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BAYES ESTIMATORS AND ERGODIC DECOMPOSABILITY WITH
AN APPLICATION TO COX PROCESSES

By E. GLOTZL AND A. WAKOLBINGER!

Universitdt Linz

A prior distribution A on a set of parameters I is said to be ergodically
decomposable if A — a. all probability measures (7.).c; are mutually singular
in some strong sense. Criteria are established for A to be ergodically decom-
posable in terms of the posterior distribution and the Bayes estimator, which,
for I the locally finite measures on a Polish space and #; the Poisson process
with intensity i, is just the Papangelou kernel of the Cox process directed by
A

1. Introduction. In his invited paper, “Sufficient statistics and extreme points,” E.
B. Dynkin (1978) introduced the concept of an H-sufficient statistic in order to cover quite
a lot of integral representation theorems for convex sets of probability measures. According
to Theorem 3.3 in Dynkin (1978), it is possible to characterize an H-sufficient statistic @
for a set Il, of probability measures on some countably generated measureable space
(82, .«/) by the following properties:

Q is a stochastic kernel from (R, .7) to (2, &) such that

1) Qw, {0 €Q:QW', )}) =1, (vEQ)
and
2) Ho={7r€H:w(-)=fQ(w, ~)7r(dw)}.

(Note that (1) is a reformulation of property (3.21) in Dynkin (1978). In (2), IT denotes the
set of all probability measures on (R, <)).

We call a stochastic kernel @ obeying (1) a decomposing kernel, and a set of probability
measures I1, for which an H-sufficient statistic exists is an ergodically decomposable
simplex (see also Kerstan and Wakolbinger, 1980).

It follows from Dynkin (1978) that IT;(C II) is the set of extreme points of some
ergodically decomposable simplex iff there exists a decomposing kernel @ such that IT; =
{Q(w, -) :w € Q}. (Besides, such a set II; lies automatically in the o-algebra 2 generated
by the mappings 7 — #(F), (F € «).)

We call a set IT; with that property a completely singular set of probability measures.

It is the aim of this paper to characterize probability distributions on IT which are
concentrated on some completely singular set of probability measures. More precisely, we
look at a parametrized family (7;).er of probability measures on (£, &) and a “prior
distribution” A on the set of parameters I, and we call A ergodically decomposable if it is
concentrated on a set of parameters J C I such that (m;);cs is completely singular. We will
obtain characterizations for that situation in terms of the posterior distribution of A (or
Bayes-Kernel) in Section 2 and in terms of the Bayes estimator of A (if it is possible to
define it) in Section 3. Finally, we give an application to the situation of doubly stochastic
Poisson processes (= Cox processes).
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In the following we will always assume (£, ) to be a Standard Borel space (i.e. there
exists a complete separable metric on £ having ./ as its Borel field). It is well known (see,
e.g. Parthasarathy (1967), page 43) that in this case (I, 2) is a Standard Borel space as
well.

Let us further assume that the parameter set I is equipped with a o-field ¢ such that
(I, #) is a Standard Borel space, and that the mapping j:i —» mis 1 — 1 and #-2-
measurable.

2. The Bayes kernel and ergodic decomposability. In this paragraph let A be
a fixed probability measure on the parameter space (I, ,#). We denote the “mixture”
Jrm(+) A (di) by 7a(+).

Interpreting A as a prior distribution, we denote by Ba(w, -) the posterior distribution
on (I, #) given the observation w, formally obtained by

df ’ITi(-) /\ (dl)
H

®) By(@, H) = —es

(w)) (He f,wEQ).

Note that, for each H € ¢, BA(-, H) is determined 7 a.e.; for each countable algebra 7,
C ¢ there exists a set @, € & of ma-measure 1 such that Ba(w, -) is additive on ;.
According to Parthasarathy (1967), page 145, it is possible to choose %, such that additivity
on ¢, implies s-additivity on _#. By this we obtain a “regular version” of B, which is a
stochastic kernel from (2, /) to (I, ), and call it Bayes kernel of /.

From (3) we get

@ f ( f fl@, i)m(dw)> A (di) = j f (@, )Bn(w, diYma(d)
! @ QJI

for all nonnegative o/ X #-measurablef.
The next lemma characterizes ergodic decomposability of a prior distribution in terms
of its Bayes kernel.

LEMMA. A is ergodically decomposable iff Bi(w, -) is a Dirac measure for mx a.a. w.

