dicator function of the set E and ®(x) the standard normal distribution function
[Ze (2) 2exp(—t%/2) dt. We also use ¥(x) to denote the distribution function of the
random variable sup{B(¢) — t ¢ = 0}, where B(¢t) is standard Brownian Motion with
B(0) = 0. We use (1 + x %) 'x7!(27) 2exp(—x2/2) = 1 — ®(x) = x71(27) 2exp(—x%/2)
(Feller (1970), page 175) and 1 — @ (x) < (exp(—x?/2))/2, valid when x > 0.

2. Mathematical development of the model.

2.1 Assumptions and preliminary definitions. Let {U,(t), 0 <t =< 1} be the empirical
distribution function associated with a sample of size n from the uniform distribution on
[0, 1]. Let {q(t), 0 =t < 1} be a given function. Let

Qn(t) = q @)1 — U, (1)), 0=t<l1
p(t) =q()(1—28), 0=t<l1
QrF =sup{@.(t):0<t<1}.
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Assume:
(I) g(¢t) is increasing in [0, 1], g (0) = 0, [} q%(t) dt < .
(II) w(¢) has a unique maximum p* attained at a point ¢*. This maximum is unique in
the sense that, for some % < t* and some ¢; > t*, the function pu(¢) is strictly increasing in
[to, t*], strictly decreasing in [¢*, ¢], and

sup{u(t): t & [to, 1]} <p*.

(ITI) u(¢) is three times continuously differentiable in a neighbourhood of ¢ = t*, and
w”(t*) <O0.

REMARKS. 1. We have already observed that (I) is satisfied when ¢ = F~! where F is
a continuous distribution function with F(0) = 0 and [§ x® dF(x) < «. Note that (I)
implies u(¢) > 0ast— Oor 1.

2. The assumption that p(¢) has a unique maximum is necessary for asymptotic
normality. In the case that the maximum is not unique, Phoenix and Taylor (1973) show
that the limit law is that of the maximum of a Gaussian process over the set on which u(¢)
attains its maximum. We do not consider this case.

3. Assumption (III) can be generalized to:

(III")  pis (r + 1) times continuously differentiable in a neighbourhood of ¢*, u*’ = 0 for
k<rand u” < 0. Here r is an arbitrary positive even integer.

If (IIT') holds with r = 2, we have (III). Throughout this work the assumption is that
(III) holds; however, the same method works for the more general case r > 2 in (II), and
we indicate some of the results which hold in this case.

We now make some definitions. Let K; = —u”(¢*)/2 > 0 and let & < ¢ * < ¢; be such that

(i) p € Clty, t1],

(id) Ki(t* — t)?/2 <p(t*) —p(t) < 2Ki(t* — t)* for t€ [b, ],
(iii) q'(t*)/2<q'(¢) <2¢'(t*) for t€[hk,u],

(iv) p(t) =sup{p(t):t=t} and p(k) =sup{u(t):t=<t}.

With regard to (iii), note that it follows trivially from the assumptions that ¢ € C'[#,, #]
with ¢’(t*) > 0.

Let Ay1 = sup{@.(t) — @.(t*):t* =t <1} and let A2 = sup{@n(t) — @u(t*): 0<t=
t*). Let A, = max(Anx1, An2) = @5 — @.(t*). We are going to study the conditional
distribution of A, given & = n@,(¢*). More specifically, in this section we obtain limit
theorems as n — o and &2 — o subject to certain restrictions on &. These results are then
used in later sections to obtain the desired limit theorems about the distribution of @;.

Note that A,; and A, ; are conditionally independent given &. It is therefore sufficient to
study separately the conditional distributions of A,; and A,3.

2.2 Distribution of A,1. For each m =1 let Uy, (¢) be the empirical distribution function
associated with m independent uniforms and define Z,, () = mY2(t — Un(t)). Let Z(t) be
the Brownian Bridge on [0, 1], i.e. a zero-mean continuous path Gaussian process with
EZ(s)Z(t) =s(1 —t)for 0 = s =t=1 We quote as Lemmas 2.1 and 2.2 two well-known
theorems on these processes.

LEMMA 2.1. Let ¢ be a non-negative function nondecreasing on [0, 8] where 0 < § <
1. There exists a constant Cy > 0 such that for any m =0,

0
P{| Z.(t)| > ¢(t) for some tE€[0,0]} = CoJ' ¢72(¢t) dt.
0

Proor. This is Lemma 2.2 of Pyke and Shorack (1968). O
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REMARK. It is an immediate consequence that if ¢ is non-negative and nonincreasing
on [6, 1], then

1

P{| Z.(t)| > ¢(t) forsome t€[0,1]} = C; j o7 2(t) dt

9

with C) = Ci_g. This is true because the processes Z,(¢t) and —Z,.(1 — t) are identical in
law.

LEMMA 2.2. For each m = 1 there exists a version of the processes Zy, Z,, such that

(21)  P{m'?| Zn(t) — Z(t)| > x, some t€ [0,1]} = K; exp{— Ks(x — Kslog m)}

whenever x > Kjlog m. Here K,, Ks, K, are absolute positive constants.
Proor. This is Theorem 3 of Komlés, Major and Tusnady (1975). O

Foreachn=1and 1 <k < n — 1 let processes Z,, Z,_ be defined on a probability
space (e, Fur, Pn.x) so as to satisfy (2.1) with m = n — k. Let Var(t) =t —
(n — k)™V?Z,_4(t) for t € [0, 1] and define U,(t) = k/n + ((n — k)/n)V._r((t — t¥)/
(1 = ¢t*), for t € [t*, 1]. Now V,_; is itself an empirical distribution function and it is
readily seen that Uy, is identical in law to the original process U, conditioned on U, (¢*)
= k/n, for t = t*. Having observed this we drop the prime on U7, and think of P, as the
conditional measure of {U, (¢): t € [t*, 1]} given U, (¢*) = k/n. After making substitutions
it is seen that

Qu(t) = p(t)(1 — k/n)/(1 — t*) + (n — k)’ n7'q(t)Zu—x ((t — t*) /(1 — t¥)).
Write e, = 1 — 2/n. Then we have
Any = sup{— (u(t*) — p(t))enr/(1 — t¥)

(2.2)
+ en T 2q () Zo—r (¢ — %) /(1 — t*)) :t € [t*, 1)}
Define
At = sup{— (p(t*) — p(t))e.r/(1 — t*)
2.3)

+ e 2n V2 () Zo((t — t*) /(1 — t*)) :t € [t*, 1)}.

Thus A}, is A, with Z; replacing Z, .. It follows from Lemma 2 that | A% — An:1]| is not
too large; however, before making this notion precise we need to show that the suprema in
(2.2) and (2.3) are, with high probability, attained in ¢ < ¢;.

LEMMA 2.3. There exists Ks > 0 such that

Por{(p(t*) — u(t))enr/(1 — t*)
(2.4)
<exnq(t)Z,-x((t —t*)/Q —t*)), some t=t}<Ks/(ne.:),

and moreover the same result holds with Z, replacing Z, .

Proor. Since u(t) = u(#) on ¢ = ¢ it is sufficient to show
Por{(n(t*) — u(t))enr/(1 — t*)
(2.5)
< eV q () Zn-r((t — t*)/ (1 — t%)), some (=t} < Ks/(ne.:).

Let g1(t) = g(¢* + £(1 — £*)) for £ € [0, 1). Thus g (¢) = qu((t — £*)/(1 — £%), t € [¢*, 1).
Note [¢ qf(t) dt < . Let to = (¢ — t*)/(1 — t*). Then
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Por{Zn-r((t — t*)/(1 — t*)) > (u(t*) — p(t))exZn g7 () (1 — t*)", some t=t4)
= Pup{Zu-x(t) > (u(t*) — p(t))esn g (t)(1 — ¢*)7', some (= b}

1
= CL(1 = t*)2(u(t*) — p(t) Pemin™’ J Qi) dt
¢

2

from which (2.5) follows with K5 = C', (1 — ¢*)%(u(¢*) — p(t)) 2 [1,¢7(t) dt. (2.4) follows.
We have used the remark following Lemma 2.1 here. The argument holds verbatim for
Zy,. O

We now make precise the notion that | A% — An; | is small.

LEmMA 24. If 2> K,q(t:)n""log n then
P.r{| Ati — Au1 | > 2} < Keexp{— Ks3(2n/q(t:) — Kilog n)} + 2Ks/(nexz).

ProoF. In view of (2.2), (2.3) and Lemma 2.3 it suffices to show

Por{ea®n™2q )| Zn-s((t — *)/(1 = t*)) — Zo((¢ — t*) /(1 — t*))| > 2
for some t € [t* ]} < Kzexp{— Ks(zn/q(t) — Kilog n)}.

But this follows at once from (2.1) using the fact that ¢(¢) is increasing on [¢*, #]. 0O

Now the supremum defined by (2.3) is necessarily attained near to ¢* when n is large.
But u(¢*) — u(2) behaves locally like a quadratic in ¢* — ¢ and Z, behaves locally like a
Brownian motion. These ideas are exploited in studying the asymptotic behaviour of A};
as n — o,

For x = 0 define B(x) = (1 + x)Zo(x/(1 + x)). B(x) is a Brownian motion with B(0) =
0, and Zy(t) = (1 — ¢t)B(t/(1 — ¢t)) for ¢ € [0, 1]. Writing x = (¢ — ¢*)/(1 — ¢) in (2.3), we get

Al = sup(—[p(t*) — w((E* + 2)/(1 + x))]ew /(1 = t*)
(2.6)
+eXin V31 — t*) " w((t* + x)/(1 + x))B(x): x = 0}.

Let x; = (¢, — t*)/(1 — t;). It follows from the Taylor expansion of u about ¢* that there
exists a constant Ks > 0 such that the inequalities

11— —t*)?Kix? = p(t*) — p(@t* + 2)/Q1 + x) = (1 + &)(1 — t*)°Kx,?
(1= u*) =p((* +x)/(1 +x)) = (1 + e)p(t*)
are satisfied on 0 = x < Kqe whenever 0 < ¢ < x1/Ks. For such ¢ define
2.7)  An=sup{—(1 — &)1 — t*)Kix%en + 2 n 2 u(t*)(1 — £*)7'(1 + &) B(x):x = 0},
(2.8) An=sup{—(1+¢e(1l— t*)KixZeu + eX2n V2 p(t*)(1 — £*)7}(1 — &) B(x):x = 0}.

Now .A,; < A*%; < °A,; on the set, which we shall call E;(¢), on which the suprema defining
AX and .A,; in (2.6) and (2.8) are achieved for x € [0, Ksz]. The next step is to find a lower
bound on P {Ei(e)}.

