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CONDITIONAL GENERALIZATIONS OF STRONG LAWS WHICH
CONCLUDE THE PARTIAL SUMS CONVERGE ALMOST SURELY'

By T. P. HiLL
Georgia Institute of Technology

Suppose that for every independent sequence of random variables satis-
fying some hypothesis condition H, it follows that the partial sums converge
almost surely. Then it is shown that for every arbitrarily-dependent sequence
of random variables, the partial sums converge almost surely on the event
where the conditional distributions (given the past) satisfy precisely the same
condition H. Thus many strong laws for independent sequences may be
immediately generalized into conditional results for arbitrarily-dependent
sequences.

1. Introduction. If every sequence of independent random variables having property
A has property B almost surely, does every arbitrarily-dependent sequence of random
variables have property B almost surely on the set where the conditional distributions
have property A?

Not in general, but comparisons of the conditional Borel-Cantelli Lemmas, the condi-
tional three-series theorem, and many martingale results with their independent counter-
parts suggest that the answer is affirmative in fairly general situations. The purpose of this
note is to prove Theorem 1, which states, in part, that if “property B” is “the partial sums
converge,” then the answer is always affirmative, regardless of “property A.” Thus many
strong laws for independent sequences (even laws yet undiscovered) may be immediately
generalized into conditional results for arbitrarily-dependent sequences.

2. Main Theorem. In this note, ¥ = (Y3, Y2, --+) is a sequence of random variables
on a probability triple (Q, &7, #), S, = Y1 + Yo + --- + Y,, and %, is the sigma field
generated by Yy, ..., Y,. Let m,(-, -) be a regular conditional distribution for Y, given
Fn-1, and Il = (my, 72, - - -). Let # denote the Borel o-field on R, and £~ the product Borel
o-field on R™; let 2(R) denote the space of probability measures on (R, %), and let € =
P(R) X P(R) X ---. (It might help the reader to think of ¥ as a random element of R,
and of IT as a random element of %.) As a final convention, let #(X) denote the distribution
of the random variable X.

Let B € #*. With the above notation, the question this note addresses is: when is the
following statement (S) true?

(S) If A C %is such that (X;, Xz, .- -) € B a.s. whenever X, X5, - - - are independent
and (£(X;), #(Xz), -+ ) € A, then for arbitrary ¥, ¥ € B a.s. on the set where
II € A.

A partial answer is given by the following.

THEOREM 1. (S) holds in the following three cases:
(i) B= {(r1, re, -++) € R*:Y% rj converges};
(i) B =liminfoo{(r1, re, ++) 11 € An}; and
(ili) B = lim supn_o{(r1, 12, +++):rn € A}, Wwhere A, € B, (n=1,2, -..).
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3. Applications of Theorem 1. As a first “application” of Theorem 1, consider the
following two well-known conditional results (both of which will be used in the proof of
the Theorem): Levy’s conditional form of the Borel-Cantelli Lemmas [4, page 249],

(1) For any sequence of random variables Y, Y3, - -- taking only the values 0 and 1,
X1 Y, is finite (infinite) almost surely where Y E(Y,| 1) is finite (infinite);

and the conditional three-series theorem [e.g., 5, page 66],

(2) For any sequence of random variables Y, Yz, :- -, the partial sums S, converge
almost surely on the event where the three series

X P Y| = c|Fa), BT E[YaI(| Yo| = ¢)| 1], and
STAELYA(| Yo =c¢) |Z-1] — EY,.I(| Ya| =) | 1]} all converge.

Both results (1) and (2) follow immediately from Theorem 1 and their classical
counterparts for independent sequences. Similarly, in many martingale theorems the
independent case is also the extremal one. As a second application of Theorem 1, for
example, note that the following martingale results of Doob [2, page 320] and of Chow [1]
follow immediately from (i) and the special case of independence:

) If {Y,, %, n =1} is a martingale difference sequence, then S, converges a.s. where
Y* E[Yh]|Fo1] < o; and

(4) If {Yx, %, n = 1)} is a martingale difference sequence and {b,, n = 1} is a sequence
of positive constants such that Y7 b, < o, then S, converges almost surely where
YT baPE[| Y. |?| Fr-1] < o for some p > 2.

