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Let (T, T2) and (L,, L;) be two independent bivariate random vectors
with distributions F' and H. Let 7, = min(T,, L), 7o = min(T%, L) and let
Go,o(s, t) = P{T] =§ 1= t, T] = Ll, T2 = Lg}, GO,l(S, t) = P{T] =§ 1= t, T]
<L, L:< Tg}, Gl,o(S, t) = P{’T] ss,n<t,Li<T,T:< Lz} and Gi,(s, t) =
P{ri=<s,1e=<t L < T, Ly < T2}. Under mild conditions the distributions F
and H are expressed explicitly as functionals of Gop, Go:, Gio and Gi;.
Necessary and sufficient conditions for the formulas to hold even when (T4,
T,) and (L., L) are not independent are derived. Numerous applications are
indicated. Extension of the results to p-dimensional distributions (p > 2) is
given.

1. Introduction and summary. By observing a series system of d components (d
= 2,3, ...) we can only determine its /ifelength and the components that cause the system
to fail. In particular the lifelength of a series system that consists of a nonempty subset of
the original d components is unobservable. We refer to the distribution function (d.f.) of
the lifelength of this series system as an unobservable d.f. For example, some of the
original d components, such as wires and switches, may be placed in the system to support
the operation of the main components. The d.f. of the lifelength of the series system that
consists only of the main components is of great importance to the theory of engineering
reliability but is unobservable.

Langberg, Proschan, and Quinzi (LPQ) (1978), although addressing themselves to a
different problem, present, in particular, a way to relate the unobservable d.f.’s to observ-
able quantities (see Theorem 4.1). First, LPQ (1978) define 2¢ — 1 observable subdistri-
bution functions (s.d.f.’s). The value of an unobservable s.d.f. at the point s(s = 0) is the
probability that the original series system fails at a time less than or equal to s as a result
of the simultaneous failure of a particular nonempty subset of the d components and of no
other components. Then LPQ (1978) express the various unobservable d.f.’s as functionals
of the observed s.d.f.’s, whenever the lifelengths of the d components are independent and
satisfy a mild regularity condition. Thus, they provide the researchers in the theory of
engineering reliability with a theoretical tool to determine the unobservable d.f.’s. The
problem of relating unobservable d.f.’s to observable s.d.f.’s has been considered by several
other researchers such as Peterson (1975), Tsiatis (1975), and Miller (1977).

The theoretical relationship discussed in the previous paragraph suggests a “naive”
method of estimating the unobservable d.f.’s. LPQ (1981) consider the problem of estimat-
ing the various unobservable d.f.’s based on data collected from n independent and
identical series systems each consisting of d components. First, LPQ (1981) estimate the
observable s.d.f.’s by their empirical counterparts. Then they replace the observable s.d.f.’s
by their empirical estimators in the respective functionals. Using this method LPQ (1981)
obtain the Product Limit Estimators (P.L.E.’s) for the observable d.f.’s, first introduced by
Kaplan and Meier (1958).

Received August 1980; revised April 1981.

! Research supported by the Air Force Office of Scientific Research, AFSC, USAF, under Grant
AFOSR-78-3678.

% Research supported by N.S.F. grant NCS-79-27150.

Key words and phrases. Identifiability of distributions, Product limit estimators, censored data,
multivariate distributions.

AMS 1980 subject classification. Primary 62N05, secondary 62E10.

773

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability. STOR

d ®
www.jstor.org



774 N. A. LANGBERG AND M. SHAKED

An important statistical problem is to test whether the life distribution of a component,
F, is exponential versus various wearout classes of alternatives on the basis of a random
sample from the d.f. F in the absence of the other d — 1 nuisance components. Tests for
these hypotheses have been proposed, for example, by Proschan and Pyke (1967), Barlow
(1968), Bickel (1969), Bickel and Doksum (1969), Barlow and Doksum (1972), Hollander
and Proschan (1972), (1975), (1979), and Koul (1977), (1978a), (1978b). There seems to be
a growing interest among statisticians to test these hypotheses in a more realistic situation;
when additional “nuisance” components are present. Koul and Susarla (1978) and Chen,
Hollander, and Langberg (1980a), (1980b) suggest tests for some of the hypotheses
described above based on the P.L.E.