First we give an elementary result about Brownian motion.

LEMMA 2.5. Let {B(x), x = 0} be the Brownian motion with B(0) = 0.
(i) Let a >0, 5> 0. Then

P{B(x) = a+ bx for some x>0}=e 2%,
(ii) Let xo > 0, b > 0 and let a be any real number. Then

P{B(x)=a+bx forsome x=x}=1—®((a+ bx)xs"?) + e 2P ((a — bxo)x5"?).
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Proor. (i) is Corollary 5.1, page 361, of Karlin and Taylor (1975).
(ii) Using (i) and the Markov property,

P{B(x) < a+ bxo, B(x) = a + bx forsome x> x}

a+bxg
= f (27x0) ™2 exp(—u?/2x0)exp(—2b(a + bxo — u)) du

= e®((a — bxo)x5"?)
after completing the square in the exponent and rearranging terms. The result follows by
adding on P{B(x¢) = a + bxo}.0
LEMMA 2.6. Let {B(x), x = 0) be Brownian motion with B(0) = 0. Let A > 0, x > x,.
Then
(i) P{B(x) = Ax, some x > %o} < exp{—A%x0/2}
(ii) P{B(x) = Ax? some x > xo} < exp{—AZx3/2}.

Proor. First we note that if, in the statement of Lemma 2.5(ii), it is assumed that a
+ bxo > 0 and a — bxo < 0, then the inequality 1 — ®(x) < (exp(—x2/2))/2 for x = 0 can be
applied to the conclusion to obtain
P{B(x)=a+ bx, some x:=ux) <exp{—(a+ bxo)?/2x0}

Part (i) follows immediately by writing a = 0, b = A.
Part (ii) follows by writing a = —Ax%, b = 24x, and observing that, with a and b so
defined, the inequality a + bx < Ax? holds for all x. 0

LEMMA 2.7. There exists a positive constant K, such that, whenever 0 > ¢ > x; /K,

P,,k {E1(£)} >1- Ksn_le;kl -2 exp(—K753ne,,k).

ProOOF. Ei(e)° CA; U A; U A; where
Ar = {es’n™2q(0)Zo((¢ — t*)/(1 — £*)) > —p(t*) (u(t)) e /(1 — £*),
some £ =t },
Az = {exn2(1 = ¢*) 'u(t*)B (x) > Ki(1 — t*)x%en /(2(1 + 21 )?),
some x > Kge},
Az = {exn™2u(t*)(1 = t*)7'(1 = &) B(x) > (1 + &) (1 — t*) K1 X6,
some x > Kge}.

Events Ai, Az, A; include, respectively, the events that the supremum in (2.6) is
achieved for x = x;, the supremum in (2.6) is achieved for Kse < x < x1, and the supremum
in (2.8) is achieved for Kse < x. The representation for A; makes use of the equivalent
form (2.3); that for A. uses the inequalities

p(t*) — p(* + 2)/(1 + 2) = K((¢* + x)/(1 + x) — t*)*/2
= Ki(1 — t*)%x%/2(1 + x:)?),

p((t* + x)/(1 + x)) < p(t*),

valid in x < x;.
By Lemma 2.3, P..{A1} = K5 /(nen).
By Lemma 2.6, P, {A:} and P,.{A;} are both bounded above by exp{—[Ki(1 — ¢*)?
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n2el2/@u(t*)(1 + x1)%)1%(Kee)®/2}. The result follows with K; = [Ki(1 — t*)?/
@ut*)1 + x)*)TPKE/2. O

We now simplify the study of .A,: and “A,; by means of a time rescaling. Let x = Ly,
where L > 0 will be specified later. Since B (x) =4 LB (), we have

“An1 =g sup{—(1 — &)(1 — t*) K1 L*%es
(2.9)
+ exfn2u(*)(1 — t*) ' (1 + ) LV’ B(y):y = 0}.

Choose L so that the coefficients of the two terms are equal, i.e., L =[e}> n™2u(t*).
1 —-t*)7'1 + )10 — e)A — t*)Kienr] 2.

Then
Dur =a [(1 = &)(1 — t*)Kiene] *[exin ™% p(¢*) (1 — £*) 7' (1 + £)]*°
-sup{B(y) — y*:y = 0}.
Suppose we are given &; > 0. Then choose ¢ such that
Q-+’ <1 —&a),
Q+eQ-">Q+ea) ™

This may be achieved by ¢ = Kse;, some constant Kg > 0, provided ¢; is sufficiently
small. It is assumed throughout that 0 < Kse = KsKser < 1.
Let A(e) = (e/(1 — ¢*))"/2 for e € [0, 1] and let

K9 = (1 - t*)1/8[(1 _ t*)Kl]_l/a[u(t*)/(l - t*)]4/8 = Kfl/a(q(t*))4/3.

Then

(2.10) An1 < (1 — &1) " hiew)Kon?? sup{B(y) — y*:y = 0}.
Similarly, it can be shown

(2.11) An1 > (14 €1) h(en) Kon ™3 sup {B(y) — y*:y = 0}.

Define

(2.12) Y(z) = P{B(y) —y*<2z for y=0}.

We now give the main result about the distribution of A,;.
LEMMA 2.8.
(i) LetO0<e <x1/(KeKs), 0 <e<1. Then
V(1 — &)1 — &2)n¥°K3'h(en) '2) — 3Ksn"eni — 2 exp{—K:Kieinew}
— K, exp{—Ks(ne22q(t:) ™ — Ky log n)+}
= Pu{An =< 2}
= V(1 + &)1 + £).7°Ks'h(ew)'2) + 3Ksn "ent + 2 exp{—K:Kieinen}
+K; exp{—Ks(ne22q(t:) ™" — Ky log n).}

(ii)) Ifz> 0 and if {k(n), n =1} is a sequence of integers satisfying1 <k(n) =n -1,
n~k(n) — t*, then

im,wPrim {An = Kgn'mz} = Y(2).
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Proor.
(l) Pnk{A,u = Z} = Pnk{eAnl = 2(1 - 82)} - Pnk{eAnl < Ar’:l}
—Pp{|An1 — A%y| > 2e2}, where &= Kge.

The first inequality then follows from (2.10), (2.12) and Lemmas 2.4 and 2.7. The second
inequality is similar.

(ii) With arbitrary &, and ¢, apply (i) to z, = Kon %3z, Since eusm — 1 — t*, it follows
that A(enry) = 1. Then

lim Supn—moPnk(n) {Anl = Zn} = ‘P((l + e1)(1 + 82)2))
and
lim inf,,_mP,.k(,,){Anl = Zn} = ‘P((l - 51)(1 - 52)2)-

Since y is obviously a continuous distribution function, the result follows by letting
&6—>0,60—>0. O

2.3 Distribution of An». The behaviour of A,; is similar to that of A,;, but the
differences are significant enough to necessitate a separate treatment.

Let Z, be a Brownian Bridge and Z, an empirical process, constructed on the space
(Rn2, Fur, Prz) to satisfy (2.1) with m = k. For definiteness, these processes are assumed
independent of the ones constructed in Section 2.2; however, the point will not cause
confusion as the two sets of processes are never used simultaneously. Let Vi(¢) = ¢ —
k7V?Z(¢) for t € [0, 1], and U(t) = (k/n) Vi(t/t*) for ¢ € [0, t*]. Then the process U (%),
t € [0, ¢*], is identical in law to the original process U,(¢t), ¢ € [0, ¢*], conditioned on
U.(t*) = k/n. We therefore drop the prime on U}, and think of P, as the conditional
measure of {U,(¢), t € [0, t*]} given U, (t*) = k/n.

Writing d.. = k/n =1 — e,;, we have

Anz = sup{—(u(t*) — p(2)) due/t* + (q(¢*) — q(8))(dur/t* — 1)
(2.13)
+ dxiinV2q()Z (t/t*): t € [0, £*]).

Comparing this with (2.2), it is seen that there is an extra term (the middle one) in the
argument.
Proceeding along the lines of Section 2.1, define

n2 = sup{—(pn(t*) — u(t) du/t* + (q(t*) — q(t))(dns /t* — 1)
(2.14)
+ dain T 2q(8) Zo(t/t*): t € [0, t*)).
LEMMA 2.9. Ifz> K.q(t*)n""log n then

Por{| A% — Anz| > 2} < Koexp{—Ks(zn/q(t*) — Kidog n)}.
Proor. This follows at once from (2.1) and the monotonicity of g. 0O

For x = 0 define B(x) = (1 + x)Zo(1/(1 + x)). Then B(x) is Brownian Motion with B(0)
= 0. Equation (2.14) becomes

2 =sup{—[p(*) — p@*/Q + x))] dur/t* + [q(t*) — q(t*/(1 + x))]
(2.15)
c(dne/t* — 1) + d¥Pn 721 + x)'q(t*/(1 + x))B(x):x = 0}.

Let xo = (t* — to)/to. It follows from the Taylor expansions of u and g that there exists
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a constant Ko > 0 such that the inequalities
(1 = e)Ku(t*)x® < p(¢*) — p(t*/(1 + 1)) = (L + &) Ka (¢*)°x7,
(1-e)g'(t*)t*x=q(t*) — q¢*/(1 + x) = (1 +e)g' (t*)t*x,
(1-e)gt*)=qt*/(1+x)/A+x)= (1+e)g(t)
are satisfied on 0 < x < K10 ¢ whenever 0 < & < x¢/K10. For such ¢ define

*Ana = sup{—(1 — e)t*Kix® dur + (1 + &)@’ (t*)(dur /t* — 1)st*x

(2.16)
+diin"2q(t*)(1 + ¢)B(x):x = 0},
Brz = sup{~(1 + )" K1x® du — (1 + €)q’ (¢*)(dus/t* — 1)-t*x
217

+ di¥n"%q(t*)(1 — e)B(x):x = 0}.
Now An2 < A%z <*®A,; on the set Es(e) on which the suprema defining A%, and .A,2 in
(2.15) and (2.17) are achieved for x € [0, Ki¢].
LEMMA 2.10. There exist positive constants K11, K12 such that if 0 < ¢ < xo/K1o and
dnk/t* <1+ Ky ¢ then
P {E.(e)} >1-3 exp(—Klgsan dne).

ProOOF. Ej(e)° CA;UA2U Az where
Ay = {d#n V41 + x)T'q(¢* /(1 + x))B(x) > [p(¢*) — p(¢*/(1 + x))] dne/t*
—[q(t*) — q(t* /(1 + x))(dne/t* — 1), some x= xo},
Az = {difn™"*q(t*)B(x) > Kit* dmex’/(2(1 + x0)°)
—2¢’ (t*)t*x(dnr/t* — 1), some x> Kyoe},
Az = {d¥2n"%q(t*)B(x) > Kit* d..xx®, some x> Kje}.