Via Theorem 1 (i), one may deduce immediately a conditional generalization of practi-
cally any result for sequences of independent random variables in which the conclusion is
“Sn converges almost surely.” Although the above applications all have hypotheses
involving conditional moments, virtually any hypothesis conditions will carry over. As one
final example, consider the well-known fact [e.g., 5, page 102] that if Yy, Y, -.- are
independent and S, converges in probability, then S, converges almost surely. Theorem 1
allows the generalization of this fact given by Theorem 2 below.

DEFINITION. A sequence of probability measures U1, Mo, -++ on (R, #) sums in
probability if, for any independent sequence of random variables X;, X,, - -+ with 2(X,)
= u;, it follows that X; + ... + X, converges in probability.

THEOREM 2. Let Yy, Yo, --- be an arbitrarily-dependent sequence of random vari-
ables. Then S,(w) converges for almost all w such that m (w), m(w), --+ sums in
probability.

4. Proof of Theorem 1. For fixed B € #*, consider the statement
(8%) P({w:Pnw(B) =1} N Y &B) =0,
where Pry,, is the product measure 7;(w) X 73 (w) X --- on (R*, B).
Without loss of generality, assume (2, .«Z, P) is complete.
LEMMa 1. (S) & (S').

Proor. “=” Let A = {ji € C:P; (B) = 1}. Then {w:Pu,)(B) = 1} = {w:I1(w) € A},
so P{w:Pny(B) =1} NYEB)=P({w:Tl(w)EA}NY ZB) =0.

“<" Since {w:Il(w) € A} C {w:Pnwy(B) = 1} € o, it follows (by completeness) that
Pow:Ilw) EAYNYEZB)=P({w:Pnw(B) =1} NY&B) =0. d

Proof of Theorem 1. For (i), Lemma 1 impliesAit is epough to show that (S’) holds
for B = {(r1, rz, --+) € R™:Y% r, converges}. Let (@, &, P) be a copy of (R, &/, P), and
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(enlarging this new space if necessary)Afox:\ eflch w E Q, let Z1(w), Z2(w), +-- be a sequence
of independent random variables on (£, & P) with #(Z, (w)) = 7,(w), (that is, P(Z,(w) €
E)=m(w,E)=P(Y,€EE|Y1(w), -+, Yo1(w)). Then

(5) P{w:Pnw(B)=1}NYE&B)
=P({w:Z1(w) + +-+ + Z,(w) converges a.s. (inQ, &, P)} NY & B)

= P({w:the three series ¥ P(|Z,(w)| = 1), X7 E(Z.(0)-1(|Z,| = 1),
and Y7 Var(Z,(w)-1(] Z,| < 1)) all converge} N Y & B)

= P({event where the three series }T P(| Y.| = 1| %.-1),
SYE(Y, I(|Yo| = 1) |F-1), and Y7 [E(Y2-I(| Yn| = 1) | Fm1) —
EXY,I(|Y.| =1)|%-1)] all converge} N Y & B) =0,

where the first equality in (5) follows by the definition of Z, (w), the second by Kolmogorov’s
Three-Series Theorem and independence of the {Z;(w)}, the third by definition of Z, (w)
and 7,, and the last by the conditional three series theorem (2). This completes the proof
of (i).

For (ii) and (iii), application of the same technique using, in place of the three-series
theorems, the classical and (Levy’s) conditional form (1) of the Borel-Cantelli lemmas
yields the desired conclusion. - 0

5. Remarks. The class of sets B € #* for which (S) and (S’)hold is not closed under
complementation; a counterexample to the converse of the conditional three-series theorem
due to Dvoretzky and to Gilat [3] demonstrates that (S) does not hold in general for B =
“S, does not converge.”

The following example shows that (S) does not hold for B = “lim sup S,./a, = 1.”

ExaMPLE. Let Y, = S, — S.-1, where {S,} are iid, P(S, =0) = P(S, =1) = %
There are only two possible conditional laws: 7 = 8,/2 + 8:/2 and 7 = 8/2 + 8_.1/2.
Construct Z, as in the proof of Theorem 1. Then the unconditional distribution of {Z,}.=2
is i.i.d. with law P(Z,=1) = P(Z, = —1) = %, P(Z, = 0) = %. So lim sup Y1 Z;/a. = 1 for
a, = (n log log(n/2))"/, while lim sup ¥} Y:/a, = 0.

Whether (S) holds for “S,/n — 0” is not known to the author.
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