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INVARIANCE PRINCIPLES FOR MIXING SEQUENCES
OF RANDOM VARIABLES

By Macgpa PELIGRAD

Centre of Mathematical Statistics, Bucharest

In this note we prove weak invariance principles for some classes of
mixing sequences of Ly-integrable random variables under the condition that
the variance of the sum of n random variables is asymptotic to o’z where o*
> 0. One of the results is simultaneously an extension to nonstationary case of
a theorem of Ibragimov and an improvement of the ¢-mixing rate used by
McLeish in his invariance principle for nonstationary ¢-mixing sequences.

1. Introduction. The aim of this paper is to prove some invariance principles for
mixing sequences of random variables under L, moment conditions, without assumptions
of stationarity. First we give an invariance principle for nonstationary y-mixing sequences
(Corollary (2.2)) that improves Theorem 10 of [5], showing that the condition Y, ¥(n) <
o may be dropped.

Another result (Corollary (2.4)) is an extension to the nonstationary case of the
invariance principle for g-mixing sequences proved by Ibragimov (1975). This result
improves the mixing rate used by McLeish (1975) in his invariance principles for nonsta-
tionary ¢-mixing sequences (Theorem (3.8)); (for example McLeish’s condition ¢(n) =
O[1/n(log n)***], e > 0 may be replaced by ¢ (n) = O[1/(log n)**], ¢ > 0. This also improves
the mixing rate used in Theorem (3.4) of [12].)

Finally, we obtain an invariance principle for nonstationary p-mixing sequences of
random variables, the mixing coefficient p being the maximal coefficient of correlation. A
central limit theorem for such sequences of random variables in the stationary case has
been proved by Ibragimov (1975), the mixing rate being Y p (2°) < . Our theorem gives a
functional form for Ibragimov’s result; however our mixing rate is more restrictive, namely
3 022 < oo. In Section 2 we summarize the invariance principles. Proofs of these
theorems are given in Section 3.

Our invariance principles are obtained for mixing sequences, under the condition that
the variance of the sum of n random variables is asymptotic to 6?n where o2 > 0. But it is
known that in the stationarity case this is a consequence of the condition Y} p (2% < o (see
Ibragimov, 1975). In Section 4 we give some conditions that are automatically satisfied for
stationary sequences of random variables, and these imply the condition quoted above.

Definitions, notations and ailxiliary results. Let (2, K, P) be a probability space
and K; and K; two o-algebras contained in the o-algebra K. Define the following measures
of dependence between K; and K by

| E(XX — EX)(Y — EY)|
DAY “EX)EA(Y — EY)?

(K, Kz) = supack, sex, | P(A N B) — P(A)P(B)|

p (K1K3) = sup(xer,,,veL,

(K1, Ks) = supaek, puayosek, | P(B | A) — P(B)|
and

P(ANB)

Y (K1, K») = Sup(aek, Bek, P(4)P(B)<0) PAPB)

1 ‘
Let (X,; i = 1) be a sequence of real valued random variables on (2, K, P), denote F; =
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o(X;; n =1 <m) and put:
p(n) = suppen o (F}, Fip)
a(n) = suppeny «(F%, Frip)
@(n) = supyen @ (F¥, Frp)
and
¥(n) = suppen Y (F%, F71p).

The sequence (X,; n = 1) is said to be p-mixing, a-mixing, ¢p-mixing or y-mixing according
asp(n) > 0,a(n) - 0,p(n) > 0or Y(n) > 0asn — oo.

The following lemma (Lemma 1.17 of [6]) relates the concept of p-mixing to that of ¢-
mixing.