Events A;, A, A; include, respectively, the events that the supremum in (2.15) is
achieved for x = xo, the supremum in (2.15) is achieved for K, ¢ < x < xo, and the
supremum in (2.17) is achieved for x > Kj, &. The representation for A, uses the inequalities

qt*/(1 + %))/ + x) = q(t*), p(t*) — p(¢* /(1 + x))
= Ki(t* — t* /(1 + x))*/2 = Kit**x*/ (2(1 + x)?%),
q(t*) —q(t*/1 + x)) = (t* — t*/(1 + x))sup{q'(t):to <t < t*} = 2t*xq'(t*),
valid in x < xo.
Assume d,. satisfies the inequalities
[(t*) — u(@#* /(1 + x0))] dur/t* > 2q(t*)(dnr/t* — 1),
Kit* duKoe/(2(1 + x0)°) > 4q" (¢*)t* (dur/t* — 1).

The condition that these inequalities be satisfied may be written as d../t* < 1 + K,
some Ki; > 0, for e € [0, x0/Ki0]-
Then A; C Al for i = 1, 2, where
A= {d#n72(1 + x)7'q(¢*/(1 + x))B(x) > [p(t*) — p(t*/(1 + x))] dne/ (2t*),
some X = Xo},
Al = {d¥n"2q(t*)B(x) > Kit* dux?/(4(1 + x0)?), some x> Kioe}.
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By Lemma 2.6 (ii),
Por{As}) = Pu{Af) < exp{—[din"?Kit*/(4(1 + x0)%q (¢*))]*(Kw0e)®/2}.

By Lemma 2.6(i),
Pu{A1} = P{B(x) > [u(t*) — p(t*/(1 + x0))] di2n'?x/(2t*q(t*)), some x= xo}
= exp{—[p(t*) — p(t*/(1 + x0))] dai’n'// (2t *q(t*) Px0/2}.
Now choose K2 so that both of these quantities are less than exp(—Ki2¢°n d .x) whenever
0<e<xo/Kip 0O
Now let x = Ly where
L =[di¥n™"q(t*) (1 + &)F°[(A — &)t* K1 du] .
Then
*Anz =a [(1 — €)t*K1 du] " [d¥in2q(t*)(1 + )]
(2.18) sup{B(y) =y + (1 + &)@’ (¢*)(dus /t* — Dt*[dif’n ™ ?q(t*)(1 + &)
1 —e)t*Ki dur]Py:y = 0.
Suppose we are given £, > 0. Then choose ¢ such that
QA+ 1 -e) < @—e)
Q-1 +e)™> 1 +e)7,
Q+e)1+e)PA—-e)<1+¢,
Q+e)Q—e)A+e) <1 +¢.

This may be achieved by E= K13£1 when 0 < < xo/(Kme). Let h1 (d) = (d/t*)l/a, hz(d)
= (d/t*)"**for d € (0, 1], and let

Ku = (697" (¢") ¢*[q ()] [ Kut*]
= ¢'(¢"[g (¢ KT,

Also note that
() [q ()] (Kt *] ™ = K.
Then
*Ane < (1 — &1) 'hi(dnr) Kon %3
(2.19)

-sup {B(y) — ¥* + (1 + &1)(dn /t* — 1)4nhy(duz) Kiay: y = 0},
and similarly

Bnz > (1 + &1) hy (dur) Kon ™2
(2.20)
sup{B(y) = y* = (1 + e1)(dut /t* — 1)-n"*h3(dus)Kiay: y = 0}.

The next lemma estimates the effect of the linear term in the supremum.
LEMMA 211.  There exists a constant Kis > 0 such that for 0 < e <%, | a| < Kise the
inequality
V(—e+2(1—¢)) < P{B(y) —y’+ay=<z forall y=0}<y(e+ 2(1+e¢))
holds for all z > 0.
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Proor. We consider only the case a > 0; a similar argument works for a < 0.
It is trivial that P{B(y) —y*+ay<zforally =0} = P{B(y) —y®*<zfor all y =0}
=Y(2) =y(e + 2(1 + ¢)) when a > 0, so we only have to prove the left-hand inequality.
Nowy®>—ay + 2= (1 — a) y* — ca + z for all y = 0, where ¢ = %. Then
P{B(y)—y*+ay=z forall y=0}
=P{B(y)— (1—a)y’=z—ca forall y=0)}
=P{(1-a)’B(t) —(1—a)*t?*<z—ca forall t=0}
(putting y = (1 — a) %)
=¥((z = ca)(1 — @)%
=yY(z(1 — a)'”® - ca).

We therefore have to choose a such that ca < ¢ and (1 — @)'? = 1 — . This is satisfied by
0 < a < K;s¢ for suitable K;5. 0O

We are now able to prove the analogue of Lemma 2.8 for A,..

LEMMA 2.12.

(1) Let 0 <e; < x0/(K10K13), 0 < e2<1,0 < g5 < %. Suppose
(a) dnk/t* <1+ K11K13£1,
(b) (1 + 81) |dnk/t* -1 | n1/3hz(d,.k)K14 < Kis¢s. Then

Y((1 = &)1 — e2)(1 — e3)n”°K5" ha(dne) "'z — £3) — 3 exp(—K12Kls €in dps)
— Koexp{—Ks(ne22q (¢*) ™' — Kiog n).}
< Pu{An2e =<2z}
< Y((1 + e)(1 + e2)(1 + e3)n?P K5 hu(dnr) 2 + €3) + 3 exp(—Ki2Ksein dor)
+ Koexp{—Ks(nes2q(t*) ™' — Kiog n)+}. ’

(ii) If z > 0 and if {k(n), n = 1} is a sequence of integers satisfying 1 < k(n) =n —1,
n'2|k(n)/n — t*|— 0, then

limy—, o Prt ) {Bnz = Kon ™%z} = Y(2).

Proor. (i) Conditions (a) and (b) guarantee, respectively, that Lemma 2.10 (with ¢ =
= K13£1) and Lemma 2.11 (Wlth E=¢€3,a= i(l + 81)|dnk/t* - 1|n1/3h2(d,,k)K14) are
applicable. The result then follows by Lemmas 2.9, 2.10 and 2.11, and Equations (2.19) and
(2.20). (ii) Fix €1, €2, €3 and apply (i) to 2, = Kon~*3z. The condition n'?|k(n)/n — t*|
— 0 guarantees that conditions (a) and (b) are satisfied for all n sufficiently large. The
result then follows by applying (i) and then letting e, — 0, e2— 0,e3— 0. O

2.4 Asymptotic distribution of A,.

THEOREM 2.1. Let z >0 and let {k(n), n = 1} be a sequence of positive integers such
that1<k(n)=n—1,n"2|k(n)/n—t*|— 0. Then lim—wPrrm) (A < n"*Kyz} = Y?(2).

Proor. This follows from Lemma 2.8 and 2.12, noting that A, = max(A,;, Ane) and
that A,; and A, are conditionally independent given U, (¢*). 0O

Recall p* = pu(¢*) and define o* = g (¢*)[£*(1 — ¢*)]2
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THEOREM 2.2 Let z; be real and z; > 0. Then lim,_..P{n"*(Q.(t*) — p*) < o*z1,
n??KytA, =< 22} = @(21)\P2(22)~

ProorF. We shall prove the equivalent statement that for —0 < 2o < 2; < @, 2, > 0, we
have im,_,P {6*20 < nY%(Q, (t*) — p*) < 0*21, n*°K3'A, < 25} = [®(21) — D (20) W 2(22).
Now o* Q. (t*) — u*) = (¢*(1 — t*))*(t* — U,(t*)). For each n, let I, = {k: 2o <
n'2(t*(1 — t*)) *(t* — k/n) < z:}. Then

P{o*20 = n"2(Qn(t*) — u*) < 0*21, n*° K5'A, < 25)
= Yrer, P{Un(t*) = k/n}Pus {An < n7*°Ko22)
< (Brer, P{Un(t*) = k/n}) suprer,Pue {An = n7°Ko25}
- (@(21) — B(20)¥*(22)

the first factor converging to ®(z;) — ®(zo) by the Central Limit Theorem for U, (¢*) and
the second factor converging to y*(z;) by Theorem 2.1. The condition of Theorem 2.1 is
satisfied because when & € I,,,

n'Bk/n—t*|=n"Yn2 | k/n — t*| = n”V5(t*(1 — ¢*))"max(| 20|, | 21]),

and this last quantity tends to zero.
Hence

lim supr_P{0*20 < n"2(Q.(t*) — u*) < 6*2z1, n*°K5'A, = 22} = (@ (21) — DB (20))¢*(22).

A similar argument holds for the limit inferior, and the two together give the result. O

Theorem 2.2 is a striking result because it shows that @, (¢*) and A, are asymptotically
independent and it gives their limiting distributions. Daniels’ original result is a conse-
quence:

COROLLARY 2.1. For all real z,lim,_,.P{n"*(Q; — u*) < ¢*z} = ®(2).

Proor. Write n'/2(Q} — u*) = n"*(@.(t*) — u*) + n'?A,. It will suffice to show
n'/2A, —, 0. But this follows at once after setting 2; = o in Theorem 2.2. 0O

REMARK. In the case of that Assumption (III) is false but (III') holds with r > 2,
Theorem 2.2 becomes

lim,P {n"%(@.(t*) — u*) = 0*21, N/¥ VKg'Ay < 2} = ®(21)¥7(22)
where

Yr(2) = P{B(y) —y =z foral y=0}, Ko =[P (t*)/r TV Dg*) /0.
3. Bounds for the absolute error.

8.1 The absolute error in the normal approximation. The purpose of this section is to
show that an analogue of the Berry-Esseen Theorem holds for the normal approximation
to the bundle strength distribution. The rate of convergence, however, is only O(n~%).
This compares with a rate of convergence of O(n~"?) in the Berry-Esseen Theorem as
applied to the approximation of the distribution function of a sum of independent random
variables by a normal distribution function.

First we give some preliminary lemmas.

