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By T. NEMETZ AND N. KusoLITSCH

Mathematical Institute of the Hungarian Academy
and Technische Universitdit Wien

In this paper we consider specific directed graphs called “ladders”. The
vertices of the graph are randomly colored by green or red. Deleting the edges
with at least one red endpoint one gets a random graph. We give a method for
finding the exact asymptotics of the longest path of this random graph if the
“height” of the ladder goes to infinity. The result is a generalization of a
celebrated theorem of Erdos-Rényi. An example is given, illustrating the
method.

1. Introduction. The real line can be viewed as a labelled directed graph, where the
vertices are the integers and the edges connect consecutive integers, always directed to the
larger ones. Suppose we are given a sequence 7, 72, - -+ of ii.d. random variables with
probability P(n; = 0) = P(n; = 1) = %. Then we can color the integer point i of the “real-
line graph” by green or red if n; = 0 or n; = 1, respectively. Any edge will be deleted if at
least one of its endpoints is red. Then the paths in this random graph correspond to the 0-
runs in 1, 92, - - - . Therefore any problem concerning paths in this directed random graph
has an equivalent one concerning 0-runs. This equivalence leads us to utilize run-theoretical
methods in investigating longest-path problems in a class of directed graphs, called
“ladders”, which can be viewed as a generalization of the real-line graph.

DEFINITION. A ladder is a labelled directed graph G = G(V, E) with the following
properties:

The set V of vertices is partitioned into subsets V* := {45}, ---,
Ai},i=0,1,..-.

The subgraph with vertex-set V° U V' is a bipartite graph, all
edges being directed from vertices in V° towards vertices in V. (A
graph is called bipartite if the set of vertices can be divided into two
subsets with no edge joining two vertices in the same subset.)

There is no edge between A}, A} if |i —j| > 1.

There is an edge going out of A? and also there is one ending in A}
for all indicesi =0, --.,r — 1.

There is a directed edge (A%, A5 iff A}, A} are connected by an
edge.

The set V' is called the ith rung of the ladder.

Obviously a ladder is completely characterized by the subgraph
restricted to VO U V.

The subgraph restricted to the first n + 1 rungs is denoted by G,.

ExaMpLE 1. Let r = 3, and let the bipartite graph V° U V* contain the six edges (A},
AN j=0,1,2, (A, AD), (A9, A}), (AY, Aj). The example is depicted in Figure 1.

Now suppose that the vertices A% of G, are independently randomly colored by green
with probability p. > 0 and by red with probability 1 — p., where p, does not depend on
i. Then we get a random graph by deleting the edges having at least one red endpoint. The
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resulting random graph will be denoted by R, = R,.(G; po, -+ -, pr—1). This is illustrated in
Figure 2, where green vertices of the graph of Example 1 are indicated by circles and the
red ones by crosses. Deleted edges are indicated by dashed lines.

We are interested in the asymptotic behaviour of the length »¢(n) of the longest path
in the random subgraph R, of G.. The length of a path is the number of rungs connected
by it minus one. In the case of the real-line graph v (n) is well known to have the order of
magnitude of log n. See Erdos-Rényi (1970). In this paper we show that this statement is
generally true, namely we will prove the following theorem.

THEOREM. Let G(V, E) be an arbitrary ladder with r vertices A}, --- Ai_; in the ith
rung. The vertices A}, of G, are randomly independently colored by green with probability
0 < pr < 1 and by red with probability 1 — px, k =0, .--, r — 1. The edges of G, having
at least one red endpoint are deleted. Then the length vg(n) of the longest path in the
resulting random graph R, satisfies

: . va(n) 1
Pllim, o———r=——]|=1
<1m log n log A)

with some positive constant A = A(G; po, -+, pr—1) < 1.

A method is given for determining this constant as the largest eigenvalue of a quadratic
matrix of size 2" — 1. :

Preliminary results. In order to prove our theorem we have to establish some
results concerning the calculation of the constant A. For this reason we will first prove two
lemmas in terms of the following cumbersome notations:

B;:={j:0=sj=<r—1and (A%, A}) is an edge in G(V, E)} i = 0,
ce,r—1.

We use the letter I (or I) for denoting a general set of indices, that
isI={i, -, k}lsk=sri#iift#s.

Let

B(I) == U} B, if I={i,- -, 0}

and

P(I) := 141 P,
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Let C"(I) be the event that there are paths of length n in R, and
the set of their vertices in V*is{A} ..., AL}, I= (i, - -+, i }.

The independence and :stationarity” 01' the coloring allows us to determine the
conditional probabilities P(I|I) := P(C"*'(I)| C™(I)) for all pairs (I, n.

LEMMA 1.

= |0 if IZ B(I)

PAIID {P(I) Tliepai(1 — p;) otherwise.

Proor. If I'¢ B(I), then there is at least one index £, such that A%*! cannot be reached
from any of the vertices A7, - - -, A7 . In this case the conditional probability must be zero.
In the remaining case all vertices A?*', i € I must be green and all vertices A%, j €
B )\f must be red. For the remaining vertices there is no restriction at all. Since all the
vertices are colored independently this settles the second case IcBI). O

Let I, ---, I,-_; be the non-empty index-sets in a given order. We introduce the
“truncated” transition probability matrix

Ilg = (pys), with pys := P(I,| L) s, t=1,---,2"— 1.