(1.1) LEMMA. Suppose X is a random variable K, measurable and Y a random
variable K, measurable, and EV*X? < oo, EV?Y? < . Then
| E(X — EX)(Y — EY)| = 20"%(K,, K:)E'*(X — EX)’EV*(Y — EY)~
By this lemma p (K;, Ky) < 2¢9"?*(K,, Ks). Clearly a y-mixing sequence is ¢-mixing, a ¢-
mixing sequence is p-mixing and a p-mixing sequence is a-mixing.
We shall also use the following lemma:
(1.2) LEMMA. Suppose X is a random variable K, measurable and E | X | < . Then
|E(X | K) —EX|=y(Ki, K:)E | X | as.
If Y is a random variable K, measurable and E | Y | < « then
| EXY - EXEY |=y(Ki, K)E| X |E| Y.
The proof of this lemma is immediate by using simple functions. We denote by S(n) =
Y, X; and by Sk(n) = Y21 X.. We assume that

ES*(n) _

(1.3) lim, o =02>0 and EX,=0 forevery i.

For each ¢t € [0,1] put
Ti X,

n 1/20

W.(t) =

where [x] is the greatest integer < x. The function w — W, (¢, w) is a measurable map from

(&, F) into (D, B) where D is the set of all functions on the interval [0, 1] which have left

hand limits and are continuous from the right at every point, and B the Borel s-algebra on

D induced by the Skorohod topology. We shall give sufficient conditions for the weak

convergence of W, to the standard Brownian process on D, denoted by W in the sequel.
We shall denote the L, norm by || - ||, and the weak convergence by =.

2. The invariance principles.
(2.1) THEOREM. Let (X;; i = 1) be an a-mixing sequence of random variables
satisfying (1.3) and

a) (X% i=1) is uniformly integrable
b) supr ESi(n) = O(n)
c) lim, y(p) <o

then W, = W.
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This Theorem implies immediately

(2.2). COROLLARY. Assume (X;; i = 1) is a y-mixing sequence of random variables
satisfying (1.3) and the conditions a) and b) of the above theorem. Then W, = W.

(2.3) THEOREM. Let (X,; i = 1) be a p-mixing sequence of random variables satisfying
(1.3) and

a) (X% i =1) is uniformly integrable
b) Y. p(2) <
¢) lim, ¢(n) <1.

Then W, = W.

From this we deduce

(2.4) COROLLARY. Assume (X,; i = 1) is a ¢-mixing sequence of random variables
satisfying (1.3) and

a) (X% i=1) is uniformly integrable
b) YipA(2) <o

Then W, = W.
(2.5) THEOREM. Let (X,; n=1) be a p-mixing sequence of random variables satisfying
(1.3) and

a) (X7, i = 1) is uniformly integrable
b) ¥ p*(2) <

Then W, = W.
3. Proofs. To prove these theorems we shall apply the following theorem which is a
consequence of Theorem 19.2 of [1] taking into account (1.3) and the fact that a-mixing

condition implies by induction that W,(¢) has asymptotically independent increments (See
the proof of Theorem 20.1 of [1]).

(3.1) THEOREM. Suppose that (X;; i =1) is an a-mixing sequence of random variables
satisfying (1.3) and

a) (WZ2(t); n = 1) is uniformly integrable for each t
b) for each ¢ > 0, there exists A, A > 1, and an integer no such that n = no implies

P({maxiz, | Se(i)| = Aon'/?}) < %
for all k. Then W, = W.
To verify the tightness condition (3.1, b), we shall use the following.

(3.2) THEOREM. Suppose that (X,; i = 1) is a sequence of random variables such that
the families (X2; n = 1) and (S%(n)/n; k = 1, n = 1) are uniformly integrable. If one of the
following conditions holds,

a) lim,p(n) <1
or
b) lim, ¢(n) <
then the condition (3.1.b) is satisfied.
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The proof follows the same lines as the proof of tightness condition in Theorem 20.1 of
[1]. We indicate only the changes to be made in that proof.