LEMMA 3.1. Let X and Y be independent random variables with distribution functions
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D, | respectively. ‘I'here exists a constant Kis > 0 such that for all § > 0 and all real z
3.1) |P{X+0Y <z} —P(2)| < Kiéf.
Proor. Clearly P{X + 0Y = z} is bounded above by ®(z); we require a lower bound.
Let {B(t), t = 0} be Brownian motion with B(0) = 0. Then 8Y =, sup{#B(t) — 6¢:¢

=0} =4 sup{B(t) — 0732t = 0} so X + 0Y =z sup{B(t) — 73t — 1)>:¢t = 1}.
For fixed z let a be real and b be positive such that

(3.2) a+bt=<z+603%t—-1)2 forall ¢
Then
P{(X+0Y>2})=P{B(t)>2+60%t—1)% some t=1)}
=P{B(t)>a+ bt, some t=1}
=1—®(a+ b) +eD(a—b)
by Lemma 2.5. If, in addition, b > a, we can write
P{X+0Y>2z}=1—®(a+ b)+ (2n) %(b — a) 'exp{—(b + a)?/2}.

Now (3.2) is satisfied if z —a — b=0and 4(z — a — b) = b%0>. Wemayset z—a — b
= L,0 and b = L6~ where L, is an arbitrary positive constant (independent of z) and L.
=2L12 Thus a = z — L0 — L,#~". We consider two cases.

Case (i). z < 3L:07'/2 + L.6.
Then 2a < b and (b — a) ! < 2/b. Then
P{X+0Y>z}=<1—®(z— L) + (2m) "/*2L;'0 exp{—(z — L.6)*/2}
=1-®(z) + (2m) 2L.0 + (27)"V*2L3'0
so
P{X +0Y =<2} = ®(z) — (2n) V2L, + 2L;"6.
Case (ii). z > 3L:07"/2 + L.6.

In this case we set b = L.07! as before, a = (%)L.07' < z — L, — L,07%, so (3.2) is still
satisfied. Then

P{X+0Y>2)<1—®(3L07"/2) + (2m) /22L3"0
so
P{X+0Y>z}— (l‘— ®(2)) < D(z) — DBLI/2) + (27) V?2L3"0
=1-—®@BLI7/2) + (2m)V2L3%0
which is O(6) as # — 0. Choosing K¢ > 0 such that (27) 7/%(L; + 2L;") < K¢ and 1 —
D (3L:071/2) + (27) "V22L 350 < K60 for all § > 0, (3.1) is proved. 0O

Note that (3.1) can also be written in the form

(3.3) J Y((z—u)/0) d®(u) — ®(2) | < Kieb.

COROLLARY 3.1. Suppose in Lemma 3.1 the random variable Y has distribution
function ? (instead of ). Then the same conclusion holds with 2K in place of Kie.

ProoF. Use (3.3) and the inequality =2y — 1. O
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LEmMMA 3.2. If K7 = 37%2.8 (= 1.539) then 1 — Y(2) < exp{—K1:2*?} for all z > 0.

ProOF. If t* = —a + bt for all ¢, where a > 0 and b > 0, then
P{B(t)=t*+2  some t=o}=<P{B(t)=z—a+bt, some ¢t=0)}
= exp{—2b(z — a)+}

by Lemma 2.5. Choose a and b to maximize b(z — a) under the constraint 4> < 4a. 0O
Let 4 be a fixed positive constant, say § = 1.

LEMMA 3.3 There exists a constant K.z > 0 such that

P{n'?A, > 86*} < Kisn™, forall n.

PRrOOF. Fix &, €9, €3 positive. Let a be a positive number to be specified below.
P{n'An > 80*} = Yo P{U.(t*) = k/n}Pur{n'?Ans > 80*}
= P{U.(t*) — t* > an™"®} + P{U,(t*) — t* < —an"V?}
+ sup{Pur{n'?Anzs > 80*} : | k/n — t*| < an™V?). ‘

The first two terms are o(n~") as n — oo; and if we choose a sufficiently small, so that
the conditions of Lemma 2.12(i) are satisfied, then the third term is o (n ™) also.

Hence P{n'*A.; > 80*} is o(n™"). A similar argument applies to P{n"?A,; > 80*}
except that, referring to Lemma 2.8(i), this is O(n™"). The result is then proved. 0O

We quote for future reference:

BERRY-ESsEEN THEOREM (Feller (1971); Section XVL5, page 542). Let X1, X,, ...,
X, be independent identically distributed random variables with EX, = 0, EX? = 0>> 0,
E|X|?=p <. Then

|P{X,+ -+ + X, =< 2z0Vn} — ®(z)| < 3po~°n ">

for all z and n.

An application of this theorem yields
(3.4) |P{n'*(Qn(t*) — u*) < 06*2} — ®(2) | < Kion V2
where K = 3(¢** + (1 — t%))[£*(1 — t*)] 72

THEOREM 3.1. There exists a constant Ky > 0 such that for all z and n
(3.5) |P{n'?(Q — p*) <o*2} — ®(2)| < Kapon 5.

Proor. First we deal with the trivial case when | z| > log n. If z > log n then
P{n'2(Qx — u*) > 0*2} < P(n'*(Q.(t*) — u*) > o*(log n — 8)} + P{n'?A, > 80*}
=[1-®(log n —8)] + Kion "% + Kisn™"

using Equation (3.4) and Lemma 3.3. This quantity is O(n""?) as n — . A similar
argument applies when z < —log n. Also ®(—2) = 1 — ®(z) = o(n"/?) when z > log n.
Hence it suffices to prove (3.5) in the case | z| < log n.

For each n and k define Y.(k) = n'*(q(t*)(1 — k/n) — p*)/o*, ie., the value of
n'2(@u(t*) — p*)/o* when Un(¢*) = k/n.

Define I.(z) = {k:z — § < Y.(k) =< 2}.

For | z| =log n, k € I.(2) we have n'/?| d,../t* — 1| = O(log n) so for suitable A; > 0 we
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can define €, = ex3 = Ain""% log n such that the inequalities d,./t* < 1 + Ki1 Kizén,
(1 + en1) [ dur/t* — 1| n'Phy(dnr) K14 < Kisens are satisfied. Also define e, = n~"%. Note
that for | z| < log n, k € I.(2), |1 — hi(du) | and |1 — A(en:) | are both O(n™"2 log n). It
then follows that there exists 7o such that, whenever n = ny, | z| < log n, k € I,(2), the
inequalities
1-34A1n""%logn < (1 — €n1)(1 — €n2)(1 — &ns)ha(dnz) ™"
< (1 + &n1)(1 + €n2)(1 + en3)a(dne) ™ <1+ 34,7 % log n,
1-3A:n""%logn < (1 — &) (1 — en2)h(ent) ™" < (1 + en1)(1 + &nz)h(ens) ™"
<1+3A,n"logn

are satisfied.
Applying Lemmas 2.12(i) and 2.8(i), it follows under the same restrictions on n, z and
k that for any x > 0

P {A, = x} = ¢2((1 — 3A:1n""®log n)n**K35'x — Ain""® log n)
(3.6)
— A:n”' = 2K, exp{—K3(n"*xq(t:)™" — Ky log n)+},

for some A, > 0.
For n = ny, | z| < log n we have

P(n'2(Q% — p*) = 0*z2}
(3.7) = P{o*(z — 8) = n"2(@u(t*) — u*) = 0%z, nVA(QF — p*) < 0*z2}
+ P{n"(Q.(t*) — u*) < o*(z — 8), nV2(Q}F — u*) < 0*z).
But by (3.4), we have
(3.8) P{n"*(Qu(t*) — p*) <o0*(z — 8)} = ®(z —8) — Kion™2
and by Lemma 3.3 we have

~ P{n'2(Qa(t*) — p*) <o*(z = 8),n"AQF — p*) > 0%z}
(3.9
= P{nl/zA,. >80*} = Kin™.

By (3.8) and (3.9), it follows that

P{n"%(Q.(t*) — u*) < o*(z — 8), nYX(Q} — u*) < *z)
(3.10)
=®(z—-96) — Klgn_l/2 - Klan_l.

Also
P{o*(z — 8) = n"X(@n(t*) — p*) = 0%z, n'2(QF — p*) = 0*2)
= Vet P{Un(t*) = k/n} P (n'*An < 0*(z — Ya(R)))}
= Yaer, P{Un(t*) = k/n}
-[Y3((1 — 34:n"log n)n"°c*K5'(z — Y,(k)) — Ain""®log n]
— Aen™! = 2K; exp{—Ks(n’0*(z — Ya(k))q(t:) ™" — Kilog n)+},
using (3.6). Write this sum as Sn; — Sn2 — Sps. Then
(3.11) Snz = ket P{Un(t*) = k/n}Aen™ < Asn™".
Next,
Sns = Yuer, o) P{Un(t*) = k/n}2K; exp{—Ks(n'?c*(z — Y.(k))q(t:)™" — Ky log n).}.
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Break the sum into two parts: part 1 is that part for which
Ks(n'%0*(z — Yu(k))q(t)™ — Ky log n) > log n

or equivalently z — Y,.(k) > n™"%q(t;)0* (K3 + Ki)log n, and part 2 is the remainder.
Part 1 is less than 2K;n™", and part 2 is less than 2K, P {z — n™3q(t,)o* "*(K5' + Ki)log n
= Ya(nUn(t*)) = 2} which is less than 2K,[(27) "’ n""3q(t:)o* " (K3' + K.) log n +
2K19n""/*], using (3.4) and the boundedness of the normal density. This last expression is
O(n""?log n). Hence there exists A; > 0 such that

(3.12) Sns = Asn™ 3 log n.
Write S, in the form
Sn1 = Zkel,,(z) P{Un(t*) = k/n}\l/z(an(z = Y. (k) — Br)

where a, = (1 — 34:n7% log n)n'°c*K3, B, = Ain""% log n. Then

8
Sp1 = J' P{z — 8 = Y,.(nU,(t*)) = z — u} d¥*(anu — Br)
0
8
EJ’ (D(z — u) — (2 —8) — 2Kion %) dy*(anu — B,)
0
ZJ (®(z — u) —®(z — 8) — 2K19n"?) Y (au — Br)
0
= f D(z — u) dY*(anu — B.) — P(z — 8) — 2K1on ™2
0
= J’ B(z — u— a;'B,) dV(anu) — ®(z — §) — 2Kign™?
0

= J D(z — u) dY*(ant) — (27) %az'B, — ®(z — 8) — 2Kion V2
0

Now a;'B8, = (1 — 384:n7"% log n)"o* 'Ky Ain"* log n which is O(n""* log n). Hence
there exists A4 > 0 such that, whenever n = no and | z| < log n,

(3.13) Sp1 = J D(z — u) dy*(anu) — D(z — 8) — Asn~log n.
0

Equations (3.11), (3.12) and (3.13) give

P{o*(z — 8) = nVX(@u(t*) — p*) < 0%z, n2(QF — p*) < 0*z)
(3.14)

= f D(z — u) dY*(ant) — ®(z — 8) — Ayn2log n — Asn™ — A3n"log n.
0

Equations (3.7), (3.10) and (3.14) give

00

P{n'X Q¥ — u*) <o*2) = J D(z — u) dy*(anu) — Asn " log n — A;n™?

