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SUMS OF FUNCTIONS OF NEAREST NEIGHBOR DISTANCES,
MOMENT BOUNDS, LIMIT THEOREMS AND
A GOODNESS OF FIT TEST

By PETER J. BICKEL' AND LEO BREIMAN?

University of California, Berkeley

We study the limiting behavior of sums of functions of nearest neighbor
distances for an m dimensional sample. We establish a central limit theorem
and moment bounds for such sums and an invariance principle for the
empirical process of nearest neighbor distances. As a consequence we obtain
the asymptotic behavior of a practicable goodness of fit test based on nearest
neighbor distances.

1. Introduction and background. In many areas, there has been a long-standing
need for a multidimensional goodness-of-fit test that is general, in the sense that the x*
and Kolmogorov-Smirnov test are general in one dimension, and also, is practical in a
computational sense. Of course, x? is still available in any number of dimensions, but its
usefulness and practicality are virtually nil in high-dimensional spaces.

Take Xj, - - - , X, to be n points in m-dimensional Euclidean space selected independently
from a distribution with density f(x). Define the nearest neighbor distance R;, from X; as

Rjr = miny<inj<n | X: — X|.

In what follows we suppress the dependence of R;, and related quantities on n unless
confusion is likely.

The distance d (x, y) between points does not have to be Euclidean. But we assume that
it is generated by a norm || x ||, i.e. d(x, y) = || x — y||.

This paper started with the attempt to derive the limiting distribution of a goodness of
fit test for multidimensional densities based on the nearest neighbor distances. We
established a form of the invariance principle. Our work had two main byproducts: a
central limit theorem for sums of functions of nearest neighbor distances and 4th order
moment bounds. These two pieces were then put together to get the invariance result.

The goodness of fit test. In looking for a practical goodness-of-fit test applicable to
densities in an arbitrary number of dimensions, our starting point was the observation,
essentially contained in the work by Loftsgaarden and Quesenberry (1965) that the
variables

lx=X; <R,

where f(x) is the underlying density, Xi, ..., X, are n points sampled independently
from f(x) and R; is the distance from X; to its nearest neighbor, have a univariate
distribution that, in any norm || - | distance

a; does not depend on f(x)

b; is approximately uniform.
The reasoning is simple: let S(x, ) be the sphere with center at x and radius r. For any
Borél set A, denote
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186 P. J. BICKEL AND L. BREIMAN

F(A) =f f(y) dy.
A

Assume Xj is the first point selected, then the other n — 1. The set {R; = r1} is equal to
the event that none of the X;, - .., X, fall in the interior of the sphere of radius r; about
Xi. Hence

PRi=r |Xi=x)=[1-F(S(x, )] "
Since for fixed x, F' (S (x, r)) is monotonically nondecreasing in r, write the above as
P[F(S(Ri, x:)) = F(S(r,, x)) | Xi =x]=[1-F(S(n, u)]"".
Substituting z = F (S (x1, r1)) gives
(11) PFS, R)=z|Xi=x]=(1—2)"""!
so that l
P[FSXi,R)=z]=(01—-2)"""
Since
U, = exp[—nF (S(X1, R1))],
we have that for log x > —n,
P(Ui=x)=(0+1/nlogx)* ' ~x, for x fixed.

The above suggests that a possible approach to a goodness-of-fit test would be to take
the density g(x) to be tested, compute the statistics

exp[—nf g(x) dx}
S(X,.R,)

and see whether, in some sense, the cumulative distribution function of these n variables
is close to the uniform. While this is attractive theoretically, the computations involved in
integrating anything but a very simple density over m-dimensional spheres are usually not
feasible.

We reasoned that for n large, the nearest neighbor distances were small, on the average,

and hence that we could use the approximation

f g(x) dx ~ g(X;) V(R))
S%,R))

where
V() =K,r"

is the volume of an m-dimensional sphere of radius 7. In this way we were led to testing
based on the variables

W= exp[-ng(X;)V(R))], Jj=1,---,n

An example of a measure of deviation of the W variables from the uniform is the statistic
S= Z? (VV(J) _j/n)2

where W;),j =1, ..., n, are the ordered W; variables. Notice that
1
S = nf (A (x) — x)* dA (x)
[

where H (x) is the sample d.f. of the W,.
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The invariance principle. This leads us more generally to studying the stochastic
process H( ¥):0 <y =<1, and test statistics based on measures of the deviation of H from
the uniform or, more appropriately, on the deviations of A from its expectation EH. We
had conjectured, based on some simulation studies, that statistics such as S were asymp-
totically distribution free under the null hypothesis. More generally, we had conjectured
that the limiting distribution of Jn (H (¢) — t) was a Gaussian process with zero mean and
a covariance not depending on f(x). Our main result, as given in Section 5, is that ‘this is
almost true. What holds is that for the sequence of processes

Z,t)=vnH¢t) - EA®), Z.—uZ

where Z(t), 0 = ¢ < 1, is a zero mean Gaussian process whose covariance depends on the
hypothesized density g and true density f, and indeed if g = f, then the covariance does not
depend on f. The proof of this theorem and other results related to the goodness-of-fit test
are given in Section 5.

Defining variables D;, by

Djn = nl/ijn,
then W), has the form
W, = ¢(Xj, Djx)

and, denoting the indicator function by I(-),

Zu(t) = \n(H(t) — ER(t)) = % 3 (W < t) — EI(W; < )]
n

1
= —Y?[h(X;, D)) — ER(X;, D;
rnZ [A( ) X, D))]

for an appropriate A.

This identification suggests that the appropriate tools for the invariance principle are
~ a central limit theorem and moment bounds and convergence theorems for sums of
" functions of nearest neighbor distances.

A central limit theorem. The central limit result established in Sections 3 and 4 is
that for a function A (x, d) on E™x[0, ) — E¥ such that 4 is uniformly bounded and
almost everywhere continuous with respect to Lebesgue measure,

1
Var|{ — "h(X-,D-)>—>oz<oo
(Gprnon.o

and

1
7:2'11 h*(Xj, Dj) —>9 N(O, 02)
n

where we make the convention here and through thé rest of the paper that for any function
h(X;, D))
h*(X;, D) = h(X;, D;) — Eh(X;, D).
This is generalized to a multidimensional central limit theorem, and used to give the result
that ‘
(Zn(t1), <+« s Zn(&)) =0 (Z(41), -+, Z(Br)).

Our proof is long. We believe that this is due to the complexity of the problem. Nearest
neighbor distances are not independent. But for large sample size the nearest neighbor
distance to a point in one region of space is “almost” independent of the nearest neighbor
distances in another region of space. The main idea for capitalizing on this large scale
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independence is to cut the space into a finite number of cells. For any point in a given cell,
let its revised nearest neighbor distance be defined using only its neighbors in the same
cell. The first step, then, is to show that asymptotically the revised nearest neighbor
distances can be substituted for the original nearest neighbor distances. Now, given the
number of points in each cell, the set of interpoint distances within the Jth cell is
independent of those within any other cell. Therefore, given the total cell populations, any
sum of functions of the revised nearest neighbor distances is a sum of independent
components, with each such component being the sum of the functions of the nearest
neighbor distances within a particular cell.

However, the multinomial fluctuation of the cell population is not asymptotically
negligible. Thus, the limiting distribution breaks into a sum of two parts, one being the
nearly normal sum of the independent cell components given the expected value of the cell
populations. The other is an asymptotically normal contribution due to the fluctuations of
the cell populations from their expected values. The limiting form of the variance reflects
the nature of the problem. It has one term that would be the variance if all nearest
neighbor distances were assumed independent. Then there are a number of other, more
complex, terms arising from the local dependence.