In this paper we present a formula that relates unobservable multivariate d.f’s to
observable multivariate s.d.f.’s. This formula suggests further development of statistical
estimation and testing procedures concerning multivariate d.f’s in the presence of
“nuisance” components. A recent study in this direction is the work of Campbell and
Foldes (1981).

Assume that a pair of individuals, a wife and a husband for example, are under study.
The observation of each of the two individuals is terminated in the event of death or in
case of a withdrawal from the study. The joint lifelengths of the two individuals is of great
importance to the theory of biostatistics but is unobservable.

In Section 2 we relate the unobservable joint life distribution of the two individuals to
observable quantities. First we define 4 observable joint s.d.f.’s. The value of an observable
joint s.d.f. at times ¢, s(¢, s = 0) is the probability that the two individuals are removed
from the study at times less than or equal to ¢ and s, respectively, as a result of a specific
combination of deaths and withdrawals. Then we express the unobservable joint d.f. as a
functional of the observable s.d.f.’s, whenever some mild conditions hold. Thus we provide
the researchers in biostatistics with a theoretical tool to determine the unobservable d.f.

In Section 3 we consider a group of p individuals, p = 1, 2, - - -, a family for example,
and assume that each individual is exposed to d risks, d = 2, 3, - -. Using the results
obtained in Section 2 we relate the joint d.f. of the times to deaths of the p individuals
fromrisk j,j =1, - - -, d, to the observable s.d.f.’s. The value of an observable s.d.f. at times
ti, « -, by(ts, + -+, t, = 0) is the probability that the p individuals die at times less than or
equal to ¢y, - - -, t,, respectively, as a result of the occurrence of a specific combination of
risks.

Finally, we note that although we have chosen to employ the languages of reliability
theory, biostatistics and the theory of competing risks (series system, components, death,
withdrawal, risks, etc.) the results presented here apply to any model where observations
include (1) the time at which a particular event occurs and (2) the cause(s) of the
occurrence of the event. This is the case, for example, in mortality studies (Hoel, 1972) and
some mathematical epidemiology models (see Billard, Lacayo and Langberg, 1979; Lacayo
and Langberg, 1980a, 1980b; and Langberg, 1980.)

Throughout we define a product over an empty set of indices as 1 and an integral over
an empty set as zero.

2. The bivariate case. Consider a pair of individuals, a wife and a husband for
example, with lifelengths T, and T,. The observation of each of the two individuals is
terminated in the event of death or in case of a withdrawal from the study. Let L; and L,
denote the withdrawal times of the two individuals respectively. We assume that the
random variables (r.v.’s) Ti, T:, L; and L, are defined on a common probability space (€,
3, P).

In this section we present the joint d.f. of the lifelengths (T}, T%) as a functional of
observable quantities. To be more specific we introduce two definitions and some notation.

DeriNITION 2.1. We say that individual i is removed from the study due to death
(withdrawal) and write & = 1(,, =2) if T, < L{L, < T),i =1, 2.
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DEFINITION 2.2. Let K be a function defined on (—o, »). We say that K is a
subdistribution function (s.d.f.) if K is nondecreasing, right-continuous, and assumes values
in [0, 1].

Let 7, = min{T}, L;} be the removal time of individual i, and let G; be the d.f. of 7;, i =
1, 2. Further, let F(t, s, 1, I) = P{ri < t, o< s, & =11, & = L}, I, I, € {1, 2} be the
observable joint s.d.f.’s and let M(¢, s) = P{T: < t, T> < s} be the unobservable joint d.f.
of the lifelengths of the two individuals under consideration. For a s.d.f. K, let K(¢) =
lim,,.K(s) — K(t) be the subsurvivalfunction corresponding to K, and let a(K) =
sup{¢: K(t) > 0}. In this section we present the d.f. M(-, -) as a functional of the s.d.fs:
F(., ., I, I,), I, I, € {1, 2}. Formally, G, and G, will also appear in the expression for M
notice however that G, and G; are determined by F(-, -, I, I,), I, I, € {1, 2}.