If condition a) holds, there exist r = 1 and 0 < « < 1, such that for p = r, ¢(p) < a.
Therefore under the condition of this theorem, for n large enough,

Srpt P({max,<, | Se(j)| < 3An"2 = | Se(d)|} N {| Se(n) — Sk + p)| = An'?})
. . 2
=Y, P({max;<; | Sx(j)| <3An2 =| Sk(L)l})<a + rﬁ)
2 .
< aP({max.=, | Si(i)| > 3An"2) + Tﬁ for all & and i < n,
whence by [1], pages 175-176 it follows that for large n

(1 — a)P({max,=, | Sk(i)] = 3An"%}) = -i—i

If the Condition b) holds, there exist » = 1 and B8 > 0 such that for p > r, Y(p) < 8 < .
Therefore for n large

P({max;< | Si(j)| < 3An"2 = | S|} N {| Sk(n) — Sk(i + p)| = An"2})
= P({max;< | Su(/)| < 3An"2 =< | S:(Q)|}) X‘} (1+8) forallkandi=<n.

Note that, to prove Theorem (2.1) and Theorem (2.3) it is enough, because of Theorem
(3.1) and (3.2), to establish the uniform integrability of the family (S%(n)/n; k=1, n=1).
The Theorem (2.1) will follow from the following lemma.

(3.3) LEMMA. Suppose that (X; i = 1) is a sequence of centered real valued random
variables satisfying the conditions a), b) and c) of Theorem (2.1). Then the family

(S%(n)

sk=1,n= 1)
is uniformly integrable.
ProoF. Since lim,y(p) < o, there is an integer p such that J(p) < ». Let us denote

by F, =0(X;, 1 =i <n). For k> p let us put

Su(n) = Y2 E(X; | Fip)
andfork>pandj<p

Zi(n) = Y4 (E(X: | Firy) — E(X: | Fiym)).

Obviously for £ > p and j < p fixed, (Z4(n), Fn+x—,; n = 1) is a martingale and we can write

Si(n) = Y528 Zin) + Si(n)
whence

ES3(n) < 2p Y225 E(Z4(n))* + 2ESi(n).

Since the square of the differences of the martingale (Z%(n); n = 1) are uniformly integrable
it follows as in Theorem 23.1 of [1], that for every j < p the family ((Z%(n))*/n; 2 >p, n
= 1) is uniformly integrable. It remains to prove that the family (S3(n)/n;n=1,k=1) is
uniformly integrable. To prove this, we shall show that sup,ES3(n) = O (n*?). By Lemma
(1.2) it follows that for every 2 > p

| E(X | Frp)| =¥ (P)E | Xz | as.

Since the sequence (X% % = 1) is uniformly integrable, it follows that there exists a



972 MAGDA PELIGRAD

constant C such that for every & > p
| E(X | Frp)| < C  as.
From the equation
Si(2n) = Su(n) + Spsn(n)
we obtain:
E | Si@2n)| = E | Si(n)| + E | Si+n(n)| + 3ES}(n)| Spen (n))|
+ 3E | Su(n)| Sienln).
By Cauchy-Schwartz’s inequality we have
ES}(n)| Spen(n)| = (ESE(n))/*(ESE(n) Skn(n))/?
and
E | Si(n)| Si+n(n) = (ES}+n(n)*(ESE(n) SEvn(n))/2.
For every &k > p
ES3(n) < 2ES}(n) + 2p Y228 E (Zh(n))%.
On account of (2.1.b) and of the fact that Z4(n) is a martingale we have:
supxs,ESi(n) = O(n).
We also have
ES}(n)Siin(n) = ESY(n)(Sprn(n) — X5=6 Zhsn(n))
= 2ES}(1n) S}en(n) + 2p $0-0 ES}(n)(Zhen(n)2.
By Lemma (1.2) it follows that
ESi(n) Siin(n) = (1 + $(p) ESE()ES}4n(n) = O(n?).
For j < p we have successively
E (84(n)Z}+n(n))? = TE2020s1 E[Se(n)(E(X; | Fi)) — E(X; | Fij)) P
= Y [ESHEX(X; | Fiy) — ES}EX(X; | Fry1)]
= ESi(n) R0 X2,
But by Lemma (1.2)
ESi(n) 2iZknn XE = (1 + 4 ESEME Ti2f%n X = O(n?),

so we have
ES%(n)Si+n(n) = O(n?) uniformly in %.
Therefore
E | 8u(n)| §34n(n) = O(n*?) uniformly in %
and

ES}(n)| Spen(n)| = O(n*?)  uniformly in k.