0

- Aan_l/3 log n— Klgn_l/z bl K13n;1.
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Herice there exists As > 0 such that, whenever n = no and | z| < log n,

0

(3.15) P{n"A(Q% — p*) =o*2) = J ®(z — u) dyHanu) — Asn~ log n.

0

Recall that a, = (1 — 34;n "% log n)n"%¢*Kj5". An analogous argument gives the upper
bound, with a, = (1 + 34,776 log n)n*°s*Ks’, of

00

(3.16) P{n' (Qr —p*) <o*2} =< j ®(z — u) dy*(a,u) + Asn™®log n.

0

Equation (3.16) will be useful later on, built for the present purpose we use the simpler
upper bound

(817) P{nVAQF — p*) = 0*2) = P{nVA(Q.(t*) — p*) < 6*2} < B(2) + Kion ™2
By Corollary 3.1,

(3.18)

j O(z - u) d(@nw) — @(2) | = Ola") = O ™).
)

(3.15), (3.17) and (3.18) then give the result
|P{n"*Q% — p*) < 0*2) — ®(2)| = O(n™"°)

whenever n = no and | z| < log n. But as noted at the beginning, this is sufficient for (3.5)
to hold. O

3.2 An improvement upon the normal approximation. The purpose of this
section is to define and study the improved approximation suggested by Theorem 2.2.

LEMMA 3.4. There exists a positive constant K, such that, whenever 0 < | ¢| <% and

0<fle|<e?,

J YAz — u)(1 — €)87") dD(u) — j Y2((z — w)07") dD(u) | < K| e| (—log 0] |)**

for all real z.

Proor. We prove only for ¢ > 0; the proof for ¢ < 0 runs along the same lines.
Given 6 and ¢, let a be a positive number to be specified below.

j V(2 — w)(1 - €)87") d®(u) =j D(z — u) dY*(u(l —e)d™)
o 0
> J' ®(z — u/(1 —¢)) dy*wd™)
0
= J’ ®(z — u) dY*wd™"') —sup{®@(z —u) —P(z —u/(1—¢):0<us<a}
0
= J’ D(z — u) dY?wh™") — [1 — Y*(af™")] — (2m)ae/(1 —¢)
0

> J B(z — u) dY*ub~) — 2 exp(—Kun(af~)"?) — 2(2m)ae
[t}
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where we have used Lemma 3.2 together with the obvious inequality 1 — ¢2 < 2(1 — ).
Choose @ such that Ki7(af™")*? = —log e, or a = 8(—K 1} log 0e)*/%; then

2 exp(—K17(a07")¥?) + 2(27) " 2ae = 20¢ + 2(27) 20e(— K17 log 0¢)*/?
< Oe(—log 0e)**(2 + 2(2m) V2K 1#/°)
= fe(—log 0e)*°K

with K, = (2 + 2(2m)2K1#%) = 2 + 3(8n) V2
Then

J’ Yz — u)(1 —e)07') dD(u) = j V2((z — u)8™") d®(u) — Kz 0e(—log 0e)*>.
Since also
j V((z — w)(1 — &)07") dO(u) < J V(2 — w)b™") dO(w),

the result follows. 0

The improved approximation is the convolution of the asymptotic distributions of @,(t*)
and A,. Recall that Ky = [—u”(¢*) /2] 3[q(t*)]*>. Define:

(3.19) P,(2) = f V¥(n"%6*K5'(z — u)) d®(u).

It is proposed to use ®,(2) rather than ®(z) as an approximation to P {n*/*(Q* — u*)
=o*z}.
THEOREM 3.2. There exists a constant Ky, > 0 such that for all z and n > 1,

(3.20) |P{n"%(Q% — p*) < 0*2} — ®,(2) | < Kran~*(log n)>.

Proor. By Equation (3.15), for n = ng and | 2| < log n,
P{n'*Q;* — p*) < 6*2} Zf ®(z — u) d*(anu) — Asn™Plog n
0

where a, = (1 — €)™ with e = 34,n7"° log n, § = n""°¢* 'K,. Applying Lemma 3.4,
provided n, is large enough we have

o

f D(2 — u) dy*(anu) — J' D(z — u) dY*(n"%*K;'u)
0 0

< K3A:n""%0* 'K, log n[—log(34:n""6* "'K, log n)*/®

=o(n3(logn)?) as n-— o,
Then a constant K, exists such that
P{n"*(Qx — p*) < 0*2} = ®,(2) — Kaan 3(log n)®

for all » = no and all | z| < log n; but the extension to all z is immediate, for the same
reasons as in Theorem 3.1, and then Kz may be chosen so that the result holds for all n
>1. .

A similar argument, using Equation (3.16) and the second part of Lemma 3.4 (with ¢ <
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0) gives
P{n'A(Q} — p*)= 0*2}= ®,(2) + Kz2n "*(log n)>.
This proves Equation (3.20). 0

REMARKs. When assumption (III') holds with r = 2, the definition of ®, becomes
D.(2) = j Vi P6* K5 (z — u)) d®(u)

with ¢-(z) = P{B(y) — y" < z for all y = 0},
Ko = [=peo ) /T [ge*) 7.
The results analogous to Theorems 3.1 and 3.2 are then
|P(nQ% - 1*) = 0*2) — B(2) | < Kuon V"2,
|P{nVX (@} — p*) < 0*2} — Du(2) | < Keon V¥ V(log n)>

Although this improved approximation has nice properties, it is not particularly easy to
compute. Daniels (1974) and Barbour (1975), discussing a closely related problem arising
in an epidemics model, proposed a simpler form of improved approximation. To introduce
this, observe that ®, is the distribution function of

Z + n"VKyo* W

where Z and W are independent random variables, Z being standard normal and W having
distribution function y?. The idea of Daniels and Barbour was to replace W by its expected
value. Thus if KoEW = b*, we replace ®,(z) by ®(z — n"/®b*¢* ). This may be justified
by the following lemma.

LEMMA 3.5.

sup, | ®n(z + n7/%b*0* ') — ®(2) | = O(n ™).

Proor. By first conditioning on W, it may be seen that
®,.(2) = E{®(z — n *Ky0*'W)}.
Expanding in a Taylor series,
D,(z + n V% * ™) = E{®(z — nT/’Kyo* (W — EW))}
= E{®(2) — n"Y*Kyo* (W — EW)®'(2)
+ Y[n "V Kyo* (W — EW) D" (2)}
where 2 depends on z and W. Hence
[®n(z + n7%*c* ') — ®(2) | = bn *K3e* 2| E{((W — EW)*®"(3)} |.

But ®” is bounded, while Lemma 3.2 shows that W has finite variance. Hence the right
hand side is bounded by a constant of order n~"/%, independent of z. 0

Lemma 3.5 together with Therorem 3.2 yields at once the following result:

THEOREM 3.3.
sup. | P{n'*(@% — u* — n™%*b*) = 6*2} — ®(2) | = O(n"""*(log n)?).

In its new form, the improved approximation to the distribution of @ is norxﬁal, with
mean p* + n”%3p* and standard deviation n7/?c*. Compared with Daniels’ original
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approximation, the only change is to shift the mean by n™*3b*. The only remaining
problem is the calcuation of *. This, however, depends only on EW, which is a universal
constant.

We may write

W =sup{Bi(t) — t*i=1,2,t=0)

where B;,B; are independent Brownian Motions with B;(0) = 0. Barbour (1975) defined a
universal constant A by

A = E {sup[Bi(t) — t?/2:i =1, 2, t = 0]}

and stated that A = 1. More precise calcuations have shown A = 0.996 to three figures
(personal communication from Professor Daniels).
It is easily seen by a rescaling argument that

EW =273}
which combined with the expression for K, yields
b* = [-u"(¢*)] P lq(e")]**\

SuMMARY. Daniels’ (1945) approximation to the distribution of T, is normal with
mean p* and standard deviation "/%6*. The error of approximation is uniformly O(rn""¢).
The improved approximation is normal with mean p* + n~>®b* and the same standard
deviation. The error is at most O(n"/*(log n)?). The derivation of the approximation (see
also Barbour (1975)) suggests that the error is in fact O(n~'/%), but we do not have a
rigorous proof of this.

4. A numerical example: Weibull distribution. In applications, the distribution

084
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Probability
o
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0-21

0 T T T
21 22 23 24 25
Load n.x

Exact probability
—-— Simple normal approximation

———— Improved approximation
F1G. 1. Single bundle; n = 40,p = 5.
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function F of fibre strengths is often taken as the Weibull distribution
F(x) =1 — exp(—cx®), x =0,

where ¢ and p are positive parameters. This is sometimes justified by reference to the
weakest-link property of materials; Coleman (1958) reviews the Weibull distribution in
this context. By change of scale we may assume ¢ = 1. Then g = F ' is given by

q(t) = [log(1 — 8)]"".
Straightforward calculations show that
p.* = p—l/pe—l/p’
o* = [e—l/p(l - e—l/p)]1/2_p—1/p’
b* = p—l/p—1/3e—1/3p
(taking A = 1 for practical purposes).
A numerical study was performed, using (1.4) for an exact calculation, with n = 40 and
p = 5; the latter value is typical of glass or polymer fibres. Figure 1 shows the exact
probability, the simple normal approximation of Daniels (1945), and the improved approx-

imation. It is seen that the improved approximation really is a considerable practical
improvement. Very similar results have been obtained for other values of n and p.

5. Large deviations. Let {x., n = 1} be a sequence of positive numbers such that
%n— ©, n” /%%, — 0. This sequence is assumed to be fixed throughout this section.
It follows from classical theory that

(5.1) lim, . P{n"?(@u(t*) — p*) < —0*x,}/®(—x,) = 1.

The purpose of this section is to show that (5.1) continues to hold when @,(t*) is
replaced by Q.

Equation (5.1) is a consequence of the Large Deviations theory of sums of independent,
identically distributed random variables. @.(¢*) is a constant multiple of nU,(t*), which
has the binomial distribution, and (5.1) follows from Theorem 1, Section XVI.7, page 549,
of Feller (1971).

Define

Fi(x) = P{n"*(@Q — p*) < 0*x},
Fr(x) = P{n"2(@Qn(t*) — p*) < 0*x}.
Then Equation (5.1) may be written as Fy(—x,)/®(—x,) — 1.

THEOREM 5.1. F}(—x,)/®(—x,) > 1 asn — oo.

