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PROBABILISTIC VERSION OF A CURVATURE FORMULA

By VLADIMIR DROBOT

University of Santa Clara

Let A be a C? curve of length L(A) in some Euclidean space. Let P, be a
sequence of randomly chosen polygons with n vertices which are inscribed in
A. Tt is shown that with probability 1

lim n’[L(A) — L(P,)] = % f k*(s) ds

A

where « is the curvature.

Let A be a C? curve of finite length L(A) in some Euclidean space E. For each n let P,
be the longest polygon of at most n sides that can be inscribed in A. It was shown in [1] by
A. M. Gleason that

3
0 ds)

where «(-) is the curvature. The object of this note is to show that a similar result holds
when the polygons P, are chosen at random, the only difference being the value of the
limit on the right hand side of (1). Thus, at least as far as the rate of convergence is
concerned, approximating by random polygons is as good as approximating by the best
fitting polygon. More precisely, we have the following.

. —— _1
) lim,.n*(L(A) = L(P,)) = 5 ( j

A

THEOREM. Let f:[a, b] > E be a C* curve parametrized by the arclength so that
| £'(s)ll = 1. Let X1, X, -+ - be a sequence of independent random variables, uniformly
distributed on [a, b]. For each n let

a=Xon) =Xi(n) =Xe(n) = -+ = Xo(n) = Xoni(n) = b

be the nth order statistic of X1, X, + - -, X,; i.e. the values of these variables arranged in
a nondecreasing order. Let V, = f(X,(n)) and let P, be the polygon with (consecutive)
vertices Vo, Vi, - -, Viui1. We have, with probability 1

b
(2) limn’[(b — a) — L(P,)] = EJ k*(s) ds

where k(s) = || f"(s)|| is the curvature.

The quantity b — a is, of course, the length of the curve. We will present, for convenience,
the proof in the case [a, b] = [0, 1], the modifications needed in general case are more or
less obvious. We need several lemmas first.

LemMMA 1. Leté;, &, - - - be a sequence of independent, identically distributed random
variables with finite third moments (d = E(| & |°) < «). If u = E(&,) then

g

where C is a constant depending only on ¢, u and d.
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Proor. This is an immediate corollary of a result in [3] (page 54, Theorem 2.6.3).

LEMMA 2. Let X;, Xs, - - - be a sequence of independent random variables, uniformly
distributed on [0, 1]. For each n, let X,(n) < Xo(n) < - .. < X,(n) be the values of X,, X,
.-+, X, arranged in a non-decreasing order (nth order statistic). Put Xo(n) = 0, X,+1(n)
= 1 and define U;(n) = X;+1(n) — X;(n), j=0,1,2, ..., n. We have for every0 <t =<1 and
everyp>1

3) lim,_(n + 1) Y124 (U;(n))” = tI'(p + 1)  almost surely.

Here [ -] is the greatest integer function.

Proor. Let Yy, Yy, --- be a sequence of independent random variables, all exponen-
tially distributed (P(Y, =x) =1—e *ifx=0). LetS, = Yo+ Y1 + ... + Y,. It is well
known that for each n the vectors (Uy(n), Ui(n), -, Un.(n)) and (Yy/S., Y1/S., +--,
Y,/S.) are identically distributed (see [2], page 242). To show (3) it is enough to establish
that for each e > 0

(4) Pl(n + 1)7! E[J":‘(]) Uin))y >tp+1)+e]= O(%)
(5) P+ )P S U ) <Hp+ 1) — €] = 0(%)

The result will then follow by a standard application of Borel-Cantelli theorem. We will
show (4) only, the case of (5) is completely analogous. By the preceding remarks we must
show that

Pl(n+ 173 y28,7 > T (p + 1) + €] = O(n7?).