From what was proved, it follows that there exists a constant K; such that for every % >
p and for every n = 1,

E|8i@2n)| = E | Si(n)| + E | Sin(m)| + Kin®2.
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If we denote by a, = supe=,E | Si(n)| we have

2, < 2a, + Kin®*?
whence it follows that for every integer r

azr = 2'suprspE | E(Xp | Fap)|® + Ky X5—y 27712307072,
Therefore there is a constant K, such that for every r
ax < K257,
Now let n, 2" < n < 2! and write n in binary form,
n=v2"+»n2"""+ ... +p(ry;=0,o0r1).
We write Si(n) in the form
Si(n) = Su(#02") + Skrv2r (2”7 + - o+ + Spapre..ons,_2(v).
Using Minkowski’s inequality
alf* < Yoo alfs = 027,

Therefore a, = O(n*?). This relation implies that (S%(n)/n; £ > p; n = 1) is uniformly
integrable. Now if we write that
Si(n) <9 Si(p) +9 Si+p(n — p)
n n n

it follows that (S%(r)/n; k = 1, n = 1) is uniformly integrable.

(3.4) LEMMA. Assume (X; i=1) is a p-mixing sequence of random variables satisfying
a) sup; || X<

and
b) ¥ p(2") < oo.

Then, there exists a constant K depending only on the p (n)’s, such that for every n

sup:ESi(n) < K(n sup:E X} + n’sup; | EX: |?).

Proor. We denote by o, = supg || Se(m)|z and by a = sup;. | EX;|. From the equation
Sk(2m) = Si(m) + Skem([M*]) + Skamstmin(m) — Spram([m?]),

we find that

| Sk@m)|lz < || Se(m) + Sk+imisrem(m)||2 + 20:[m*?].
Using the definition of p,

E (Si(m) + Spatmrpem(m))* = (L + p ((m°DNESi(m) + ES%simisyem(m))
+ 2| ESp(m)| | ESpstmsyem(m) |
and we find that: .
oom < 2741 + p ([m"°]) 0 + 2ma + 2[m"*]o;
whence for any integer r
or <2226 (1 + p([2z/3]))1/201 + Y, QUD/2(gr—itly 4 9r=/3+1y )

X Jlh=r—iv1 (1 + p([2*°])° + 27a + 207V gy,
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Therefore
or = 18 [[Z6 (1 + p ([27°]))V23(27%61 + 27a).

Since ¥, p(2) < «, we have [[%-1 (1 + p([2°])) < . Writing n in binary form, we obtain
that for every n we have

o2 < K(ne? + n?a?
where K = 8,000 [[7=: (1 + o ([27%])).
The following lemma together with Theorem (3.1) and Theorem (3.2) will prove
Theorem (2.3).
(3.5) LEMMA. Suppose (X;; i = 1) is a centered p-mixing sequence satisfying

a) (X% = 1) is uniformly integrable
b) Yip(2) <o

Then (Si(n)/n; n = 1, k = 1) is uniformly integrable.

Proor. Let N be a positive number and put
XV = Xidyxj<n) — EXiI(xj<n)
and
XV = Xilyx=ny — EXiI(x=n).
We denote
S¥(n) =Y, XY and SY(n) = Yi, XN
Obviously Sx(r) = SY (n) + S¥(n), and if we denote [(w>a Uby E,U we have

Si(n) _ M (Si",(zn))2+4E (S'i’(n))z.