Proor. In view of (5.1), it suffices to show F}(—x,)/Fi(—x,) — 1. But @}
@n(t*), so F(x)/Fn(x) is the same as the conditional probability P{n"%(Q} — u*)
0*x | n"2(@n(t*) — p*) < o*x}. It is therefore sufficient to show

(5.2) P{n'2(Q% — p*) > —0*x, | n2(@u(t*) — p*) < — 0*x,} — 0.

Let { ., n = 1} be a sequence of positive numbers such that x, y, — 0, n'/%y, — oo; for
instance, take y, = (n'%x,) /2. Now

P{n'(Q% — u*) > —0*xn | nVA(@n(t*) — p*) < — 0*xn)
= P{n"X(@a(t*) — p*) > —0*(xn + yu) | nX(@n(t*) — p*) < — 0*x,)}
+ P{n'?(@% — @u(t*)) > 0*yn| —20*x, < nH(@u(t*) — p*) < —0*x,)
+ P(n(Qa(t*) — p*) < —20*%, | RV2(@Qu(t*) — p*) < — 0*x,)
= Pn1+ Plo + Pjs, say.

IA IV
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Now
Py =1—Fy(—=%, — yn)/Fr(—x,)
_ F:z(_xn - yn) . <I)(_xn) . q)(_xn - yn)
D(—x, — yn) F;z(_xn) q)(_xn)

But by 5.1, Fr(—=xr — 30)/®(—%n — yu) = 1, ®(—x,)/F'n(—x,) — 1. Also ®(—x, — yn)/
B(—xn) ~ (Xn/(%n + yn))exp{—(xx + ¥»)?/2 + x2/2} which — 1 by virtue of x,y, — 0. Thus
Py — 0. Next,

Py = Fu(—2x,) [Fr(—x,)

_Fu(=2x,) ®(—x.) P(—2x,)
T O(—2%)  Fal—x)  ®(—x,)
Again by (5.1), F(—2x,)/®(—2x,) — 1 and ®(—x,)/Fn(—x,) — 1. Also ®(—2x,)/®(—x,)
— 0. Thus P;3 — 0.
Define I, = {k:—20*x, < n'*(g(t*)(1 — k/n) — p*) = —o*x,}. Then P, <
Sup{Pnx(n'?An > 6*y,):k € L,}.
But since n™%x, — 0, it follows that sup{n'/®|k/n — t*|:k € I,} — 0. Hence by
Theorem 2.1, for any z > 0, )

lim,,wsup{ Pre(An > n"°Koz):k € I,} = 1 — *(2).

But P(Ar>n""’Koz) = Pur(n'?An > n""°Ky2) > Pps(n'/?A, > 0*y,), for n sufficiently
large, for any arbitrarily large 2.This is because n/®

Yn — . Hence lim,,.sup{P..(n'?A,
> 0*y,):k € I,} =0, from which it follows that P}; — 0.

So Ppi + Py + Prs — 0, from which (5.2) and hence the theorem follow immediately.
O

REMARKs. 1. In case that Assumption (III’) holds with r > 2, Theorem 5.1 holds
under the condition that x,n =42 _ 0,

2. A natural question is whether the analogous result holds for the upper tail; ie.,
whether (1 — F(x,))/(1 — ®(x,) — 1. The answer is no. Stronger assumptions than have
been made are required on the behaviour of g(¢) as t — 1.

6. A limit thoerem for the series-parallel model. Assume we are given a sequence
{K(n), n = 1} of positive integers tending to infinity. For each n, consider the system
consisting of K(n) independent bundles, each of n fibres, in series. The strength of the
system is the minimum of K(n) independent copies of @3. If G.(x) is the probability that
the system fails under load x, then G, is related to F, through the formula

(6.1) Gu(x) =1 — (1 — Fu(x))X™.

We would like to find constants a,, > 0 and b, real and a limit distribution function H
such that, for all real x,

(6.2) Gu(anx + b,) > H(x) as n— .

Of course the limit behaviour of G, as n — » depends on the sequence {K(n)}. Here we
consider the case where K(n) increases “not too fast”; the precise condition is log K(n) =
o(n'?). The opposite extreme, where K(n) — o “very fast”, is studied by Harlow, Smith
and Taylor (1978). More precisely, they study the case K — o, n fixed, and show under
quite general conditions that a limit theorem holds with the Weibull distribution as the
limit H. The theorem here leads to the limit law H(x) = 1 — exp(—exp(x)). Thus the
manner in which the constants K and n vary determines the form of the limit law as well
as the renormalization constants.

THEOREM 6.1. Assume G, is defined by (6.1) and that K(n) — », n""’log K(n) — 0
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as n— «. Define
a, = 0*(2n log K(n))™/2,
bn = p* + o*(log(4n) + log log K(n) — 4 log K(n))-(8nlog K(n))™/2.
Then for all real x,

(6.3) Gr(a.x + by) > 1 — exp(— exp(x)) as n— oo.

Proor. Given (6.1), the result (6.8) is equivalent to
(6.4) K(n)F,(a.x+ b,) > e* as n— o, forallreal x.

Let a, = (2 log K(n))™"?, B = (log(47) + log log K (n) — 4 log K(n))-(8 log K(n)) ™2
Here B, —» —o, an/Br — 0, —B, = O((log K(n))'?). It follows from the approximation
@ (—x) = (27) " xTexp(—x%/2)(1 + 0(1)) as x — o that

(6.5) Kn)®(anx+ B.) > e as n— o, forallreal x.
Fix an x. Then —(a,x + B,) is O((log K (n))"/?) which is o (n/®). Then by Theorem 5.1,
(6.6) Fi(onx + Br) /@ (0nx + ) = 1.
Hence from (6.5) and (6.6),
(6.7) K@n)F (anx + Bo) — €”.

But F(x) = F.(u* + n""%0*x). It follows from the definition of a, and b, that F} (a,x
+ B.) = Fn.(a.x + b,). Hence (6.7) is equivalent to (6.4). This is what we had to prove. [

REMARKS. 1. In case that Assumption (IIT") holds with r > 2, Theorem 6.1 holds under
the stronger condition K (n) — o, n™Y/® Vog K(n) — 0.

2. For a more detailed discussion of the connection between Large Deviations theory
and extreme value theory, see the thesis of Borges (1978), which discusses a similar fibre-
bundle model.

7. An improved lower tail approximation. Although we have now obtained a
limit theorem for the series-parallel model, we have not discussed the possibility of using
an improved approximation to obtain strengthened versions of Theorems 5.1 and 6.1. A
natural approach is to use the improved approximation of Section 3 in order to reduce the
error, but the objective here is to extend the zone within which the relative error tends to
zero. For this it is necessary to use a “lower tail improvement,” designed specifically to
reduce the relative error in the lower tail of the distribution.

The results presented are motivated by the work of Borges (1978) on the relation
between Large Deviations theory and extreme values for row sums of triangular arrays.
Let {W,;, n = 1,1 < j < n} be a triangular array of random variables with EW,; =0,
Yi-1 EW%; =1 for each n. Let W, be the probability distribution function of the row sum
Y7=1 Wy;. According to a theorem of Book (1976), if the array {W,;} satisfies certain
conditions then

(7.1) 1= Wa(xa) = (1 — @(x:))exp{n 253\, (n™%x,) + O(n"V2x,)).
(7.2) Wo(=x2) = @ (—=x,)exp{—n""2xI\. (—n"2x,) + O(n"Vx,)}

whenever x, — ®, x, = 0(n'/?). Here A, is a power series whose coefficients are determined
by the cumulants of Y7-; W,,;.

The expressions (1 — ®(x.))exp{n *x7A.(n""*x,)} and ®(—x,)exp{—n""2x3A,
(-n""2x,)} may be regarded as upper and lower tail improvements on the normal
approximations to 1 — Wy (x,) and W, (—x,) respectively. Borges shows that (7.2) may be
used to define constants a,, b, such that

(7.3) 1— (1= Wa(anx + b)) 5™ — 1 — exp(—exp(x))
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whenever log K(n) = 0(n); an analogous relation exists between (7.1) and the maximum
df Wk,
For our problem it is not possible to get such complete and elegant results but we do
obtain a lower tail improvement which has performed well in empirical studies.
Throughout this section {x,, n = 1} is taken to be a fixed sequence of positive numbers
such that x, - », x, = 0 (n%(log n)"/?). For real a define

V(z;0) =P{B(y) —y*+ay=z forall y=0)}

when {B(y), y = 0} is a Brownian motion with B(0) = 0. Also let a, = n™"x,((1 — ¢t*)/
t*)'?Ky4 (recall K1, = q'(¢*)q (¢*) K7 and K; = —p” (¢*)/2) and define

Q.(2) = ¥(2; an)P(2).

Here y(z) has the same meaning as before; it is the same as y/(z; 0).
The following theorem will be proved:

THEOREM 7.1.
F¥(—x,) ~ exp(=\in"%x3) ] Q. (n"°c*K5 (=2, — u)) d® (1) as n — .

where Ar= (1 —2¢%)[36t*(1 — ¢*)]72%

(The symbol “~” here and subsequently means that the ratio of the two sides tends to 1.)
Let {8, n = 1} be an arbitrary sequence of positive numbers such that 8, — 0,
8.n'*.x;' - . As in Section 3, define

Ya(k) = n'(q(¢*)(1 — k/n) — u*)/o* = n'*(t* — dnp)[t*(1 — t*)]72,
and let
L={ki— %, — 8, < Ya(k) = — x,}
= (k2 (1 = £9)2%)2 < 2 (dn/t* — 1) < (%0 + 8,) (1 — £*)£%)2}.

We aim first to prove a sharpened version of Lemma 2.12 for P,,{A,: < z}, for k € I,.
This will appear as Lemma 7.3. Recall from (2.15),

w2 = sup{—[u(t*) — p@*/(1 + x))] dnr/t* + [q(¢*) — g(t*/(1 + x))]
(7.4)
(dnp/t* — 1) + daZn V21 + x) g (¢*/(1 + x))B(x):x = 0}

where {B(x), x = 0} is a Brownian motion with B(0) = 0. For ¢ > 0 define

Ans = sup{—(1 — &)t*K1x” dnr + (1 + £)q’(t*)(dns/t* — D)t*x
(7.5)
+ diZn2q (t*)(1 + €)B(x):x = 0},

Bns = sup{—(1 + &)t*K1x* dnr + (1 — €)@’ (¢*)(dns/t* — 1)t*x
(7.6)
+ di?n V2 (t*)(1 — &) B(x):x = 0}.

Then provided d,: > ¢* (which it is on I,), the inequality .A,5 < A¥; < *A,; is satisfied
on the set Es(e) on which the suprema in (7.4) and (7.6) are achieved in 0 < x = Kioe with
K as before.