We will assume that:

(A.1) The lifelengths (T:, T3) and the withdrawal times (L, L,) are independent random
vectors, and that

(A.2) For i = 1, 2, the functions P{r; < ¢, ¢& = 1} and P{r; < t, £ = 2} are continuous in ¢
€ (—00, °°)

REMARK. Assumption (A.2) can be weakened by assuming only that, for i = 1, 2, the
two sets of discontinuity points of P{r; < -, & = 1} and of P{r; =< ., & = 2} are disjoint.
Generalizations of the results below are then possible and are available in Langberg and
Shaked (1980).

First, we reduce the problem of obtaining the desired functional that relates the
observable joint s.d.f.s to the unobservable joint d.f. concerning two individuals to a
similar, but simpler problem, concerning only one individual. Note that by Assumption
(A1)

P(Ty>t, Ty > s} = P(Ty > t| To > s}P{Ty > s}

2.1 = P{Ty>t|7:>s}P{T;>s) for tE€ (-w, ), sE (—o,alGs)),
(2.2) The r.v.’s T; and L, are independent,
and that

For s € (—», a(G:))the conditional r.v.’s
23) {Ti|72>s} and {Li|72>s} areindependent.
Further, by (A.2):

For s € (—», a(Gy)) functions P{r; <1, & = 1|12 > s} and
(2.4)
P{ri=1,& =2|72>s) are continuous in ¢ € (-, ®).

Observe that to express M(-, -) as a functional of the s.d.f.’s: F(-, -, I}, I,), I, , = 1, 2,
it suffices (a) to express P{T: > -} as a functional of the s.d.f’s: P{r. < ., Tz < L,}, P{rs
= ., Ly < T3}, (b) to express P{T; > - | 7, > s} as a functional of the s.d.f’s: P{r; < -, T}
=Li|72> s}, P{r1 = -, L1 < T1| 72 > s) for every s € (—o, a(G,)) and (c) to insert these
functionals in Equation (2.1). This is done in Theorem 2.4, but first we need some
preliminaries.

Let T and L be two independent r.v.’s representing, respectively, the lifelength and
withdrawal time of a single individual. Further, let 7 = min{7, L} be the removal time of
the individual from the study and let G denote the d.f. of . We express now the
unobservable survival function: P{T > -} as a functional of the observed s.d.f.’s: P{r < -,
T =L}, P{r=-,L <T}. The result is a restatement of Equation (3.5) of LPQ (1978).
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LEMMA 2.3. Assume that

(A.3) Ther.v.’s T and L are independent and that
(A.4) The functions P{r < t, T< L} and P{r < t, L = T} are continuous. Then, for t €
(=, a(@)),

(2.5) P{T>t} = exp{— j [G(@)]'dP{r=a T=< L}}.

We return now to our original problem, and present the functional that relates the joint
d.f. of the lifelengths of the two individuals considered to their observable s.d.f.’s.

THEOREM 2.4. Assume (T, T2, L1, L;) satisfies Conditions (A.1) and (A.2) and let
ays = sup{t:P(r; > t| 12 > s) > 0}, s € (—», a(Gy)). Then for (t, s) € {(u, v):v € (—o,
a(GZ)), ueE (00, al,v)}:

P{T, >t To>s} = exp{— f [Gow)] ' dP{resu, To < LZ}}

(2.6) ,
-eXp{—J’ [P{Tl > U|72>S}]—1 dP{'Tl = v, T15L1|7'2>S}}.

Proor. First note that, by Assumptions (A.1) and (A.2), Conditions (A.3) and (A.4)
hold for (T, L) = (T, Ls). Thus, by Lemma 2.3 for s € (—», a(Gs)):

(2.7) P{T,> s} = exp{— f [Go)] dP{ra=u, Ty < Lz}}.