E, =4E,
n

By Lemma (3.4) for every n we obtain

E(Si(n))’
* n

sup, = K sup:E (X})?

and by the uniform integrability of (X2; n = 1) we may choose and fix N such that
sup; E (XY)? < ¢/8K, (¢ > 0) and therefore
E(SY (n))?
n

=- foreveryk=1landn=1.

| m

With this fixed value N, replacing in the proof of Lemma (2.1) of [2], @, = ES{}® by a,
= sup, E S7*%(n), where 6 > 0, we obtain the existence of a positive constant K; such that

E (S (n))**?

supk—T,Wz—S K, for every n,

whence, choosing « sufficiently large, E,/4 =< —. Therefore

(Sk(n))®
n

(S¥(n)? _ e
n 8

;kzl,nzl)

is uniformly integrable.
In order to prove Theorem (2.5) we need the following lemmas.
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(3.6) LEMMA. Suppose (X,; i = 1) is a p-mixing sequence of centered random variables
satisfying

a) sup, || Xifls < o
b) Yip'*(2') < oo.
Then there exists a constant K, depending only on the p(n)’s, such that for every m =1,
sups E (S (m))* = Ki (m"/* sup:|| X; |« + m"/* supi]| X. |l2).*
PROOF. Let us denote by a,, = sup; | St(m) ||+ and by 6, = supe|| Sk(m) ||2. Obviously
we have
1Sk (2m) ||« < || Sk (m) + Skemem(m) ||la + 2[m"Jas.
We will show that
|Sk(m) + Spsmepms(m) |4 < 2Y4(1 + T2 ([M°1)) 4t + 2 61m.
In fact, by Cauchy-Schwartz’s inequality:
E (Sk(m) + Sesmpmis(m))*
< 2a% + 6E (Sk(m)Sprmrpms1 () + 8r[E (St (m)Serm+imsey (m )],
Using the definition of p-mixing
E (Sk(m)Skem+tm(m))* < o + p ((m*)arm
whence
E(Sp(m) + Skemsms(m))t < 2(1 + T072([m*]))an + 8amomn + 60
= @Y4(1 + Tp"2([m"*]) V4 am + 20m)".
Therefore
aom < 2V4(1 + Tp"2([m"°]))*am + 20 + 2[m'"lar.

By Lemma (3.4) there exists a constant K depending only on p(n)’s, such that o, =
Km"?¢1, and from the preceding inequality we obtain for every integer r

Aor =< 2)‘/4 H;;(} (1 + 7p]/2([2'/5]))1/4a1 + 2 2{:2 2“_1)/4
 (K0120797% 4 [20 ) ay) TIizhouan (1 + Tp2([2°]) /4 + 2K0:277 V72 + 2[20""/%]a,.

This inequality and the condition b) imply the existence of a constant K, which depends
only on p(n)’s such that

ay < K| (2’/"a1 + 2r/201 )

Writing n now in the binary form, we get the conclusion of the Lemma.
The following lemma is a particular case of Theorem 5 of [10], or of Corollary 3 of [9].
Here log m means log.m.

(3.7) LemMA. If (X,; i = 1) is a sequence of random variables such that E X)) <>
for every i, and if there exists a positive and nondecreasing sequence b(m) such that for
every k =1 and m = 1 we have

E(Sk(m))" = mb'(m)
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then for every k = 1 and m = 1 we have

4
E (max=,=»S: (1)) = 27 M[Zl"“'" ([g ])] .

(3.8) LEMMA. Suppose (X,; i = 1) is a p-mixing sequence of random variables. Then
for any integers k, n and r such that n/r = 2, and for every a > 0;

P({maxi==n| S (/) | = 3a}) < masoz.zs12P({ | Syar (n — i) | = a})
1/2
+ I:L: ] p(r) + I:; ] MaxXy=i=<k+n—2-P {ZHzr |X | =a}).