LemMMA 7.1.  There exist positive constants Kas, Ky such that, if 0 < ¢ < xo/Ky and 1
< dni/t* <1+ Kyue then

P..{Ese)}=1-3 exp(—Kgssandnk).
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Proor. This is proved along the same lines as Lemma 2.10. 0

Given £ > 0, choose ¢ > 0 such that
1+"”1-e < (1-e)?,
Q-1 +e™> 1 +e)7},
Q+e)-1+ePU—e) P <1+¢,
1-e-1—e A+ >1—¢.

These inequalities may be satisfied with ¢ = Kgee; in the range 0 < &; < x0/(Ki0Kz), for
a suitable positive constant Kyg.
Using a time rescaling as before, we obtain when d,; > t*

eAns < (1 - 81)‘1h1(d,,k)K9n'2/3
(7.7
sup{B(y) — ¥* + (1 + &1)(dus/t* — 1)n**hy(dns)Kray:y = 0},

Bns > (1 + &) hi(dnr) Kon ™3
(7.8) .
-sup{B(y) — y* + (1 — &1)(dnr/t* — 1)n"*ha(dnr) Kuuy:y = 0}.

We now require a lemma concerning the continuity of the function y/(z; a).

LEMMA 72. Ifa>0,z2>0and0<e¢<1, then
(7.9) ¥(2(1—¢) — 2a%; a) < ¥(2; a(l +¢)) < Y (2; a),

(7.10) Y(z;a) = ¥(z;a(l —e)) =Y (2(1 +¢) + 2a%; a).

Proor. We shall only prove (7.10); (7.9) is very similar. Note that ¢(z; @) is nonde-
creasing in z and nonincreasing in a. The left-hand inequality in (7.10) is trivial and we
therefore concentrate on the right-hand inequality.

Since y2 — a(l —e)y < (1 + &)y*> — a(1 + €)y + a’¢ for all y, we have

Y(z;a(l—¢) =P{B(y)<y’—a(l—¢e)y+2z forall y= 0}
<=P{B(y)<(1+¢y*—a(l+e)y+z+a’ forall y=0}
=P+ VBt)= 1 +e)** —a(l+e)’t + 2z + a’
forall y=t(1+¢)2=0}
=yY((z + a’e) (1 + &) a(l + ¢)*?)
=y(z(1 +¢) + 2a’%;a). O
Return to (7.7). For k € I,, (dus/t* — 1) < n™2(x, + 6,)((1 — ¢*)/t*)"2 Also ha(dnz)

—1=0(dur/t* — 1) = O(n™2x,) = 0(6.%7") as n — . Define e; = &,; = n"%. So €1 =
0(8,x7") as n — . Then

(1 + &n1)(dna/t* — Dha(dnr) < n7%x, (1 + 28,2,7) (1 — £*)/t*)/?
for k € I, for all n sufficiently large. Hence (7.7) becomes
(711)  “Ans < (1 — €21) "'ha(dnr) Kon *?sup{B(y) — y* + (1 + 26,2 )@,y :y = 0}
with @, = n ™%, ((1 — t*)/t*)?K.,.
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Similarly, (7.8) becomes
(7.12)  Ang> (1 + &n1) hu(dns) Kon™’sup{B(y) — ¥* + (1 — 20n22")any :y = 0}.
Using (7.11) and (7.12) together with Lemma 7.2, the inequalities
(7.13)  Pui{Ans <z} = ¥((1 — n7Yn*°K5 ' hi(dnr) '2(1 — 20,27 ") — 207 (28,%77); @),
(7.14)  Par{eBns < 2} < Y((1 + n7Yn*PK5 hi(dns) "2 (1 + 20,37 7) + 202 (28, 271); @),
hold for all £ € I,,, for all n sufficiently large.

LEMMA 7.3. Let .2 > 0 for each n. Then the inequalities
V(1 = 1771 = en2) (1 — 28,2 )n*°K5 ' (dnr) "2 — 207 (28, %7 ); @)
— 3 exp(—KasK3%sn"*dni) — Kzexp{—Ks(nen22q (t*)™ — Kiog n)+}
< Por{ln2 = 2}
S YA+ 271 + en2) (1 + 28,0 )0 Ko Py (dni) ™2 + 207 (20, %7Y); @)
+ 3 exp(—KzsK3sn*dnr) + K:exp{—Ks(nen22q(t*)™ — Kdlog n).}
hold for all k € I, for all n sufficiently large.

Proor. For fixed n let e,1 = n™4, ¢ = Kygen:. For k € 1,,
1<dun/t*<1+n"Y2(x, + 8,)(1 — t*)/t*) =1+ 0(en1) as n— .

Hence the condition for Lemma 7.1 is satisfied for & € I, for all n sufficiently large. The
result then follows from the representations (7.13), (7.14) together with Lemma 2.9 and
Lemma 7.1. O

Lemma 7.3 will be a key tool in the proof of Theorem 7.1. Before proceeding, we prove
one additional technical lemma.

LEMMA 74. If4z = (a + 2)® then Y(z; a) > Y%, for a > 0.

Proor. The condition on z guarantees ¢ + % =< t*> — at + z for all ¢, for the latter
inequality is satisfied if 4z = (a + 1)? + 2, and (a + 2)*> > (a + 1)® + 2 for a > 0. But then
Y(z;a) =P{B(t)=t*—at+ 2z forall t=0}
=P{Bt)st+% forall t=0}

=1—e¢! (byLemma 2.5)
>4% 0O

The proof of Theorem 7.1 uses the local large deviations theory for binomial random
variables. Fix p such that 0 <p <landletg=1—p. Forn=1,0 < k < n define

7 (k) = (Z)pkq"-’z

I (k) = Y=k ma (k).

Thus 7., II, are respectively the density function and the distribution function of a
binomial random variable with parameters n and p. Define

Ao(t) = =Timo (P**2 — (—q)* ) (k + 3) 7'k + 2) T (pg)~**V/Pet
= (g —p)/(6p"*g") — t(p* + ¢°)/(12pq) + -+
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which is a power series in ¢, convergent for | ¢| sufficiently small.
Given n and &, let z,, = (& — np)(npq) ™% ¢(2) = (27)?exp(—2%/2). Then if 1 < z,,
= 0(n'?), we have

(7.15) Ta(k) = (Dqn) ¢ (znr)exp{n ™ 22k (n ™ ?201) + O(n ™2 | zar )},
(7.16) 1 =1L (k) = (1 — ®(2nx))exp{n "’ 22kA(n " *201) + O(n"*2,1)},
while if 1 < —z,; = 0(n'?), (7.15) holds as stated and (7.16) becomes

(7.17) I1. (k) = ®(2.2)exp{n 223, As(n "V 22,) + O (72 | 201 |)}.

(7.15) is due to Khincin (1929); see Richter (1957) for discussion and extensive generaliza-
tions. The integrated versions (7.16), (7.17) follow from Khincin’s results or from the
general theorem on page 552 of Feller (1971).

These results will be applied in the case p = t*. We write A(¢) in place of A¢«(¢).

Proor oF THEOREM 7.1. The proof mimics that of Theorem 3.1, but using Lemma 7.3
in place of Lemma 2.12 and the large deviations results (7.15)-(7.17) in place of the Berry-
Esseen Theorem. Recall that the sequence {x,} is fixed throughout.

Let &,2 = n”/%, From Lemma 2.8 and Lemma 7.3, for % € I, we have

Por{An =2} = @ ((1 — 30,2, )n¥°Ks 2 — 46, %7 a?)
(7.18)
— 2Kzexp{—K3(n**2zq (t;)"* — Kdog n).} — O(n™).

We have used the fact that e,, = n 74 < §,x,' as n — . Let a, = (1 — 38,x:)n/® K5 0*
and B, = 46,x,'aZ. Then

Pop{n'?A, = 0*2} = Qnlonz — Br)
(7.19)
— 2K,exp{—Ks(n'*za*q (t,)™" — Kiog n).} — O(n™")

for k € I,. Recall F,(2) = P{n3(@.(t*) — p*) = 0*z}, F(2) = P{nV4(@.* — u*) = 6*2).
By (7.17), F(—x,) ~ ®(—x»)exp{—n""?x} N(=n""*x,)} as n — o
As in (3.7), the probability F}(—x,) may be written

¥ (—%n) = P{o*(=%, — 8,) = n"2(Qn (t*) — p*)
(7.20) = 0*(—x), nVHQF — p*) = —0*x,)
+ P{n"2(Q,(t*) — p*) < 06*(—%, — 8,), nYH(QF — u*) < —0*x%, ).
But
P{n'2(@a(t*) — p*) < 0*(=2, — 8,), V4@ — p*) = —0*%.) < Fr(—%, — 8,)
and
Fr(=xn — 8,)/Fr(—%5)

~ (D(—%,—8,) /D (—%n))exp{—n""*(%s +8,) A (=12 (% +8,)) +n 22N (=17 21,) )

~ exp{—(%n+6,)2/2+x2/2— 0"V} (x, +8,) A (—n "V (x, +8,)) +n V23N (—n V2%, )}

~ exp(—x.6x).
Thus

P{nVA(@.(t*) — p*) < 0*(—xn — 8,), n¥(QF — p*) < —0*x,)}
(7.21)
= Fr(—x,)exp{—x.8, + 0(1)}
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as n — oo, Using (7.19), we have for the first term in (7.20),
P{o*(—% — 8,) = n2(@n(t*) — p*) < 0*(—xa), n(@F — p*) < —0*x,)
= Yser, P{Un(t*) = k/n}Pur{n'*A, < 6*(—x, — Yo (k))}
= Yoet, P{UL(t*) = k/n} (Qn (an (—2n — Yn(R)) = Bn)
— 2Kzexp{—Ka(n'*(—x, — Ya(k))o*q ()™ — Kilog n).} — O(n™"))
= Sp1 — Sas — Sna, say.

If, in addition, S, denotes the quantity in (7.21), we have, from (7.20), F¥(—x,) = S.:
= On2 — Sn3 + Sn4o

The program is now as follows. It will be shown that (S,2 + S.3 + S.4)/S.1 — 0; hence
F}(—x,.) = S,1(1 + 0(1)). It will then be shown that

Sp1 ~ exp(—Ain"Y%x3) J’ Q. (nV%*Ks (—x, — u)) d®(u)

which proves half the result. The opposite half will follow by a symmetrical argument to
get an upper bound on F;(—x,). We shall not give the details of this; note, however, that
it is for this reason that we need to worry about S, .

Now

(7.22) Snz = O(n7") Yper, P{Un(t*) = k/n} = O(n7"'F1.(—x)).
Also,
Sns = Yrer, P{Un(t*) = k/n}2Ksexp{—Ks(n'*(—x, — Ya(k))o*q(t,)™" — Kiog n).}.