A moment bound. Both the central limit theorem and the tightness argument required
for the invariance proof rely on moment bounds. Again, there is some difficulty in
untangling the dependence between nearest neighbor distances and proving bounds of the
type required.

For example, we show in Section 2 that for any measurable function 2 on E™ X
[0, ) »> EY with

|2 =sup|A(x, d)| < o

there is a constant M < « depending only, in a specified and useful way, on A and the
dimension m such that

E( h*(X,, Dj))* < Mn?.

Both the central limit theorem and the moment inequalities (which improve results in
Rogers, 1977) should prove generally useful in methods employing nearest neighbor
distances.

The plan of the presentation is

Section 2: moment bounds.

Section 3: 2nd moment convergence.

Section 4: central limit theorem.

Section 5: invariance and the goodness-of-fit test.
Appendix: technical results on nearest neighbor distances.

Section 2 on moment bounds is long and somewhat complex. But the results are needed
in the later proofs. The main results of statistical interest are in Sections 4 and 5.

Assumptions on the densities. Our general assumptions on the density f(x) are that
it be uniformly bounded and continuous on its support. These requirements can probably
be weakened, but the price may not be worth the extra generality. The following conditions
are listed to make the requirements formal.

ConpITION A. We can choose a version of f such that
(i) {f> 0} is open
(ii) fis continuous on {f> 0}
(iii) fis uniformly bounded.
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Corresponding to A we have:

ConpiITION B. The given function g is nonnegative and

(i) {g>0}D{f>0}
(ii) g is continuous on {f> 0}.

Clearly essentially all situations of interest are covered by A and B.

2. Some useful moment inequalities. The central result of this section is the 4th
order moment bound (2.2) which is used to prove tightness via Corollary 2.5. We believe
it will prove generally useful in the study of procedures based on nearest neighbors. Its
formulation and spirit owe much to the excellent thesis of W. R. Rogers (1977). Our
method of proof is, however, different from his and suited to the rather delicate estimates
we must make.

The proof of the central limit theorem requires only the use of the 2nd order moment
bounds given in Lemma 2.11 and its Corollary 2.15. The proofs of 2.11 and 2.15 are given
early in this section and the reader interested only in the central limit problem may wish
to skip the rest of the section.

The following notation is used:

P is the probability measure making X;, ---, X, iid. with common
density f.

E  without subscript is expectation under P.
R; is the nearest neighbor distance to X;.
J; 1is the index of the nearest neighbor point to X;.
Di =n 1/ mRi

I(A) is the indicator of an event.

F(A) = [af(y)dy

S, r)={»lly-x|=r}
S, = S(X;, R;)
For A a measurable function on E™ X [0, o) — E, denote
A = supxa | R(x, d)], hi = h(X;, D), h¥ = h; — Eh,.

Throughout this section M, with or without a subscript, denotes a finite generic constant
depending only on the dimension m.

THEOREM 2.1. If||h|| < o, then
(2.2) Eih#) = Mn? | R|[E? | 1| + n*E? || F3(S1) + n7™t | R

Before giving the proof of the theorem we give two corollaries.

CoROLLARY 2.3. Suppose u and w are bounded functions and
hx,d) = u(x)w(x, d).
Then there is a constant C < « depending on || u||, |w||, m such that

(2.4) E(¥ hE"_)“sC(anzlu(Xl)|+n).

Proor. The corollary follows from

Elh|=|w|E|uX)|
1

E |l | FXS)) < |w| E{E |u(X1) | E(F*(S:)| X1)} = |w| E lu(Xl)l———n(n )

where the last equality follows from (1.1).
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COROLLARY 2.5. If ‘
h(x,d)=Ia<g(x)d"=<b)
then

(2.6) E(%i h#)* = M{n*(G,(b) — Gu(a))® + n}

where G,(y), y = 0, is the distribution function defined by

Guly) = (1 - exp(—’%)) f f@) (1 - exp[-gp<s<x, (y/ng(x))l/'"»]) dx.

ProOF. Let

alx) = F(S(x, (Zgi(xi )I/m»
so=r(solin) )

Then, for j = 0, defining p, = F (S(x, a)), psg = F(S(x, B)),
E(|h| F/(S)) | X1 = x) = E[F/(S(x, Ri)I(pa < F(S(x, R1)) < pp)) | X1 = x].

L (P w n—2
=J u’(n—l)(l—u)”_zdusMn_’f w’(l—;) dw
Py np,

or

(2.7 E(|h| F/(S1) | X1 =x) < Mjn‘f<exp(— %) - exp(— % )) .

If we now apply Theorem 2.1 and use (2.7) for j = 0, 1 the lemma follows.
The proof of Theorem 2.1 proceeds by a construction similar to one used by Rogers and

by a series of lemmas.

We assume that we are given a measurable set S C R™, F(S) < 1,and aset of r < n
points, X = (%1, -+, x,), where the x; are fixed points in S. Let @,(- | S, x) be the
probability measure on (R™)" such that Xj, ..., X,_, are independent identically distrib-
uted with their common distribution being the conditional distribution F(. | S) and
Xnrr1=xi,0=1, ---,r. We write F(- | S°) as Fs. Its density is, of course,

fs(x) = f(x)/F (S°), x€E S°
=0 otherwise.

We typically write @, for @.(- | S, x), and Eq_to denote the expectation under Q,.
On a common probability space take X;, -+, X, 1id. Fand Yy, -+, Y, iid. F(.|S°)
and independent of the X; and define, .

X=X if i=1,---,n—r and X,€S°
=Y, if i=1---,n—r and X;€ES=diner if i=n—r+1,-..+,n
Clearly X, - e X. haye joint~dis£rib~ution @,. Let R; be the nearest neighbor distance of
X, in the set X, .-+, X, and D;, J;, S; be defined similarly.

LEMMA 2.8. For n =r, there is a constant M, such that

| Eqh(X1, Dy) — ER(X,, D) < || | Mo<§ + F(S)).
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Proor. For r = n/2, the bound holds trivially. For n/2 > r,
| Eh(X1, D1) — ER(X1, Dy)| = (n — r)7" | X2 [ER(X:, D)) — Eh(X;, D)]|
(2.9) <@m-r"TEYS | kX, D) - &, D))
n—rYR|EYS IX:=X) +I1X; =X, R # R)}.
Let
N =Y I(X: # X)),

the number of “changed” points among the first n — r. Note that EN = (n — r)F(S).
Now
IR #R, Xi=X) <Y I(Ji#j, =k, X;#X; or Xp#Xy)
and hence
YWIR AR, X;=X) =< YIX#=X) N I(di=j) + S IX = X3) Yo I(J; = k)
(2.10)
=2a(m)(N +r)

by Corollary S1 of the appendix.
From (2.9)-(2.10) and the boundedness of A,

| o, — Ehu| = | b u{ 1+ 2a(m)F(S) + Za‘m)(n - )}

=| 2|20 +2a (m))(F(S) + 2)
and the lemma is proved.

LEmMa 2.11. For ||g|, |2, < », denote hy = h(X1, Dy), g = g(Xs, D;). Then for
n=4,

| cov(hi, g2)| = My || g |(nT'E | b1 | + E | BiF(SD)]).
Proor. Write

| cov(hy, g2)| = f | higs | dP + ‘ f higs dP‘.
[J1=2] [J1%2]

But
2 ' 4
212) f \htet ap| <2121 zz=2f 1w | <2LEd gy,
[Ji=2] n—1 [Ji=F] n—1
Moreover,
(2.13) J higs dP = J h¥{E (g | X1, X, Ji)'— Eg;} dP.
[Ji2] [Ji%2]

On the set J; # 2, given X; = x1, Xj, = &2, the {X;, 2 <j = n,j # Ji; X1, X;} are distributed
according to @a(- | S(x1, | x2 — x1]), (x1, x2)). By Lemma 2.8

‘ f hig} dP ‘ SJ | ¥ | Mo )| g |(2n7" + F(S1)) AP
[J1%2] [J#2]
=4Mo| g | [n'E |k + E | F(S)|]
and the lemma follows from (2.12)-(2.14).