Proor. Although the argument below is similar to that of Remark 1 in [11] we give it
" here because of some differences that occur. Let p = | = ] If we put E; = {max;<,|Sk(J) |
< 3a =|S(z)|} we obtain
P({maxi<,| S (1) | = 3a}) = P({|Sk(n) | = a})
+ Y828 P((Uj=1Eoriy) N {|Sk(n) — S(i + 2)r| = a})
+ Y228 P(Uj=1Eires N {| Sk + 2r — Siir +j) | = a})
+ X=o-vr+1 P(E; 0 {|Se(n) — Sk ()| = 2a}).
Taking into account that the sequence is p-mixing we obtain
P({maxi<,|Sr(i)| = 3a}) = P({|Sk(n) | = a})
+ maxg=iza—1P({| Sk (n) — S, (i) | = a}) ¥y P(E;)
+ o(r) $85 PY2(Uja1Eins))PV2(( | Sk(n) — Sk(i + 2)r| = a})
+ Y228 P({maxij=,| Sk (i + 2)r — Sk (ir +j) | = a})
+ P({maxp-1r+1=<n | Sk () — Sk (J) | = a})

and the lemma follows by applying the Cauchy Schwartz’s inequality to the third term in
the last sum.

(3.9) ProOF oF THEOREM (2.5). Without losing generality we assume 62 = 1 in (1.3).
To prove this theorem, we verify the conditions of Theorem (3.1). By Lemma (3.5) the
family (S3(n)/n; n= 1, k= 1) is uniformly integrable and thus condition a) of this theorem
is satisfied. To verify the tightness condition b) let us define for every i=1and n = 1,

X:’ = X,I ni/2 - EX,I nli/2
{' X< agn>} {' xl=< aogm}
and
Xr=XxI we y — EXI L
{'X"Em} {""'Zm}
and put

SE@) = Yitha X7 and  Si() = Y., X7,
Obviously S, (i) = S} (i) + S} (i) and
P({maxi<,=n | Sk (i) | = 4An"/%}) = P({maxi<,=. | S (i) | = An"/2})

+ P({maxi<i<n | S_Z (7) I = 3}\n1/2}).
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By Lemma (3.6) we have
sup, (ES?(m))* < K1 (m"* supx (E (X2))* + m"/% sups | X2 ||2)*

21/2n1/4 4
< Kym supe || Xz || ( + m”“)
logn

and from Lemma (3.7) it follows that

91/2,,1/4 n 1/4\ 4
sup.E maxi<i=»(S% (£))* = 27Kin supy. [l X |12 R ——+ oF =0(n’.
log n 2
Therefore the family {max;<;<.(S% (i))¥"; n = 1, k = 1} is uniformly integrable and for n
sufficiently large and e > 0
P({max;<iza | SE () | = An¥?}) = 2_;_ .
Now, Lemma (3.8) implies for r = [n/(log n)*] and a = 3 An'/? that
P({maxi<j=. | Sk (i) | = 3\n"?}) < maxo=i=n—12P ({| Si+i(n — i) | = A\n"/?})
1/2 i+2r | vn|)\2
n n EQE X))
+ I:;:] p(r) + I:;] maxksisk+n—2r—j'W'1—-
By Lemma (3.4) we first obtain that
_ K EXp)?
maXozizn-1 P((| Sieiln = i) | = et < Z R ER
and therefore the uniform integrability of X7 implies that for large n

€

maxos<n—1P({| St+i(n — i) | = An'?)) = o

Lemma (3.4) also implies that
_ _ log n)*
EQY |1 X7 =< K<2r supe || X2 |15 + 4r21gT)— || X% ||§>

whence for n sufficiently large we have

n E(le',zr |X”|)2 €
[;] maxksisk+n—2r——l—>\§;— = —GF

Finally, from the condition ¥;0'/%(2%) < = it follows that (log n)ze (n) — 0 as n — oo. This
implies that [n/r]"?o (r) — 0 as n — . Therefore P({maxi<i<x | S3(i) | = 3 An'/?}) < &/2A*
for n sufficiently large which completes the proof.

