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MARTINGALES WITH GIVEN CONVEX IMAGE

By P. Prinz

Ludwig-Maximilians-Universitdt-Miinchen

Let ¢ be a convex function. A sufficient condition is given that a submar-
tingale is equal in law to the g-image of a martingale. It follows that each
nonnegative submartingale, without any assumption on the regularity of the
paths, can be obtained as the absolute value of a martingale.

A theorem of Gilat [3] states that each nonnegative right continuous submartingale S
= (S)=0 can be obtained as the absolute value of a martingale M = (M), possibly
defined on a different probability space. An explicit construction of M was given by Barlow
[1], [2], and in case of a strictly positive submartingale by Protter and Sharpe [5] and
Maisonneuve [4]. As it was pointed out by Yor ([2], Theorem 3) not every nonnegative
submartingale can be represented as the image of a martingale under a given nonnegative
convex function ¢ with @(0) = 0. In this paper we give a sufficient condition that a
nonnegative submartingale S is equal in law to the ¢-image of a martingale M. No
assumption on the regularity of S, neither on the filtration nor on the paths, is needed. In
particular it follows that any nonnegative submartingale is equal in law to the absolute
value of a martingale. )

Let ¢: R — R be a convex function. If ¢ is isotone then M is essentially determined by
S. Therefore we may assume that ¢ is nonisotone with ¢ = 0 and ¢(0) = 0. For each ¢ =0
set

@3'(t) = sup{r € R:¢(r) =t} € [0, +oof,
@' (t) = inf{r € R:p(r) = t} € ]—, 0].

We say that a process X is a martingale (submartingale) if it is a martingale (submar-
tingale) w.r.t. the “natural filtration” for X.

THEOREM. Let (T, <) be a linearly ordered set and (S;)er a nonnegative process
satisfying

(") (@7'oS)er and (—p='eS)wer are submartingales.

Then there exists a martingale (M,).cr (on a suitable probability space) such that (S).er
and (p°M,)er have the same distribution.

Condition (*) is necessary if ¢3' = c-¢-" holds for some ¢ > 0. Especially if ¢ is
symmetric, the distributions of (p:'°S)wer, (—p='°Si)wer and | M | have to be the same.
But in general, condition (*) is not necessary, which can easily be seen by considering a
positive martingale.

Note that if ¢+ and ¢=' are not “linear,” a nondegenerate martingale S can not be the
@-image of a martingale. This implies that there is no condition on ¢ alone (not involving
S) which ensures the existence of a suitable martingale M.

We prove the theorem for arbitrary T by using the validity of the assertion for finite 7.
Therefore we first establish the following lemma. To obtain the martingale (M;):er in this
case we will essentially apply the procedure due to Gilat.
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Henceforth let X be the projection of R* on R for ¢ € A C T instead of X7 we write
X;. The Borel-o-algebra of a topological space Y is denoted by % (Y).

LemmA. The assertion of the theorem holds for T = {1, - - -, n}.
Proor. 0. If A is any probability measure on 4 ([0, +oo[) with
my = f p'dA<+w and m_:= f @l d\ > —oo,

we define the new measure a(A, x) on R by

a\, 2) =T o)+ 0TI0) for Ae and x € [mo, ml;
miy — m-— my —m

a(eo, 0) := &, where & is the unit measure concentrated on 0. It is easily verified that

(1) f id da(\, x) = x;
R

@) Pla(d, x)) = A

1. For 1 < k < n let o, be the distribution of (S)).=x on R* and &,_1: R*1 X B (R) —
[0, 1] be the regular conditional distribution of X}, given Xj, - - -, X,_; relative to o,. Then
the assumption (*) is equivalent to

3w = J P (OG(Y1, -+ -5 s dE) < +oo

3) or-a.e.for 1<k<n.
oMy = f P B)GR(Y1, + -+, a3 dE) > —0

Without loss of generality we may assume that (3) holds for all (yy, - - -, y) € R% Hence
we can define fio := a(G, y) with an arbitrary y € [m_(Go), m+(5o)] and fie(xy, « - -, xs; +) :=
a(@r(p(x1), -+ -, @(x2); +), 2z) for l =k <n and (x1, -+, x3) € R*.

2.If p is the measure on % (R") corresponding to (fix)o<k<~ then clearly (1) implies that
(X¥)rer is a martingale with respect to u. Moreover from (2) it follows by induction on %
that the distribution of (poXi)ier is o.

ProoF OF THE THEOREM. Let J be the collection of all finite nonvoid subsets of T'
and A an element of 7. Set 04 to be the distribution of (S;)iea on R* and @5 == (95)ica
for v € {+, —}4.

1. The set Z4 == {pn| B(R*) : (p, - - -, @)(n) = 04} equipped with the weak topology is a
compact space. Indeed

(i) 24 is uniformly tight, since for a compact subset K of R* the set K’ := U, 0. (K) is
again compact and u(K’) = 64(K) holds for all p € 24. Further, the continuity of ¢ and
therefore of the map p— (¢, - - -, )(u) implies that

(ii) 24 is closed in the space of all probability measures on % (R4).

2. Ma = {n € P4: (X1)sea is a martingale with respect to p} is a nonvoid and compact
subspace of Z4. In fact, by the preceding Lemma, .#, is nonvoid. To prove that ./, is
closed and hence compact, we first show:

If g is a continuous function on R* satisfying

© J |gopy'| doa <o forall veE {+, —}4

then the map p — J g du is continuous on 24 .
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Set & :=Z,|gep, "' |. Then for ¢ > 0 there exists ¢ > 0 such that [(s>; # doa < ¢ and hence
J’ Igldusj hoq)d,u=J hdos<e forall pe .
(lgl>e) ¢ (h>c)) (h>c)

It follows that | u(g) — »(g)| < 3e for all », p € 24 with |u(—c\v g A ¢c) —v(—cvy g A )| <
e. This proves (C).

If f: R* - R is a continuous bounded function and r, s are elements of A with r <, it
follows from (C) by taking g = f- X/ resp. g = f-X& that the set {u € Z4:[ f-X# du =
[ f-X2 du} is closed. Consequently ., is closed.

3. Let 7§ denote the canonical projection of .#z on #, for A C B € 7 and

Mg = {(a) aes € [[aesr MHa:pa = m3(up) forall A, BE %, A C B}

for finite % C . Evidently .#, is a closed subspace of the product space [[aes #4 and
hence compact. Since we have U % € 7, .4 is also nonvoid. This shows

Mi=N{Mz:P% CT finite} # .

Let (ua)acs be an element of # and u|®.wer # (R) its projective limit. If A : RT—- Risa
measurable bounded function depending only on the coordinates ¢t € A with A € Z, then
by construction the equation [ 2-X, du = [ A-X, du holds for all r, s € T withmax A =r
< s. Thus the process (X;).er is a martingale with respect to u. Clearly (¢°X)er has the
same distribution as (S;).cr. This completes the proof.
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