(2.14)
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CorOLLARY 2.15. For ||h|, ||g]l < x, and for n = 4,
| cov(hy, g2)| = My g||(ERD*/n.
Proor. From (1.1) it follows that EF*(S;) = 2/n(n + 1). Now apply the Schwartz
inequality.

The bounds in Lemma 2.11 and Corollary 2.15 can clearly be made symmetric in 4; and
go. We use them primarily for

LEMMA 2.16.

2
| cove, (b1, hs) — cov(hu, ha)| < || A||*Ms (-,% + FZ(S)) .

Proor. Let (X1, XY, .-+, (X4, X.) have the same joint distribution as tlle vector
{(Xy, X1), -+, (X, X,)} and be independent of that vector. Let primes on D;, D, J;, etc.
as usual denote calculations based on the appropriate sample. Then

(2.17) cov(hy, hg) — covg, (A1, hs) =% EA

A= (b — BY)(ha — hb) — (Ru — RY) (RS — ki)
where
hi=hn(X{, D!, h=nZX,D), hi=nZX,D).

The proof proceeds by a series of steps.
Let

Ei={hi#h}, Ei={hi*Fki}.
Since
IE)=IX.#X)+I(X;=X, R # Ry,
. Lemma A.1 and elementary arguments yield that

2
(2.18) max{ P(E;NE;), P(E;NE}):alli,j, ki#j} < M(% + FZ(S)).
Since A = 0 on [UZL,{E;UE!}]°, (2.18) and symmetry arguments imply that
2
(2.19) |EA|=4|E(hi — h1)(ho — B I(E\ES[E{]°[ES]°)| + M || R (% + F2(S)).

Using Lemma A.1 again we bound the first term on the right hand side of (2.19) by,
4| E{(h = R)(he = BT (s # 2, T # 2, X = R)[I (X, # X))

2
+I1(X =X, R # B)D}| + Mllhllz(% + FZ(S)).

Let = = {i:X; # X.}. Given £, X;, i € &, X3, X, X1, X7, X7 and X, = X, the variables Xi,
«++, X, can be permuted to have a

Qr('lS(XI, Rl) US(XI, Rl), {X’ LE E, Xl, X]p Xe;l})

distribution with X; in the lead and r = N + I(X; = X)) + I(X,, = XJI) + I(X5 = X75).
Conditioning on this information within the expectation in (2.20) and using the inde-
pendence of h5 we can apply Lemma 2.8 to the difference between the conditional
expectation of #; and EA% and bound the first term in (2.20) by

+3
n

(2.21) 4||h||2Mo(m)E{(I(X1 #X) + (X, =X, R # R)) (N + F(S:) + F(§l)>}.
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Estimates of the order r?/n® + F?*(S) for all the terms in (2.21) are given in Lemma A.2.
Combining (2.19)-(2.21), the lemma follows.

LEMMA 2.22.

E2
223)  |Ehthihihi|=<M,|h|’ (%1—' + n?E? | by | F%(S) + ||h||2n‘3).

ProoF. Let Eyp=[J1, Jo & {3,4}], 7= hihihihi.
Then,

(2.24) f 7dP = f hihi{cove (b, ko) + (Eqhy — ER)?} dP
E E

12 12
where

Qr = Qr(’lS(le Rl) US(X2) R?)) {Xl) XZ’ XJl) XJz}) and r=4.

Apply Lemmas 2.8, 2.11 and 2.16 to get,

de‘ = (M|h|(n'E| 1| + E| M F (S))])) X j ht MPI
(2.25) e iz
+ M|l h|? f |h¥ha* |(n7% + F*(S)) + F*(S:)) dP.
Next
(2.26) f hithi = 2[ hih¥ + 2J hihs.
Ej» [/1=3] [J:=83,J:1& {3,4}]

Condition in the first integral on the right in (2.26) by X1, X, J1 and apply Lemma 2.8 to
get the bound

|21

227)  2M,| 2| |h*|(n"1+F(Sl))dP<4M0| = (0B |hu| + E|WF(S)))

[1=3]

by the usual symmetry argument. Condition in the second integral by X5, X, J> and obtain
a bound as in (2.27). Conclude that

f hth$
E

12

=< |cov(h, hs)| +MII I (E||n"" + E|hF(S)])

and hence that the first term in (2.25) is bounded by

E2
(2.28) M||h||2( |h1|+E2|h F(S)I)
On the other hand, applying Lemma 2.8 again

J |Aths|(n72 + FA(S)) < || A| |Rf|(n 72 + F3(S1))
[i=2]

(2.29)
+ j |ht [(n™2 + FYS))(E|h$| + Mo|| h||(n7" + F(S1)).
[J15£2]

The first term in (2.29) is < M| 4 ||>27° by the usual symmetry argument. The second is

= M((E*|h1|n2 + E|h|E| b | FA(S)) + | b |Pn7®)
(2.30)
< MQ(E?|hi|n"% + n?E? | b | FX(S)) + || B |*n~®)
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and hence combining (2.28) and (2.30) we get

J 7mdP| < M| h|? (Elh"
Ep

Now consider

(2.32) f 7dP = j 7dP + 2 j 7 dP.
[/1=3] [J1=3,3&{2,4}] [J1=3,J3=2]

By conditioning on Xi, Xs, /i, J3, X7, X, we can bound the first integral on the right in
(2.82) in exactly the same way as [g, 7 dP by

M{nhu (E"“'+E|th<sl>|)|j hth dP‘
[1=3,J3& {2,4}]

(2.31) + E2| 1y |F(S) + n?E*| b | F%(S) + || & |*n ‘3)

(2.33)
+ || A? J |hEhE | (n7% + FX(S1) + F*(Ss)) dP}.
[1=3]
Now use symmetry to bound
[
[4i=3,d:& (2,4}]
by
2|2
n—-1
and the second term in (2.33) by,
M| A|*
nd
Hence,
E%\h
(2.34) \ J de‘ =M|h|? < '2 d E?| | F(S) + ||h||2n'3).
[1=3, € (2,4)] n
Next write,
(2.35) f 7dP = J 7dP + J a dP.
[1=38,J3=2] [J1=3,J5=2,J>7%4] [J|=3,J1=2,J2=4]
Now
1 .
P[J1=3,J3=2,Jz=4]=;—32?=4P[J1=3,J3=2,Jz=l]
(2.36) <=(n-38"'P[Ji=38,Js=2]<(n—38)"(n—2)"P[J1 = 3]
= Mn™2
Hence,
(2.37) \ f 7 dP \ = M|h|*n%
[1=8,Jy=2,Jo=4]

Next condition on X1, Xs, Xs, Ji, Jo, Js, R1, Re, Rs in the first term of (2.35) and apply
Lemma 2.8 to get

(2.38) ‘ f ﬂdP\ = M||&|* J (n + YL1 F(Sy) dP.
[1=8,J3=2,d274] [=3,J5=2]
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Now,
P[Ji=38,J;=2]< Mn™*
as in (2.36) and similarly,

(2.39) J’ F(S)dP=<((n-2)" f F(S:) dP
[1=3,d5=2] [,=3]