4. The variance of S,.

(4.1) THEOREM. Suppose (X;; i = 1) is a p-mixing sequence of centered real valued
random variables satisfying

a) sup; "Xl "2 =01 < ®

b) ES*(n) —

2
) lim,,_mEE—S;%L)l = 1 uniformly in k.

Then ES*(n) = nL (n) where L(n) is a slowly varying function of the integral variable n
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which has a slowly varying extension to the whole real line. If in addition we have
d) Y.p(2") <o

then E S*(n)/n converges to a positive constant.
To prove this theorem we need the following Lemmas:

(4.2) LEMMA. Let (X;,i=1) be a p — mixing sequence of centered real valued random
variables satisfying a). Then if m, p, q, k and i are natural numbers such thatp + q=m
we have,

(1= p(@)(ESim(p) + ESim+p(q)) — Ci = ES%,(m)

4.3) =1+ p())(ES}n(p) + ES}nip(@)) + C
where
Ci = Ci(m, p, i) = 200%i% + 12 010 (|| Ser () ||z + || S5 (@) [|2)
and
(4.4) (1= p @)1 Skm (P} l2 = | Sim (m) |2 + Co

where Cy < 20,1.

Proor. By definition of p (n) we have
(45) | E(Sim(D) + Sim+p+:1(@))? = (ESn(p) + ESim+p+i(q)) |
= p()(ESin(p) + ESin+p+i(@)).
From the equation
Stm+p+i(@) = Stm+p(q@) = Stm+p(E) + Se+1m (i)
we find that
(4.6) | Skt p+i(@) l2 = | Sem+5(q) ||2 + 61
where | 6; | = 20:i. Therefore by (4.5) and (4.6) we get
(1 = ) (ESin(p) + ESin+p(@) + 05) < E(Sen(p) + Sem+p+i(q))’
4.7 = (1 + p () (ESin(p) + ESin+p(q) + 02)

where | 6| < 40%i* + 4017 || Stm+p(@) ||2. Now if we write
Sim(m) = Spn(p) + Sm+p+il@) + Sem+p(() = Se+1m(2),
we obtain
(4.8) | Skm(m) ||z = || Skm(p) + Skm+p+i(q) ||2 + b5
where | ;| < 2011, whence we deduce
ESin(m) = E (Sen(p) + Sem+p+i(q)* + 4

where by (4.6), | 6] = 126%i® + 4610 (|| Sim () ||2 + || Stm+»(q) ||2). Introducing this in (4.7)
we obtain the relation (4.3) where

Cr=max(|(1 —p(@))b2 + 04, | (1 + p ()62 + 84])
does not exceed 200%i* + 12 01i(|| Sim(P) |2 + || Skm+»(q) |l2). To prove (4.4) we use (4.5)
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and get

(1 = p())ESin(p) = E (Sim(D) + Skm+p+i(@))?
and by (4.8) we have

@ = p N [ISkm (P) ll2 =< || Stm (m) [l2 + |65 .

(4.9) LEMMA. If (X;; i = 1) is a p-mixing sequence of centered random variables
satisfying a), b) and c) then
ES?(kn) _
ES*(n)

lim, e

Proor. The relation (4.3) yields for k=0, m =kn,p=(k— 1) n,g=nand i = i(n)
= [(ES2)"/*] the following inequalities

(1 = p(@))ES*(k — D)n + ESfe—1a (n)) — €< ES®(kn)
=1 +pE@))ES* (k — V)n + ESj—1a(n)) + ¢

where € < 2063i%(n) + 12i(n)o1 (| S(k — )n||2 + || Se-1» () ||2). Dividing by ES?(n) and
taking into account the conditions a), b) and c¢) and the definition of i(n), we obtain the
desired result by induction on Z. )