Let s € (—x, a(G;)). Note that by Assumptions (A.1) and (A.2), Conditions (A.3) and (A.4)
hold for the random pair (7, L) that is stochastically equal to the conditional random pair
[(T4, L1) | 72 > s]. Thus, by Lemma 2.3 for ¢ € (— o, ay,):

t
(28) P{Ti>t|re>s)= exp{— f [P{ri>v|re>8}] " dP{ri=v, Ti = L| 12> s}}‘

Consequently the desired result follows by Equations (2.1), (2.7) and (2.8) by inser-
tion. 0O

Next we note that the relationship between the unobservable d.f. and the observable
s.d.f.’s given by Equation (2.6) holds for some cases where the independence asssmption,
given by (A.1), does not hold. First, we present a necessary and sufficient condition for the
relationship given by (2.6) to hold. Then we give an example for which Assumption (A.1)
does not hold, however the desired relationship, given by Equation (2.6), holds. We need
the following lemma.

LEmMaA 2.5. (LPQ (1981), Theorem 4.4). Let (L, T') be a pair of r.v.’s defined on a
common probability space as in Lemma 2.3, but now do not assume Condition (A.3) or
(A.4). If G(.) is continuous on (—», ) then Equation (2.5) holds if and only if the
following condition is satisfied:

(AB) Fort € (—», a(G)), P{L=¢t|T=t¢}
= P{L > t| T > t} a.s. with respect to P{T < .}.

We are ready to present the necessary and sufficient conditions.
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THEOREM 2.6. Let Ti, Ly, T, and L be r.v.’s defined on a common probability space.
Assume that Condition (2.1) holds, that P{T: < -} is continuous on (—», ») and that
P{T: = ., 12> s} is continuous on (—ow, ») for every s € (—», a(Gs)). Then Equation (2.6)
holds if and only if the following conditions hold:

(A.6) For s € (—, a(Gs)), P{L: = s|T> = s}
= P{Ly > s| T; > s} a.s. with respect to P{T; < .},
(A.7) For t € (=, a1,), s € (—, a(Gy)),
PlLizt|re>s,Ti=t} =P{Li>t|r>s Ti>t)

a.s. with respect to P{T, < - | 12 > s}.

Proor. Note that
(2.9) P{TzEB, TzSLz} =J P{L22u|T2=u} dP{TzSu}

B

for all Borel sets in (—ow, a(Gs)) and that

(210) P{T] EB,T15L1|72>S}=f

P{Lizu|r:>s, Ti = u} dP{T1 < u| 7 > s}
B .

for all Borel sets in (—», a(GY)).

First, assume that Conditions (A.6) and (A.7) hold. Then Equation (2.6) follows by
substitution and by Equations (2.5), (2.9) and (2.10).

Now, assume that Equation (2.6) holds. Then, in particular, the equation holds for ¢ =
0, s € (=, a(Gz)). Condition (A.6) follows now by Lemma 2.5. Since from (A.6) the pair
(T2, L) satisfies Equation (2.5), it follows from Equations (2.1) and (2.6) that the
conditional pair ({T}| 72 > s}, {Li| 72 > s}), s € (—o0, a(G)) satisfies Equation (2.5). Thus,
Condition (A.7) follows by Lemma 2.5. O

Finally we present an example where the independence assumption, given by (A.1),
does not hold, but the desired relationship given by Equation (2.6) is satisfied. The
following definition is needed.

DEFINITION 2.7.  (Marshall and Olkin, 1967). Let A7, ¢ # IC {1, - - -, n} be nonnegative
real numbers, Yyxrc(1,...n;y Ar> 0, and let V;, ¢ # IC{1, - - -, n} be independent exponential
r.v.’s with rates A;, ¢ # IC{1, - -, n}, respectively. The random vector (Uj, ---, U,) has
a Marshall-Olkin Multivariate Exponential Distribution (M.0.M.E.D.) with parameters
Ar, ¢ # IC{1, - -+, n} if the two random vectors (U,, -+, U,) and (min{V;:I,1 € I}, ...,
min{V;:1, n € I'}) are stochastically equal.