=[(n—2)(n—-1)]"'EF(S) < Mn™®

(2.40) j F(S:) dP = (n—2)" J F(8:)Yine,s I(J; = 3) dP
[1=8,d3=2] [J3=2]

= (n—2)"a(m) f F(S,) dP
[=2]

by Corollary S1,

=[(n—-2)(n— 1] a*(m) j F(S;) dP < Mn~3
(2.41) f F(S5) dP<[(n—2)(n — 1)] 'a(m)EF (S:) < Mn™%.
[1=3,d>=2]

Combining these estimates with (2.38), (2.37) and (2.35) we get,

(2.42) . j 7dP| <= M| h|*n"?
[1=3,d3=2]
and hence from (2.32), (2.34) and (2.42),
2I h1I 2 3
(2.43) ‘ 7dP| < M| h|* + E*| M| F(S1) + | |Pn
[1=3]

Next consider,

(2.44) f 7TdP=f ﬂdP—J ﬂdP—J 7 dP.
[J2=3,Ji& {3,4}] [J2=3] | [Ji=2=3] [J2=3,J1=4]

Of these terms the first is bounded in (2.43). The next is written,

(2.45) j 7 dP + j 7 dP.
[Ji=do=3,J,%4] [i=do=8,Js=4]

The second term in (2.45) is bounded by M || 2 ||* 2 as in (2.40). The first (conditioning on
Xi, Xs, X5, ete.) is bounded by

M| A|* f (n”' + XL F(S) dP
[i=a=3]
and again by M || A ||* n® by arguing as in (2.89)-(2.41). For example,

f F(8)dP== "‘(m) F(Sl) dP = a(m)[n(n — 1)(n — 2T
[Ji=c2=3] [i=
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Finally,
.Jr de.SIlhllf |h¥hShE |
[2=3,J1=4] [Jo=3,J1=4]
=(n-3)" lllhllf thihi|
[Jz—3] \
(2.46) <[(n—3)(n—=21 Y RIPE|hih]|

= Mn 2| h||ME?| | + cov(| hE ], | RS ])

=Mn?|h|*(E® | | + | APn7Y)
by Lemma 2.11. By our discussion and (2.43)-(2.46),

f 7 dP
E,*

Now by the Schwartz inequality,

(2.47) < M| A|? (E 'h1'+E2|hI|F(Sl)+||h||2 ‘3)

2
E 'h" + n?E?| hi | F4(S)).

E*|h|F(S) =E|m|E|h|FX(S) =—F—
The lemma, therefore, follows from (2.31) and (2.47).

LEMMA 248. For Ms; <

2
(249)  |E[AIThIAS| < M| A)? (E il g i) +12L0).

Proor. The argument goes much as for Lemma 2.22 and is sketched. If we denote the
" integrand by 7*

[AF]* + IIh|I3n‘2}

f w*dP\SMlIhll{(n_lElhll+E|h1|F(Sl))><j
[J1%#2,3]

[J1#2,3]
< M||h|*{n'E?|hi| + nE?| b |F (S1) + | A |°n 7%,
while

U [htPhERE dP‘ s||h||2f |h*h3|dP<Mn—1||h||2f |h¥hs | AP
[1=2] [1=2]

< M| k|’n"HE? | bu| + n 72| 2|J)
arguing as in (2.46). The lemma follows.

PrOOF OF THEOREM. Write
E(Yi k) < nE[ht]* + 6n(n— 1) E[AF]’[h$]?
+6n(n—1)(n — 2)|E[A¥1*h$hs| + n(n — 1)(n — 2)(n — 3)| ER{h3hihi|.

We apply Lemmas 2.22 and 2.48 to the last two terms of (2.50); note that the second term
is

(2.50)

< 6n2||R|(E? |kt | + |cov(| Rt |, | A2 ])])
and apply Lemma 2.11, and bound E[A}]* by 16 || 2 ||*. The theorem follows.
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3. Second moment convergence. The central result of this section is the evaluation
of the limit of Var((1/vn) Y7 h(X;, D;))? for a certain class of functions 4. Starting with
the density f (x), define

y(x) = f(x)™™,
and for any measurable function z on E™ X [0, ©) — E, let
I;(x, r) = h(x, y(x)r).

Define L, L1, L, as functions of bounded variation given by

(3.1) Lo(r) = eV

(3.2) Li(r, 1) = e "7V () + Vi(r) — V() V()]

(3.3) Lo(ry, ry) = e V=V [f (e — 1) dz — V(max(ry, rz))]
B(r,r)

where

B(ry, ro) = {z; max(r, r) < ||z|| < + r2}

V(rl) ro, Z) = J dy.
S(0,r)NS(z, rs)

For any two functions A, A’ define the functional L (A, 2”) by

L(h, k') = f A(x1, ) B (x5, 1) f(%0) f (%) Ly (dry, drs) do dixs
(3.4)

+ J R(x, ) A’ (x, 1) f (x) Lo(dr1, drs) dx.

The moment convergence result is the following.

THEOREM 3.5. If h is measurable on E™ x [0, ©) — E‘V and satisfies

@) 2] <o
(ii) the set of discontinuities of h has Lebesgue measure 0,
then
1
Var{ — YI A (X;, D,«)) — o*(h)
(«/E Z
where

2
36) o%h) =fi:2(x, r)f(x)Lo(dr) dx—U A(x, r)f(x)Lo (dr) dle + L(h, k).

As the proof will reveal, the first two terms of (3.6) would be the limit if the R; were
independent. The L (h, h) term is contributed by the local dependence of the nearest

neighbor distances.
The proof of the theorem is split into two pieces. Proposition 3.7 below shows that the

diagonal terms in
1
— Tt h* (X, D))®
n
converge to the first two terms of (3.6). Then Proposition 3.20 gives convergence of the off-

diagonal terms to L (k, ). We assume throughout that the conditions of the theorem hold.
Let X, D be a random m vector and nonnegative random variable respectively such that
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X had density f and
P[D >r| X] = exp{—f(X) V(r)}.
Equivalently, D/y(X) is independent of X and
P[D/y(X) > r] = Lo(r).

ProposITION 3.7. Let f satisfy A(i)-(iii). Then, as n — o,
(X1, Din) =9 (X, D)
where (X1, Dy,) is used to stand generically for the common law of any of the pairs

(X;, D;) and —o denotes convergence in distribution. Therefore

(3.8) Eh (X, Din) - j h(x, r)f(x) Lo (dr) dx

2 :
3.9) Var A(Xi, Di,) — f A%(x, r)f(x)Lo (dr) dx—( j A(x, r)f(x)Lo (dr) dx) .

ProoF. Almost immediate, since
PD,>r|Xi=x)—> e =P(D>r|X=2x)
and the set of discontinuities of A has probability zero with respect to the (X, D)
distribution.
ProrosITION 3.10. For h(x, r) any function satisfying the hypothesis of Theorem 3.5
n Cov(h(Xy, Dv), h(X;, Ds)) — L(h, h).

Proor. It is, we assert, sufficient to show for any two functions ¢1, ¢» of the form
(3.11) di(x, r) = gi(x)I(r=r), i=1,2
with g;(x) uniformly continuous and bounded, that
(3.12) n Cov(¢1(X1, D1), ¢2(Xz, D)) — L (¢, ¢2).