(4.10) PROOF OF THEOREM (4.1). Let us define

2
L) = ESn(n) .

By the preceding lemma it follows that L (n) is a slowly varying function of the integral
variable n. To prove that this function has a slowly varying extension to the whole real
line defined by L () = ES?([t])/t, we shall establish that

L(n(l—e))

(4.11) lim, AT =1

where ¢, |, 0 such that ¢,n is an integer. First we note that Ibragimov’s Lemmas (1.5), (1.6)
and (1.7) in [3] are still valid in our setting, therefore for ¢, | 0 and § > 0 we have

(4.12) limy o ————

Let k, = max{k, kne, < n — ne,}. Because
S(n - mn) = S(n) - Sknns,, (Enn) + Sknns,, (P) - Sk,,ne,.+ne,. (p)

where p = n — (k, + 1)n &, < ne,, using (4.4) with m = ¢,n and & = &, (and also a second
time with & = k, + 1) we find

IS —ne)llz = | S®) |lz| = || Skonen (ea12) ||2

H—:PL(I«W (| Sknen (€n 1) ||l2 + || Stk ren (€n12) ||2 + 4017)
where i is such that p () < 1. Dividing this inequality by || S(n) |2 and using ¢) and (4.12),
we obtain the equality (4.11). The validity of (4.11) implies that we may now use the proof
of the last part of Theorem 2 in [13] page 75, thus completing the proof of the first part of
our Theorem.

To prove the second part of the Theorem, we write the inequalities (4.3) for m = 2n, p

+
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1/3

=g =nand i = [n""] and we obtain for every integer £ and n,

s 1 = p([n*D)(EShn(n) + ES%rr1n(n))(1 — a(n)) = ES%.(2n)
4.13
=1+ p([n'*])) (ES%n(n) + EStrsnn(n))(1 + a,)

where
200%[’12/3] + 1201[n 1/3](" Sorn(n) ||2 + || Ser+nn(n) ||2)
(1 = p([n’D)(ESn(n) + EStr+1(n))

and n = no such that p ([n§’%]) < 1.
Using conditions a) and c) it follows that:

n®3 + n'2||S(n) ||2>
n=0 .
¢ < IS(n)|*

a, = supy

Because Lemma (18.2.2) of [4] page 327 is valid in our setting, we have for every ¢ > 0,

ES*(n)
n —> oo as n— .
n
Therefore (ES?(n))™' = O(n"'**) and
1
(4.14) a, = 0(;;17?‘)

where & < %.
From the inequalities (4.13) we deduce for every integer r = p =< no such that
p([27°) <1,

T2 (1= p(27D)(1 — a(2) T ESH(27) < ES*(2)
(4.15) ) . _
=TI2) (1 +p([27°))A + a(@) T~ ESH (2°).

By d) Y0 ([27°]) <  and by (4.14) Y;a(2') < ». Therefore (4.15) implies that
ES*2)

< i Trar o= 1
Lo ' ESH(27)

lim,p

whence by c¢) we deduce
L@y

L)~ 1

lim,p .o
and therefore L (27) is convergent to a positive constant. Using now the Consequence (3)
of Theorem A.11 of [4, page 397] (applied to both of the functions L(¢) and 1/L(t)) we
deduce that L(n) converges to the same limit as L(27), which completes the proof of
Theorem (4.1).

(4.16) REMARK. It is easy to see, using Theorem (4.1) and the results of Section 3, that
Theorems (2.3) and (2.5) remain valid when replacing W, (t) by W, (t) = S([nt])/o., o2
= ES?%(n), and considering besides the conditions of these theorems, the conditions b) and
c) of Theorem (4.1) instead of ES%/n — 0% > 0.
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