Jj=0

Now

P
(n+ 17 S Y7857 = <["’] h 1)( Ly Y;’)(n : sn> .

n+1 [nt] + 1 +1

Thus we must show that

_ 1 (nt] i 1 P n+1 B L
PlA,] = P[(W] I Y,>/<n — sn> > <——-—[nt] n 1) eT(p+1) + e)] =0(n™).

For n sufficiently large we have

n+1
Let { > 0 be such that ((p + 1) + ¢/2)(1 — {) > I'(p + 1) + ¢/4. Let the sets B,, C. be
defined by the conditions

1
B, = [Wzm Y?>T(p+1)+ 8/4]

(6)
= 1 Y
Cn—[n+lSn>(1 ) ”}.

Since E(Y?) = I'(p + 1), the direct application of Lemma 1 gives P[B,] = O([nt]™?) =
O(n™?) and P(C,) = O(n™?) (C. denotes the complement of C,,). Since it is clear that P[A,]
= P[B.] + P[C,] the result follows.

LEMmMA 3. Let g(x) be a continuous, real valued function on [0, 1], let X, X,, --- be
a sequence of independent random variables, uniformly distributed on [0, 1]. Let X;(n)
and Uj(n) be defined as in the statement of Lemma 2. Then with probability 1
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1
() limpew(m + 177 Yo gXm)N(U, (0))? =limpwAn, p,g) =T(p + 1) f &g(x) dx.
0

Proor. First we show that (7) holds for the function 1j(x), the characteristic function
of the interval [0, ¢]. It follows from Lemma 2 that if 0 < ¢ < s < 1 then with probability
1
(8) lim,—o(n + 1) T (U;(n))” = (s = )'(p + 1).

J=[nt]

Let 0 = ¢ = 1 be fixed and let € > 0 be given. Let j:(n) be the largest subscript j for which
X;(n) = t. The SLLN implies that (1/n)j,(n) — ¢ a.e. Thus for n large enough we have
[n(t — e)] =Jji(n) = [n(t + ¢)]. Hence

9) |An, p, 1) — (n + 1P ZE’;’(]) (Ui(n))? | = (n + 1) B’;‘{,f&i,] (U (n))*.

It follows from (8) that the right hand side of (9) converges a.e. to 2 ¢ I'(p + 1) and Lemma
2 implies that the sum inside the absolute values converges a.e. to tI'(p + 1). Since & was
arbitrary, we see that (7) holds for g = 1jo,. It is clear that if (7) holds for functions gi(x)
and g2(x) (not necessarily continuous) then it also holds for their linear combination a;81(x)
+ asg2(x). It is also clear that if g;(x) =< g2(x) then A(n, p, g1) = A(n, p, g2). We have just
shown that (7) is true for the function g(x) = 1o4(x). Thus (7) is true for a characteristic
function of any interval [a, b] since 1ja5 = ljop) — lj0,e] and thus for any simple function
s(x) = Y1 a;1;(x) where I'’s are disjoint intervals. If g(x) is a continuous function, choose
s1(x), s2(x) to be two such functions so that s;(x) = g(x) < sa(x). We have then

1 V 1
I'(p+1) j s1(x) dx = lim inf, A(n, p, g) < lim sup,A(n,p,g) =T'(p +1) f $2(x) dx.
0 0

The result now follows, since s;(x) and s»(x) can be chosen arbitrarily close to g(x).
We are now ready to prove the main theorem. We recall a result from [1]. If £:[0, 1]
— E is a curve parametrised by the arclength then

(10) h—|ft+R) —fO)] = 2—14 K> (A1 + 0(1)) as h—0

where 0(1) is uniform in ¢. Hence

n(b—a) = L(P)] =1 T {((n + 1) = 5() — | Ver = V|13
1
= 7 Lo 57 X () [ U () = Uy () (1 + o(D).

The last equality is justified by (10) if we take & = Xj,1(n) — X;(n). By Lemma 3 this last
expression approaches (1/24)T'(3 + 1) [§ k*(s) ds = % [§ k*(s) ds with probability 1.
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