To see this note that if % is the set of all finite linear combinations of functions of the form
(3.11) then we can get a sequence A, € & such that

7]l =2 (| A

and with respect to L-measure on E™ X [0, ), A, — h a.e. (since A is a.e. continuous).
Now

Cov(h (X1, D1), h(Xs, D2)) — Cov (A (X1, Dy), A (X, D2))
(8.13) = Cov(h (X1, D1) — h (X1, D), h(Xz, D») + e (X2, D2)).
Using Corollary 2.15 on (3.13) gives the bound '
lim sup; | Cov(h (X1, D1), h(Xz, Dy)) — Cov(he (Xi, Dv), b (X2, Dy)) |
: < c|RI(E|h = ha])".
Now the bounded convergence theorem gives E (A — h)* — 0, and (3.12) implies that
Cov(hy (X1, D1), he (X2, D;)) — L (A, hz).

Since L (A, hr) — L (h, h), the assertion follows.
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Proor oF (3.12). Fori=1, 2, let
S,' = S(xi, n'l/'"ri), E = F(S,), Flz = F(Sl n Sz)

and let
A = {(x1, %2); f821 — || = 7™ + 1)}
B = {(x1, x2); n”Y™max(r1, r2) < |21 — % || < n7V™ (11 + 1)}
C = {(x1, x2), || %1 — x2|| = n”™max(r, 12)}.
Then
PRi=n""r,Re=n"""rn|Xi=x,X=x) =
(1-F—F)"7 (x1, ) €A
(1—F,— F,+ Fi)"%, (x1, x2) EB
0, (x1, x2) € C
and

PRizn V"X, =x)=(1—-F)".
Then, denoting

L(x1, x2, 11, 12)

=PRiznV"'r,Rez=zn"""n|Xi=x,X=x)—-[1-F)1-F)]"!

and gi(xl) by 8is f(xi) by ﬂ)

Cov(es, ¢2) = jgl (1)g2(x2) L (x1, X2, 11, r2)f(x1)f (x2) dxidx,
= fglgz[(l —Fi—-F)"?-(1-F)"'10-F)""1ff

+ J 818[(1 — Fi— Fo + Fi2)" * = (1 — F1 — F2)" *1fife
B

- f g1&:[(1 — F1 — F2)" *1fife
C

=L+L-1I.

Because nF; < fV(r:), where fis the supremum of f, and nF; — f(x;) V(r;), for fixed x:, x»
n[(1—Fi = F)"2 = (1 - F1))""'(1 = F2)"7]

F\F. "2
~A=F)aF Fl;(f_Fz)} - (1-F)a —F»]

— e~V —fe Ve[ f(x1) V(1) + f(x2) V(rz) — fx)f(x2) V() Vrz) ]

=n(-F)"?1 - Fz)”_z[{l

Furthermore, the convergence is bounded. Therefore

nl, — J <£(xl, r )d;(xz, re)Li(dr, drz)f(xl)f(xz) dx; dx;

as can be seen by making the transformations V(r}) = f(x;) V(r:).
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In I,, I, make the transformation
Xo=x1+n V"2,
leading to
B = {(x1, 2); max(r, r2) < ||z|| = r1 + 12}
C = {(x1, 2); || z|| = max(ry, r2)}.
On BUC, for x; fixed
flx2)g2(x2) —> f(x1)g2(x1)

uniformly, and
nF;— f(x) V(r), nFy — f(x1) V(ry, 2, 2)
where
V(ry, re, 2) = J dy.
yli=r,ly—zl=rz
Therefore

nl, —>J‘ lij (ef@Virur,2) — 1) dz] e—f(x)[V(r.)+V(r2)]g1(x)gz(x)fz(x) dx.
B

A simpler argument gives

nl; — j V(max(ry, ry))e-f@Ven+Vinlg, (x) gz (x)f2(x) dx.

In both integrals, make the substitution V(r}) = f(x) V(r;) and add the limits together to
get the proposition.

4. A central limit theorem. The main result of this section is

THEOREM 4.1. Suppose the set of discontinuities of h has Lebesgue measure 0 in E ™
X [0, ) and
supxalh| = ||A| < co.

Then if the density of the distribution satisfies A(i)-(iii),

4.9) L srnrx, D)) o NO, 0%(R)
Jn .

where o*(h) is given in Theorem 3.5.
The proof proceeds in a series of propositions.

NOTATIONAL CONVENTION. Lower case ¢ denotes a constant depending only on m and
[|7]]. The dependence of other constants on various auxiliary parameters introduced below
will be noted as needed.

PROPOSITION 4.3. There exists a sequence of bounded sets Cy C E™ with Cx C Cy+1
such that

1) diameter(Cy) = N

2) infxeCNf(x) =6ny>0

3) P(XeCy)—0.

Proor. There exist compact sets Ay C An+1 such that [4, f dx — 1. Choose éy > 0
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such that oy [4, dx — 0. Let
Fy = {x; f(x) = dn}
and take Cy = Ay N Fn. Then

J f—j fsf fS(SNj dx
Ay Cy AnNFY AN
so fc, f— 1.

In preparation for the next step, let Dy be a cube of side N such that Cy C Dy. Divide
Dy into L = (k)™ congruent subcubes Dy, ,, /=1, .-+, L, and let

B¢=ﬁN'/-nCN, f=1,"',L
B=uU8(B)

where 9 denotes boundary. The B,, /=1, ..., L provide the basic cells such that nearest
neighbor links between different cells will be cut. From now on until the end of the string
of propositions N and the B,, /=1, - .., L will be fixed.

Select dy > 0 and let

En = {x; x € Cn, d(x, B) = dy)

where d(x, B) is the distance from x to the set B. Write (X, D) for (X1, D1.). Note that by
using f(x) < sup.f(x) = f, we get

P(X € Cy, d(X, B) < dy) < 2mdyLY"N™ '},
Now let
h(x,d) = I(x € E,)h(x, d).

We suppress dependence on N, L here and in the sequel except where emphasis is needed.
Denote (recalling that A* = A — Eh, h* = h — Eh),

1 1
Zn=—=31h*X;, D)), Zu(N,L) =—=31h*(X}, D).
n n

PrOPOSITION 4.4. E(Z,— Z,(N, L))> < c¢(P(X € E%))2

Proor. This follows directly from Corollary 2.15.
For the next step define

Rl = 0 if X;€ B,, noother X;€E B,
7 |infix,xes | Xi — X - if X;E€ B,

and redefine A(x, 0) = 0. Let D} = n'/"R} and

1
Z,(N, L) =—ﬁ2?h*(&, Dj ).

ProposITION 4.5. E(Z,(N, L) — Z, (N, L))*> < cne—(n-DexVidw) where ey > 0 depends
only on N.

Proor.

E(Zu(N, L) = Z3(N, L))’ = % E(3;0)* <Y, EA

where
A =h(X,, D)) - h(X,, D}) — E(h(X;, D;) — h(X;, Dj}))
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SO
E(Z,(N, L) — Z,(N, L))? < Y, E(h(X;, D;) — h(X;, D}))%
Now X; € Ey and d(X;, B) > R; implies R} = R,. So
E(Z,(N, L) = Z1(N, L))’ = 2||h||* 3; P(R; # R}, X; € Ey)
< 2||||°>nP(d(X, B) < R, X € Ey)
where (X, R) stands for (X;, R1,) by our usual convention. Now
P(R=r|X=x) =[1-F(@S(, )] .
Note that d(X, B) < NVm for X € Ey. Now

infiecyinfyo,< mn[F(S(x, 1))/ V(r)] =en >0
since M(r, x) = F(S(x, r))/V(r) is jointly continuous on [0, vm N 1 x Cx, where Cy is the
closure of Cy, and since M(r, x) > 0 everywhere in Cy X [0, Jm N ]. Therefore

P(R=d(X, B),X€Ey) =< j e-n=DenVia BN (x) d.