The row sums of Il are strictly less than one, i.e. ¥s prs =1 —[[7=6 (1 — p;), because
all vertices of the subsequent rung may be colored red. The Frobenius theorem tells us
that the matrix Il has a positive eigenvalue A = A(G; po, - - -, pr—1) majorizing all other
eigenvalues in moduli and

1) A<l

-, n! _ .
LEMMA G. II%=Y7, Vi ot A} D, ;, where Ay, - - -, A, are the eigenvalues of

)

Il¢ with multiplicities v., - -+, v, and D, ; are matrices not depending on n. (cf. Gant-
* macher, 1966).

This lemma allows us to compute the probability P(vg(n) = n), i.e. the probability that
there is a path of length n in R,,.

LEMMA 2. There are constants d;j, i =1, «--, q,j =1, ---, v; such that for every
integer

! .
Plro(n) =n) =32, Yool — A\ dj.

=2 =)

ProoF. The idea is to find a recursion formula for the 2" — 1 probabilities P(C"(I)),
instead of giving an explicit form or a recursion for P(vg(n) = n). Obviously P(vg(n) = n)
is the sum of these probabilities.

Recalling the notations preceding Lemma 1 we get

2 P(CMIy)) = X5 pusP(C" (L)), s=1,--+,2" —Lr=2.

(Here the nonempty index sets I; are ordered in the same way as before.)
Defining C°(I) as the event that in the 0-th -rung exactly the vertices A7, .-+ A7, T
= {i;, ---, ir} are colored by green, the recursion extends to n = 1. On the other hand

obviously,
PY(I) := P(C°(I)) = P(I) [jgz 1 — p)).

With the notation P! := (P'(I), - - -, P'(I5—;)), (2) implies an explicit form for the vector
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= (P(C"(I1)), + -+, P(C"(Iy»-1))), namely
P" = PI% n=12 ...

Let 17 denote the 2" — 1 dimensional vector with unit components, ie. 17 = (1, ---, 1).
Since

P(vs(n) = n) = $i5' P(C"(I)) = P"1
we get by applying Lemma G:

P(ro(n) =n) = P' 51 =37, 3% AFd, ; with d;; = P'D; 1. 0

(n)

ProoF oF THE THEOREM. Let us denote by E;n the event that there is a path from
the ith rung to the i + Nth rung in R,. Obviously P(E;n) = P(vc(N) = N) for all integers
i and N. Therefore we get from Lemma 2

3) P(vg(n) = N) = Y= P(Ein) < cnAG

for some positive constant c.
On the other hand

P(vg(n) < N) <= P(NZGN7 Efven v
But the events E; v, Ej v are independent for | — j| > N, so

P(va(n) < N) = (1 — P(rg(N) = N))V®*+2,

Taking into account, that
N

P(v(N) = N) = P'TIG" 1 = Y., P'(L)pY = mini<e=2r—1 P(L;)max, Y. p&Y = EAG,
where é = min;=,=o—1P*(I;) > 0, one gets finally
(4) P(vg(n) < N) = (1 — EAZ)VW+D-2

Inequality (4) implies

P(va(n) < [%}) < exp(—cn*?),

for every £ > 0. (Here and in what follows [x] always denotes the largest integer not greater
than x.) Since ¥ ,en exp(—cn*?) < o an application of the Borel-Cantelli-Lemma yields

VG @) 1 _
P(l imyinf 2= (1 e)—log)\a)_

But inequality (3) implies
(1+¢)logn en”*®
P(v(n) = [———_log o = pvat
This, together with the Borel-Cantelli-Lemma, implies
G(2”) 1+e¢ _
P(hmnsup Tog 2" = Tlog )\G)
Since for an integer m with 2" 7' <m = 2",

v(m) . va(2")
logm ~ log 2" — log 2

holds true, we get

. vg(n) 1+e¢ _
P(hmnsup Tog 7 = Tlog )\a) =
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TABLE 1
t

1 2 38 4 5 6 17
1 2 2 0 2 0 0 0
2 0o 2 2 0 0 2 0
s 3 2 0 _2 0 _2 _0 _0_
T4 1T 11T 1T 1 11
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1

Since ¢ > 0 is chosen arbitrarily, one gets

. ve(n) 1 _
P(hm,,m = —log }\G> =1. D

ExampLE 1 (continued). We illustrate the theorem by carrying out the computations
in the example above. Let po = p1 = p» = 1/2. First we must compute the “truncated”
transition probability matrix I1¢: we have 7 non-empty index-sets. Let I, = {0}, I = {1},
IL={2},I,={0,1}, I; = {0, 2}, I = {1, 2}, I = {0, 1, 2} be their ordering. The sets B; are
then B;= {i, i®1mod 8} i =0, 1, 2, so that B(I;) = B, for t =1, 2,3 and B(I;) = I for ¢
= 4. The “truncated” transition probability matrix is given by Table 1, where p;, is the s,
t-entry of the table divided by 8.

The characteristic polynomial of this matrix is given by A*(6 — (4 — 8))%)((8A — 1)* + 3),
so its eigenvalues are A2 = (4 + x/g)/S, Assa=(1= i\/g)/B ,A5=As=A7=0,and Ag = (4
+ /6)/8. Therefore the “exact” asymptotic is given by

P(lim,, Aa) _ ! ) =1 0
logn log 8 — log(4 + v6)

Concluding remark. As was mentioned, our result is a generalization of the Erdos-
Rényi law of large numbers. J. Komlés pointed out to us that the very method could be
applied to extend the validity of the more general results of Komlés and Tusnéady (1975),
Erdos and Révész (1975), Révész (1982).
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