PRrOOF.“=": Let II; C II be completely singular with A(j'(I1;)) = 1 and let K fulfill
(1) with IT; = {K(w, +): w € Q}. Being aware of the fact that j is an isomorphism between
the standard measurable spaces (j ~(IL;), .# N j~'(I})) and (II;, 2 N II,), we show that
B/\(w, ~) = 8j—‘oK(w,~) A ., W

We obtain for all F€ o/ and HE ¢

J’ 8j-10K(w,) (H)mA(dw) = J f 810k, (H)mi(dw) A (di)
F =iy JF
_ J’ f 8 -1om, (H)m(deo) A (i)
NI JF
= J f 8. (H)m,(dw) N (di)
J~NIL) JF

=J’ m(F) A (di) =J’ Bn(w, H)ma(dw),
- JH

F

the second equality arising from (1).
“«": Let ((Hum)men)nen be a sequence of partitions of I, such that each H,, is #-
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measurable and
{l} = r-\nEN,iEHm,l Hmn’ (l € I)

(Such a partition can be constructed by the separable metric on I which exists due to the
assumption that (I, ¢#) is a Standard Borel space.)
Then, for all n, m € N, due to (4)

J’ 7i({w: BA(w, Hom) = 1}) A (di) = f BA(w, Hum)7A(dw)
H,

nm {w:BA(w,Hnm)=1}

= J’ B/\(w, Hnm)'n'/\(dw) = /\(Hnm)
Q

which gives us
7i({w: Ba(w, Hym) =1}) =1 Aa.a.i.
Now put
IL:={i€l:m({w:BA(w, Hun) = 1}) = 1for all n, m € N with i € H,.}.

We have

(a) Le ¢

(b) A(lh) =1

(¢) 7mi({w:Balw, {i}) =1}), Zel)
Put

Q; := {w € Q:BA(w, -) is a Dirac measure and Ba(w, I1) = 1}

and

K, =™ ©€E% and Biw () =1
© )=\ if 0EQ\Q with i €I fixed.

K and {m;:i € I,} fulfill (1) and (2), and hence A is ergodically decomposable. 0

3. Bayes estimator and ergodic decomposability. From now on, let us think of
our parameter space (I, #) being endowed with a convex structure of the following kind:
(C) There exists a separating® sequence ( f).cn of nonnegative, #-measurable functions
s.th. all probability measures I" on (I, ¢) with [ f, dT" < o (n € N) have a “weak
barycenter” with respect to (f.).en, namely a (uniquely determined) er € I with
faler) = [ £,@T(dL), (n € N). We write ¢ := [ iT'(di).
Being in this situation, we define for each prior distribution A and each w € & with

(5) ff,,(i)BA(w, di) < oo, (nEN)

the Bayes estimator belonging to /\, given the observation w, by

ba(w) == f iBA(w, di).

THEOREM 1. Let N\ be a probability measure on (I, #) s.th. (5) is valid for mx a.a. w.
Then the following statements are equivalent:
(a) N is ergodically decomposable

%ie: fulir) = fu(i2) for all n € N entails i, = i,.
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(b) The distribution of the Bayes estimator bs under the mixture wn equals the prior
distribution /\.

ProoF. (a) = (b): Because of the Lemma in paragraph 2, BA(w, -) is a Dirac measure
for ma a.a. w; this implies

Baw, ©) =8 @, Thaaw

Hence forall H € ¢
mAbA (H) = f in (ba(w))TA(dw) = f Ba(w, H)na(dw) = A(H).

(b) = (a): The map u := tanh: R+ — R. is bounded and strictly concave. We get for all n
€ N from Jensen’s inequality

J’ J’ (uofn) (D) BA(w, di)ma(dw) = f u( J’ f2()) BA(, di))m\(dw)
e Jr 2
= f ©0fr0bp(w)TA(dw)
Q
= J’ uofn (i) N (di)
1
= J’ fuof,,(i)BA(w, di)ma(dw) < oo,
o Jr
Since the first and the last term are equal, we get
J uofn (1) Ba(w, di) = u( J’ [ (D) BA(w, di)) ,  TA2A W
1
which by the criterion of equality in Jensen’s inequality gives
f(0) = jfn(i’)B/\(w, di’) = f,0bA(w) Ba(w,:) aa.i, mraa w.

But this yields immediately Ba(w, -) =8 @ 7x a.a. w, with the Lemma of paragraph 2
completing the proof. 0

4. Example. The Papangelou kernel of Cox processes as a Bayes esti-
mator. Let I (resp. 2) be the set of locally finite (resp. integer valued locally finite)
measures on some fixed completely separable metric space, and let I (resp. ) be equipped
with the usual o-algebra ¢ (resp. /) (which make them to Standard Borel spaces). (For
all basic references see Kallenberg, 1976, or Matthes, Kerstan and Mecke, 1977.) (II, 2) is
then the space of point processes. For a large class of point processes, Matthes, Warmuth
and Mecke (1979) introduced the concept of the Papangelou kernel, which is in close
relation to the conditional intensity as defined in Papangelou (1974) and Kallenberg (1978).

Let 7; be the Poisson process with intensity i, and, for some probability measure A on
(I, #), let n,, denote the Papangelou kernel of the Cox process 7 directed by /. One can
check the following formula:

N, (0) = J iBa(w, di), 7raa. .

Thus, in the terminology of Section 3,7,, turns out to be the Bayes estimator b belonging
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to /A, and our theorem directly applies as a characterization of a certain class of Cox
processes which are discussed in Glotzl et al. (1980), and which appear, e.g., as limits of
“randomly shifted point processes” (see Debes et al., 1971, Kerstan and Fichtner (forth-
coming), and Kallenberg, 1978).
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