XeEN
For x € Ey, d(x, B) = dy, so
P(R=d(X, B), X € Ey) < e-(n—DexV(dn)

and the proposition follows.
For the next step, put By = Cj%, and denote

P(XEB/)=p/') f=0,1)“"L
so Y41 p, = 1. (Assume that for every ¢, p, > 0, otherwise delete B,.) Let

~ so the (no, -+ +, nz) have a multinomial distribution with parameters(po, - - -, pr). Consider
" the following construction: draw numbers no, .-+, nz, Yn, = n from a multinomial
distribution with parameters (po, - - -, pr.). Then put n, points X{”,i=1, ..., n, into B,
using the distribution

F/(dx) = P(X € dx|X € B,).

Denote by P, the joint distribution of X{”, i =1, - -+, n,, let R{? be the nearest neighbor
distance to X{” from the other points in B,, and D{”’ = n'/"R{?. Put

7 = Zi hx{’, D{"), n,>1
‘7o, n,=<1.

Then
Y1 To = ¥j-1 h(X;, Dj).
PROPOSITION 4.6. There are constants yn,¢, =1, «++, L'such that y.,,— y. and
E(E(T,;|n,) — ET( - (n,— En()Yn,z)z =C(/)<w
wliere C(?) is independent of n.

Proor. Define
Wor|x, n) = PAnV"R{” > r|X{”? = x) = [1 — FAS(x, rn™"/"))]" .
Note that
E(T/|n,) =n, J h(x, r) W,(dr| x, n.)F,(dx).
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Define
X (r|x) = W,(rlx, np,) = [1 — F«(S(x, rn” /™)) !
and suppressing the dependence on L, let
pn = (n,—np,)/(np,— 1).
Then
Welr|x, n,) = xt*'
Then

n,—
npgs —

1
W(dr|xin.) = 1 Xirxn (dr| %) = (un + 1)x% dxn

where d x, = x» (dr| x). This is zero for p, = —1, so we eliminate this set in the expectations
to follow. Writing n, = (np, — 1) u, + np. leads to the expression

4.7) E(T;|n;) = npA1 + pn)? f hx!» dx, dP; — pn (1 + pn) J hx!» du, dP,.
The expectation of the square of the second term in (4.7) above is bounded by C/| h|?*/n,
and is henceforth ignored.
Next, expand
P
Xir =1+ palog xu + = (log xn)*xrf™,
where 0 < 6 < 1, and substitute into the first term of (4.7). We assert that all terms

containing a power of u, higher than one have squares whose expectations are uniformly
bounded in n. For example

2
(npz)2E<ui J h(log x») dx» sz) =< (np.)?|| k|| Epr = C| A (1 — pr)?
and

2
(np.)’E (ui(l + pn)? J’ h(log x.)*x dxx sz)

2
= "h ||2(np;)2E(,u,ﬁ(1 + .Urn)zj (log Xn)zxz"" an dPg)

<2 h|* ) [E{pn(l + pn) 5 — 1 < pa < 0} + E{un(l + p7); pn > 0}]

Therefore

(4.8) E(Ts|n,) = np. J’ h(1 + (2 + log xu)) dxam dP; + Oz(1)
SO

(49) E(T(l n;) - ET( = NP ¢phn f h(2 + log Xn) an dP/ + 02(1)

where O;(1) in (4.8) and (4.9) denote quantities such that sup,E (0Oz(1))? < c. Letting the
¥n, ¢ of the proposition be defined by

__ o
Y, = p— f h(2 + log x») dx». dP..

The proof will be completed by showing that the integral on the right above converges.
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For x fixed, x,(r|x) is a non-increasing function of r such that for x € Int(B,)

e—f(x)V(r) =

Xn(r|x) = Xo(r| x).

Since h(x, r) is a.s. continuous with respect to dxo dP,, then

J’ h an sz—-> J’ h dXO dP/

Now let

% (r| x) = (1 = log xa (r| %))x» (r| %)
so that

% (dr| x) = —(log x» (r| %))x- (dr| x).
For x € Int(B,)

X (] 2) = (L + fx)V(r)e TPV = %o(r| x)

and so
(4.10) J’ h(log x.) dx» dP,— — f h dxo dP;.

PROPOSITION 4.11. Yoy [E(T/|n;) — E(T,)] -9 N(O, o’k,.) where

-

012V,L = Zz Y?’Pz - (2 szz)z-
Moreover, n” (351 [E(T¢| n.) — E(T.)]*) = o¥.e.

ProoF. Clear from the preceding proposition.

It is useful to recall the dependence of parameters on N and L at this point.

PROPOSITION 4.12. Let

4.13) Un = = YL\ (T, E(T/|n).
In

Then there is a constant sk, < © such that

E(U%|ny, « -+, nz) —ab skL.

ProOOF. Givenn = ni, - - -, n, the terms in the sum for U, are independent. Thus

1
E(U;Zn|n1, <ee,np) =;szar(Tz|nz),

and
Var(T,|n,) = nNar(h(X{?, D\?) |n,) + n.n, — 1)Cov(h(X{”, D{?), h(X§?, DY) | n.);
it is then sufficient to show that '
Var(h(X{*, D{?)|n,) =2 constant
n Cov(h(X{?, D{?), h(X{?, D) | n,) —Z4 constant.

This result can be gotten through a simple modification of Propositions 3.7 and 3.10.
Now we are ready for the final steps. We can write

(4.14) ZW(N,L) =9 Up + V3,
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with U, defined in (4.13) and

1 @y
V.= L YL [E(T/|n) — ET)).
\/; /=1 4 £ £

By =4 we mean equality in distribution when U, and V, have the joint distribution we
have implicitly given them. Denote e} = P(X € E%).
ProposITION 4.15. If 0% = lim,Var(Z,), then

| 6% — (skr + o¥L) | = cen + 20V cen.
Proor. By Propositions 4.4 and 4.5
(4.16) lim Sup, EZ.-2Z, (N, L))2 = cen.

Use the inequality
(4.17) |EZ:— EZ(N,L)|<E|Z,— Zy(N, L) |* + 2VE(Z,)’E(Z, — Z;,(N, L))*

and take n — o to get the result.

PROPOSITION 4.18. Let a = vmax,p, and take |t|> < a™'. Note that « depends on
both N and L. Let g, (t; N, L) denote the characteristic function of Z, (N, L). Then

lim sup.|g» (t; N, L) — e~(Ghutski)f/2| < ca|t|?.
Proor.
&n(t; N, L) = Ee"U*") = E(e*"E(e"V"|n)), n=(no, -+, m).

Given n, U, = ¥ A,, with the A, independent and having the conditional distribution of
T,— E(T;|n,) given n,. Hence

E(*|n) =TIfAt),  f:At) = E(e™|n,).
Applying Corollary 2.3 to A,,
EA%|n) = can/n), E(A%||n.) < co(ng/n)*?

where ¢, will denote constants depending only on m, | 2|, and 6, will be quantities such
that | 6.| < 1. Then

2
1= £A0) | = 5 E(A2|n) < (/D 0/n)

t? .
|F(8) — 1+ —2—E(A% [n.) | < 2| 2 (n./n)*2

Temporarily restrict ¢ to the range | ¢|a < ¢i7/?/2. Define

B, = {max./(n;/n) < 2 max,p,}.

On B,, |1 — f.(t) | = %, hence
t2
log f:(t) =log[1 — (1 — fA(8))] = -3 E(A%|no) + 01c2| 8| (ne/n)*? + G2c5t*(ns/n)>.
So

2
IIf.(¢) = exp(—% S.EA%|n,) + A,,)

where, since | t*|a =1

|An] = e t3| > (n./n)*? + cst* Y (n:/n)? =< Cz|t3|a + 03|t4|a2_<_ C4|t|3a.
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Therefore
|e* — 1| = cs|t|’a
and so, denoting 2 = E(UZ |n)
|TIf,(t) — e P2 | < c5| t|%
holds on B, for all ¢ such that |#*| = &', and | t|a < c7'/2/2. Write
&:.(t; N, L) = E(I(B,)e™"*"") + E(I(By)e™V* ™).