Break the sum into two parts: part 1 for which Ks(n'/*(—x, — Y, (k))o*q(t))™" — Kdog n)
> log n, and part 2 the rest. Then part 1 is less than 2K,n'F}(—x,), and part 2 is less than
2K, times

P{—x, — nYq(t)o* HK:' + K)log n < Y, (n U, (t*)) = —x,}
~n" g (t)e* "K' + Ky)log ne (—x, )exp{—n""’x:A(—n""%x,)}
~nVq(t)o* YK + Kilog nx,® (—x,)exp{—n" 22\ (—n"?x,)}
~nVq(t)o* (K5 + Ki)log nx, Fr (—x,)
where we have used first (7.15) and second (7.17). Hence
(7.23) Sps = O(n V4x,log nF;(—x,)).
Finally
Sn1 = Yaer, P{Un(t*) = k/n}Qn (0 (—%n — Yu(k)) — Br)

~ <f_ " & ()R (0t (=2 — 1) — Br) du)exp{—n‘l/zx,?)\(—n'l/zxn)}

Zn—b,

~ (J’_ " & () (an (20 — u) — Br) du)Fiz(—xn)/q’ (=)

%, =8,
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again using (7.15) and then (7.17). But

8n

f ' ¢(u)9n(an(_xn_u)_ﬁn)du=j ¢(_xn_u)ﬂn(anu_ﬁn)du

Xp—8, 0

8n—Bn/on
= j ¢(_xn —-—u- ﬁn/an)ﬂn(anu) du
0

8
~ j (=%, — u)Qn (1) du
0

provided x,8./a, — 0 and 8, > B./a, as n — . But a, = O(n"%), B, = O(8,n"x,) so
ZnPr/an = O(8.n "*x2) and B./(a.8,) = O(n""x,), both of which tend to zero as
required. Then we have

Sn
(7.24) Sp1 ~ (f & (=20 — 1) (onu) du) (Fr (=2,) /@ (=2,)).
0

Now Q. (2) = {/(2; a.)¥(2) > Y(2; a,)®. By Lemma 7.4, a sufficient condition for Q. (a, %)
>Yis u = u, = (a, + 2)%/(4a,,). Then provided u, < 8,

L
S > (%)( f b (=0 — ) du)w;(—xn)/@(-xn»u +o()

~ 3 1@ (0 = ) = D50 = 8.))/@(—5,) ] ().

If x, = O(n"®) then u, = o(n™"%) and u,8,' — 0 if 8, is chosen so that &, — 0, x,8, —
. Then [®(—x. — u,) — ®(—x, — 8,)]/P(—x,) ~ exp(—x,u,) which is bounded below as
n — o, In this case it is clear that (S,2 + Sn3 + Sz4)/Sn1 — 0. If n™V5x, — o then u, =
O(n™'’x%) = 0(8,) so that (@(—x, — us) — ®(—% — 8,))/P(~=2,) ~ exp(—Xnltn) —
exp(—x,68,) ~ exp(—xn,) and x,u, = O (n"%x3). In view of (7.21), (7.22) and (7.23) it will
be sufficient to show exp(—x.8.), n™' and n"*x,log n all tend to zero faster than
exp(—x,u,). The first follows from u./8, — 0, and the second and third require x,u, =
o(log n) which follows from x. = o (n'%(log n)"/®). Hence (S, + Sns + Sn4)/Sn1— O.

A PARENTHETICAL REMARK. The inequalities following (7.24) are crude and it is
therefore not clear that the condition x, = o (n'*(log n)/®) is necessary, though it can be
shown that this lack of precision affects only the power of log n. On the other hand, if x,
is very much too big then S,; will be much smaller than S,3, and the approximation can
be expected to perform very badly. We return to this point when discussing the empirical
results of Section 8.

The only thing left to show now is that

(7.25)  Sn1 ~ exp(—A1n"2x2) j Q.(n"* Ky (—x, — u)) dDP () as n— .
Now a, = (1 — 38,x;)n'°K5'0*; let a}, = n/*K5'6*. Then

8 , a8,/
j ¢(_xn - u)ﬂn(anu) du= % ¢(_xn - a,"u/a,. )ﬂn (al’lu) du
0

nJo

Sn
~ f (=%, — u)Qp(aru) du
0
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TABLE 1
Comparison of Approximations to Fu(x) forn =40,p =5
nx Qo Q. Q: Qs Qi-Q0 Q:-Q Q;-Q,
16.0 —21.299 —12.037 —15.847 —23.169 9.262 5.452 —1.869
16.5 —18.937 —10.776 —14.376 —20.407 8.160 4.561 —1.470
17.0 —16.765 —9.592 —12.983 —17.818 7.173 3.782 —1.053
17.5 —14.773 —8.484 —11.667 —15.426 6.290 3.106 —0.653
18.0 —12.950 —7.451 —10.428 —13.245 5.499 2.702 —0.296
18.5 —11.287 —6.493 —9.266 —11.291 4.794 2.021 —0.004
19.0 —-9.774 -5.610 —-8.179 —9.556 4.164 1.595 0.219
19.5 —8.403 —4.801 —17.168 —8.038 3.603 1.235 0.365
20.0 -7.167 —4.063 —6.232 —6.748 3.103 0.935 0.418
20.5 —6.057 —3.398 -5.370 —b5.684 2.659 0.687 0.373
21.0 —5.067 —2.803 —4.581 —4.740 2.264 0.486 0.327
21.5 —4.190 —-2.276 —3.865 -3.895 1.914 0.325 0.295
22.0 —3.420 —-1.815 -3.219 —3.145 1.604 0.201 0.275
22.5 —-2.750 —-1.419 —2.644 —2.480 1.331 0.106 0.270
23.0 —-2.174 —1.083 —2.136 —-1.901 1.090 0.038 0.273
23.5 —1.686 —0.806 —1.695 —1.485 0.881 —0.009 0.201
24.0 -1.277 —0.581 -1.316 —1.143 0.697 —0.039 0.135
24.5 —0.941 —0.404 —0.998 —0.861 0.536 —0.057 ~  0.080
25.0 —0.674 -0.271 —-0.736 —0.633 0.403 —0.062 0.040

Qo, Q1, Q2, Qs are the logarithms of the exact probability, the simple normal approximation, the
improved approximation and the lower tail improvement, respectively.

provided (x, + 8,)(8, — 8»an/ar) — 0, i.e., provided x,8,(38.x;!) — 0. This is satisfied
since we assumed 8, — 0.

In addition 5, ¢ (—x» — )@ (aru) du < ®(—x, — 8,) which is negligible in comparison
with [§" ¢ (=%, — u)@n (aru) du by an argument similar to that used to prove S,4/S,1 —
0. Hence

Gy m ( f (e — )2 (o) du)uv; (=) (=3))
0

~ ( j ' Q. (n"°0*Ky N (—x, — 1)) dD (u))exp{—n-lﬂxsx(—n—‘”xn)}.

But 27225 M(—n"%x,) = Min"V2x3 — Aan x4 + - .. and all these terms but the first are
negligible. Here A, = (¢ — p)/(6p'/?q"?) with p = 1 — g = t*; thus A, = (1 — 2¢*)[36¢*
(1 — t*)]7"/% Therefore exp{—n"2x3A(—n""*x,)} ~ exp{—An""?x%}. This gives (7.25),
and the proof is complete. O

8. Numerical study of lower-tail probabilities. Three approximations to F,(x)
have been proposed. In Table 1, these three approximations are compared for n = 40,
assuming a Weibull distribution with p = 5 for the fibre strengths. Since the emphasis is
on relative error in the lower tail, the logarithms of the quantities under study are shown.
For each x, we have

Qo = log F.(x),

Q@ =log ®(n'%0*"(x — u*)),

@2 =log ®(n'%6* Y(x — u* — n"¥b*)),
Qs = log i (n'%0* (x — p*)),
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1-0-

0-81

0-61

<
=

Probability

19 195 20 205 21
Load n.x

Exact probability

—-— Normal-theory approximation

————- Approximation based on lower-tail
adjustment

F1G. 2. Series-parallel system; n =40, K =100,p = 5.

where
®/(z) = exp(\n%2%) f Q.(n"%c*Ks (2 — u)) d® (u)

as in Section 7. The last approximation is specifically designed as a lower-tail improvement.

The differences ; — @, @ — Qo, @ — Qo determine the relative errors of the three
approximations. At the bottom of the table (moderate probability), both @. and Qs are a
substantial improvement on @i, but there is not much to choose between them. In the
middle of the table (lower-tail probabilities), @. is still a substantial improvement on @,
but @s is even better. This provides some confirmation for the theory. However, at the top
of the table (extreme lower-tail), @; has overshot: it underestimates the true probability
by a large amount. A corresponding table for the case p = 10 (not reproduced here) showed
similar behaviour, but with an even more dramatic overshoot of @; in the extreme lower-
tail. Referring now to the Parenthetical Remark of Section 7, it is seen that this was
anticipated; when x, > n'/*(log n)"/? the approximation is much smaller than the principal
error terms. Thus @; cannot be used in the extreme lower-tail, but is effective within the
“zone of convergence” x, = o(n'/%(log n)'/®) defined by Theorem 7.1.
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Top curve : Normal-theory approximation
Bottom curve : Approximation based on
lower -fail adjustment
F16. 3. Series-parallel system; n =K = 10°, p = 10.

We have not yet discussed how to use @; for the series-parallel model. The following
procedure is proposed. Given a sequence {K(n)}, define b;, for n = 1 by the formula

(8.1) Kn)®(n%* (b, — p¥) =1
We conjecture that if K(n) — o, log K(n) = o(n'3(log n)*?), then
(8.2) G.(a.x + b,) > 1 — exp(—exp(x)) for all «x,

where G, =1 — (1 — F,)*® and a, is as in Theorem 6.1. This conjecture is suggested by
the main result of Borges (1978).
We thus have two approximations to G, (x), namely the normal-theory approximation
1 — exp(—exp((x — b.)/ax))
studied in detail in Section 6, and the adjusted approximation
1 — exp(—exp((x — b,)/a,)).

A comparison is shown in Figure 2.

What does all this mean when n and K are large? In Figure 3, the normal theory and
adjusted approximations are compared for the values n = K = 10, p = 10, which were the
values used by Giicer and Gurland in their study. Here, of course, the exact probability is
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not computable. There is still quite a gap between the two curves, but the range of x-
values covered is small. Thus it appears, on the evidence of this figure, that for large n and
K the relative error in determining the operating load is small.
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