ExampLE 28. Let (Uj, ---, U,) have a M.O.M.E.D. with parameters A7, ¢ # IC{1,
-++, 4}, and let us assume that (T}, T3, L1, L) and (Uy, - - -, Uy) are stochastically equal.
Let a1, 8 € (—, a(G>)) be as in Theorem 2.4. Note that a(Gs) = a1s = , and that the two
random pairs (T4, T5) and (L1, L,) are not necessarily independent. We want to show that
Formula (2.6) holds. To obtain the desired result it suffices, by Theorem 2.6, to verify
Equation (2.1) and Conditions (A.6) and (A.7). These two conditions follow by some simple
calculation with independent exponential r.v.’s. Equation (2.1) does not hold in general,
however if A(134) = A(14y = 0, then Equation (2.1) holds.

Note that by Assumption (A.1)

P{(T1>t, T, >s} = P{To>s|m > t}P{T, > t}
(2.11)
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Thus, Theorems 2.4 and 2.6 hold when we exchange T: and T%, L, and L; and (2.1) and
(2.11).

Finally, note that if we exchange T and L; and T> and L, then Theorems 2.4 and 2.6
hold for the random pair (L, Ls).

3. The multivariate case. Consider a group of p individuals, a family for example, p
=1, 2, -.., and assume that each individual is exposed to d risks, d = 2, 3, --.. Let us
denote the time to death of individual i from risk j by a nonnegative r.v. T, ;, i =1, - .-, p,
and let Tp; = oo, j = 1, ..., d. Assume that all these r.v.’s are defined on a common
probability space (2, 4, P).

In this section we present the joint d.f. of the times to death of the p individuals from
riskj: P{T,=< -, ---, Tq, = -} as functional of observable quantities. To be more specific
we introduce some notation. Throughout we fix the risk considered and denote it by j. Let
L;j=min{Ty,,q=1,--.,d, g #Jj}, let 7, = min{L,,, T;;} be the lifelength of individual i
and let G; be the d.f. of 7,, i =1, - -+, p. Further, let §;; = 1 on the set {7}, < L;;}, and =
2ontheset {L,;<T;,},i=1,.--,p,let M(t1, -+, t,) = P{Tij<t,i=1,---,p} be the
probability that the p individuals die at times less than or equal to ¢y, - - -, £,, respectively,
from risk j in the absence of all the other risks, and let F;(¢1, ---, &, I1, - -+, I,) = P{m: <
t,¢i=L,i=1-.--.,p},;=1,2,i=1, --., p, be the observed s.d.f.’s: the probability that
the p individuals die at times less than or equal to ¢, - - -, £,, respectively, as a result of a
specific combination of risks. In this section we present each of the unobservable d.f.’s
My (-, ---, -) as a functional of the observed s.d.f.’s: Fj(-, ---, -, I, - - -, I)), provided that:

(B.1) The random vectors (T'iq, +++ Tpq), ¢ =1, - - -, d are independent, and that
(B.2) Forr =1, - .., p the functions

P{r, = .,§,=1} and P{r, =< -, §.,, = 2} are continuous on (—oo, ).

THEOREM 3.1. Let

aye, = sup{t:P{r1 >t} >0}, Qriy -t = SUP{t:P{1. > t| 11> t1, -+, 71> t-1}),
t < ey, tr < Qgptyy * 005 br < Qe oty r=2.-.,p, by =—.

Assume Conditions (B.1) and (B.2) hold. Then for (to, ---, t,) € {(uo, -+, Up):Uo = —o,
u < Orug,.ur-1y ' = 1) . "P}’

P{Tw>tl) A Tp,j>tp}

),
(3.1) = exp{— 3 f [P{rr>a, 7> t;,i=0, -, r— 1}]"

dP{r,=a,&,;=1,71>1t,i=0, ~--,r—1}}.

Proor. First, note that by Condition (B.1)
P{Ti;j>t, -+, Tp; >t} =[[2=1 P{Tr; > t,| Tij>ti, i =0, -- o, 7 — 1}
=[] P{T, ;> t|1.>¢t;,i=0, ---,r — 1}.
Consequently the desired result follows now by Condition (B.2) and Theorem 2.4 applied
to the conditional pairs [{T;, L,,;} |7 > t;,i=0,-+--,r—1]r=1,-.-,p. O
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