Since P(B;) — 0, the second term goes to zero, so

lim sup| g, (t; N, L) — Ee®" P2 | < ¢5| £ |a.
Combining this with Propositions 4.11 and 4.12

lim sup| g, (£; N, L) — e~ ®h+ohit2| < o) £,

To complete the proof we need only remove the restriction | #|a =< c¢r'/?/2. But this can
clearly be done by increasing the constant c;.
The stage is now set for the proof of Theorem 4.1. By (4.16)

lim sup.|g.(t) — g-(t; N, L) | < lim sup.E|exp{it(Z. — Z, (N, L))} — 1| < | t| Vcen,

where g, (t) is the characteristic function of Z,. So, by Proposition 4.18,

(4.19) lim sup,, < c(|tPa+ || Ven)

t2
&n(t) — exp{_(sle,L + o¥L) E}

for | ¢|’a = 1. Now let N — oo, L — o in such a way that @ — 0 and ey — 0. By Proposition
4.15, if ey — 0, uniformly in L,

limN(s?v,L + 012\7_1,) = 02.

Since the restriction | ¢ |« < 1 is satisfied eventually for any fixed ¢, as « — 0 we conclude
that, for all ¢,
lim,g, (¢) = e™***7?

and (4.1) follows since the equality of o and ¢*(h) is derived from the moment convergence
theorem 3.5.

By considering linear combinations of A’s it is clear how the results can be generalized
to provide a multidimensional central limit theorem, and the moment convergence theorem
3.5 can be easily modified to give the limiting form of the covariance matrix.

5. The process ﬁ(t) and goodness-of-fit. First, a Glivenko-Cantelli type theorem
is established for H(t). Let

(5.1) g(x)y

flx)
o) = {~— 2(x) >0
00; gx)=0

and define a d.f. H by,

' _’ Et%, o0=t<1
(5.2) Ht) = {1, t=1,
and
(5.3) a=H(1) — H(1-) = P[g(X,) = 0].

Note that if f = g, then a = 0 and H is the d.f. of the uniform distribution.
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THEOREM 5.4. If A(iii) holds, asn — o,

(5.5) sup, | H(y) — H(y) |—as 0.

Proor. We begin by showing,

(5.6) H(y) > H(y) as. Y0=y<l1
and
(6.7) H(1l-) > 1-a=H(1-), as.

To prove (5.6) note that by Corollary 2.3,
P[|A(y) - EH(y) |z €] = O(n™?)

and hence by the Borel-Cantelli lemma,

(5.8) H(y) —EH(y) >0 as. VOsy<l1.

Assertion (5.6) then follows by using (3.7) to show that EH( y) = H(y). Next (5.7) is an
immediate consequence of the S.L.L.N. To complete the proof of the theorem, let

. B - p<y<t
(5.9) H*(y) = yH(1-)
1, y=1

and define H* similarly in relation to H. By (5.6) and (5.7) ik converges in law to H* with
probability 1. But H* is continuous and hence by Polya’s theorem,

(5.10) sup, | H*(y) — H*(y) | —as. 0

and (5.5) follows from (5.10) and (5.7).
Define a stochastic process on [0, 1] by,

(5.11) Z.(t) = Vn(H(t) — EA®), O0=t=1,

" and a corresponding Gaussian process Z with mean 0 whose covariance function y(s, ¢), s
=< t, is defined by

v(s, t) = J’ fs"(l - f ft'\)
(5.12) - <log s f )\sAff tf + log tJ’ )\tAff s*f + log s log tj t"fJ’ s"f)

+log s f A(st)f + J' A WMs, t, w) — 1) dw dx
B(s,t)

(We write A, f for A(x), f(x) etc.)
where

B(s,t) ={w:n=|w|=n+nr) log n(s, t, w) =j dz

S(0,r)NS(w,rz)

where
V(r1) = —log s; Vi(rs) = —log t.
If f = g, then y(s, ), s < t, reduces to

(5.13) Y(s, t) = s — st(1 +log t + log slog t) + stf (s, t, w) — 1) dw.

B(s,2)
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Clearly the processes Z,(-) can be identified with probability measures on D[0, 1] and
it will follow as a consequence of our proof that Z(-) can be as well. In fact, if « = 0, Z(-)
has a.s. continuous sample functions. Our main result is
THEOREM 5.14. Suppose that A and B hold. Then,
Zn—>7Z
in the sense of weak convergence in D[0, 1] where Z is as above and has a.s. continuous

sample functions.

Before giving the proof we state and prove the corollary of greatest interest to us. Let

1
So=n j (H(@®) — EH@®))? dt
0

2

1 .
Si=n f (A@t) — EA®t))? dA@) = Y (EﬁxW(,»)—%
0

COROLLARY 5.15. If f = g and A holds, both S, and S, tend in law to [§ Z*(t) dt
where Z has covariance function (5.13).

The corollary is, for Sy, an immediate consequence of Theorem 5.2. By writing
1
S = f ZAH\(t)) dt
1]

we see that the corollary follows in this case from Theorems 5.1 ‘and 5.2.

A Notes 1) The theorem can be extended to the case « > 0 by a conditioning argument
as in Section 2. Of course the Z process is then continuous only on [0, 1) and has a jump

at 1.
2) It is not possible in Theorem 5.1 to replace EH in the definition of Z, by H. Although

EH(t) — H(¢), the difference is of the order of n~*™ and will not be negligible for m > 3.

ProoF oF THEOREM 5.14. We begin by establishing the tightness of the Z, sequence
using the 4th moment bound proven in Section 2. Let Ry, - - -, R, be as in Section 2 and
recall that

D;=n""R;, i=1---,n

LEMMA 5.16. If A(iii) and B hold, the sequence of processes {Z,} is tight in D[0, 1]
and any weak limit point is in C[0, 1].
Proor. We use a device due to Shorack (1973). Note that:

Zo(8) =n"* YL, (I(g(X,-)Dﬁ” < _;gg t) - P(g(Xl)DE" <—_;§—gt>)

where K, is the volume of the unit sphere in E™. Let

_ —log t
Qn(t) - Gn( K ) .

m

where G, is given in Corollary 2.5. Note that by B and the dominated convergence theorem
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G, is continuous. For given § > 0, let t; < - -+ < tx be such that
I
Qu(t) = —, 1=i<K
Vn

where _<_ 1< (K+1)—
vn «/Z

Let

Zi(t) = Zn(t)) + — Y (Qn(t) Qu(t:)) (Zn(tirr) — Zn(:))

for tL<t<tu, 0<i=<K, th=0, tev1 = 1.
Note that

Z:(0) = Z:(1) =
An elementary application of Corollary 2.5 shows that,
(6.17) EZ}(t) — Z}(s)' = M(Qn(t) — Qu(5))?,  all s, ¢t

where M depends on & but is independent of n. Since, under A(iii) and B, dominated
convergence implies that for each y,

Gn(y) — J f(x)(l - exp{—_z—1 ﬁ%)i}:}) dx

a continuous probability distribution; it follows from a slight modification of Billingsley
(1968, Theorems 12.3 and 12.4) that {Z*} is tight and that all limit points of {Z}} are in
C[0, 1]. Next note that

supe | Zn(¢) — Zz(t) |

= max{sup{|Z,,(t) —Zp(t) | it =t < tiv1}

(5.18) + ? (sup{| @u(t) — @u(t:) | :ti = t < tin1})| Zu(tiv1) — Zn(t:)|:0= i< K}

= max{[| Zu(tir1) — Zu(t:) | + VR(EH(ti1) — ERL(t)]
+ | Zn(tiv1) — Zu(t) |:0= i< K}

using the monotonicity of H,(.), EH,(.), Q@.(). Next note that integrating (2.8) for j = 0,
implies that for C independent of n, §,

VRE(Hu(tis1) = Halt:) < CVR(Qu (tis1) —Qu(t)) = C3.
Hence,
(5.19) sup:| Za.(t) — Z%(t) | < 2 max{| Z%(¢+1) — Z3¥(t:)|:0=<i=< K} + C6.
But in view of (5.17), some elementary inequalities give .

(5.20) P[max(|Z(ti1) — ZE(t:)|:0< i< K} = €]

= M S0 (Qultin) — @u(t))* = M= — 0.
vn

By (5.18)-(5.20) for each & > 0, C independent of §
(5.21) Plsup;| Z.(t) — Z%(¢) | > 2C8] — 0.
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Since {Z}} is tight for each §, (5.21) implies tightness of {Z,} and a.s. continuity of all
limit points. (See, for example, Theorem 4.2 of Billingsley (1968). Note that the dependence

of Z} on § is immaterial.)
Asymptotic normality of (Z,(t1), - - -, Z.(t.)) follows from the representation given in

the introduction,

1
Zn(t) = —= Y1 h*(X;, D;)
Jn <

with
h(x, d) = Ilexp{-g(x)V(d)} = )

and the multivariate extension of Theorem 4.1. Similarly the formulae (5.11) and (5.12) for
v(s, t) may be obtained after tedious calculations from the appropriate straightforward
generalizations of Proposition 3.10.

As an immediate consequence of Theorem 5.4 and Corollary 5.15 we have

THEOREM 5.22. The tests which reject when S; = c(a) where

1
Pg{ f Z¥¢) dt = c(a)} =a
0

asymptotically have level o for H: g = g and are consistent against all f # g which
satisfy A and B.

ProOOF. That the tests have level a is immediate from corollary 5.15. We check

consistency for S,.
Note first that if f# g

1
(5.23) J’ (H(t) — t)>dt > 0.
0

If not, since H(e™*) is the Laplace transform of A(X;) and equals e a.e., then P{A(X;) =
1] = 1, implying f = g a.e. Write

1 1 ‘ 1
So = J Z%(t) dt + 2vn J’ Z.(t)(E;H(t) — E;H(t)) dt + n J (EA(t) — E,H®)) dt.
0 0 0
Then

1
j Z2(t) dt = 0,(1)
0
, 1
vn J Z(t)(EH(t) — E.H(t) dt = O,(Vn)
0 .

1 1 .
n J (EA@) — E,A@®) dt ~n j (H(t) — t) dt = O(n)
0 0

by (5.23). Therefore,

So —p ®

and consistency follows.
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Note. In his thesis, M. Schilling (1979) has made a far reaching investigation of the
power of this and related tests against contiguous alternatives, has constructed tables of
the asymptotic null distribution of S, for m = 1 and « and has studied the efficiency of the
large m and n approximation through simulation.

APPENDIX

In this appendix we give the statements and proofs of several lemmas of a technical or
computational nature which are used in the previous sections. We begin with a key lemma
due to Stone (1977).

LEMMA S. For each m and norm || - || there exists a(m) < o such that it is possible
to write R™ as the union of a(m) disjoint cones Ci, - - -, C, with 0 as their common peak
such that if

x,yE€Ci,x,y#0, then ||x—y| <max(|x|,[xl), J=1,:--, alm).

The following straightforward modification of Stone’s argument shows that the lemma
is valid for any norm.

ProOF. By compactness of the surface of the unit sphere 4S(0, 1) we can find
G, - -+, C.m disjoint sets such that,
(i) U C; = as(o, 1)
(i) x, y€ G=|x— y] <1
Let
Ci={A:x€C,A=0}, j=1,---, a(m).
Suppose x = A%, y =17, %, J € C;. Suppose w.l.o.g. A < 7. Then,

A A
={{1-=]IFI+=Ix=-7F; < .
‘ {( 17)IIyII 17|I yll} (b7

The following are easy corollaries of Lemma S.

A .
_.x—y

lx=yll=n
1

COROLLARY S1. For any set of n distinct points, x1, --+, Xn» in R™, x1 can be the
nearest neighbor of at most a(m) points.

COROLLARY S2. IfCy, - -+, Coim) are as in Lemma S, yo is arbitrary, x € C; + Yo, then
S(x, [|x =y ) DSy, |2 = yo ) N (Cj + y0).

The following consequence of S2 is needed for the proof of Lemma A2 but is of independent
interest.

THEOREM Al. Let Y be a random m vector with distribz;tion G, density g, and let yo
be a fixed point, )
Q=GESY, Y=yl
Then,
(A.2) P[Q = q] = a(m)q, 0=s¢g=1

Proor. First let yo = 0 and let G; be the conditional distribution of Y| Y € C; and p,
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= G(C;), where the C; are given by corollary S2. Then,
(A3) PQ=q]=3,{pP[R@=q|Y€EC(]:p;>0}.
But Y € C; implies by Corollary S2 that

G(S(Y, | Y 1)) = p,G(SO, | Y |) N C)).
Hence, for p; > 0.
(A4) PQ=q|YeC]= P[ GEONYIN =

J

pj

since, given Y € C;, Gi(S(0, || Y ||)) has a uniform distribution on (0, 1). (A.2) and (A.3)
imply (A.1) if yo = 0. For the general case shift everything by y, and apply Corollary S2 in
full generality.

COROLLARY A5. If Q is asin Theorem A.l,r =0
EQl-@Q)Q=M@r+1)72

where M depends only on m.

Proor. Since 0 = @ = 1 we may w.l.o.g. take r = 2. By integration by parts
1

E1-@)Q= J’ P[R=ql{—-1—-¢) +rq(1-¢) " dq} = a(m)rJ’ ¢*(1—¢) ' dq
0

0
=rr—-1"%a(m) J w2<1 - —u-)—> dw
A r

<= 2am)r(r—=1)° < M@r+1)2
We proceed to Lemmas A6 and A10.

LEMMA A6. Let
Fu=[Xi#X], Fuo=[Xi=Xi,Ri#R], Fs=[Ji=20rd =2]

Then
(A7) P[F./] = M(% + F(S)) .Y
2
(A.8) P[F,;N Fy]= M(% + F2(S)) . YAk

Proor. All these estimates follow by symmetry arguments as in the proof of Lemma
2.27. We prove one of the estimates of (A.8) as an example. Note that we may without loss
of generality take r < n/4 (say). Then

P[Fi; N Fyl<[(n — r)(n — r — DI E[SES I(Fi2) Yheime: Ui = k) + I(Ji = k)]
< 8a(m)n2E(N +r)
by Corollary S1. But

(A.9)

2
8a(m)n2E(N + r) < % (% + F(S)) < M(% + F2(S)> )

Clearly the bounds (A.7) and (A.8) are overestimates in this case. We have written the
lemma in this way for compactness.

LEMMA A10. With the same definitions for j = 1, 2,
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(A.11) EI(FI,) —= M( + FZ(S))
2

(A.12) EI(F,,)F(Sy) < M(,—';-2 + FZ(S))

(A.13) EI(F,)FS) < M( + FZ(S))

ProoOF. a) j=1
EI(Fy) g = F(S)(l + (1 - r—_l)F(S)>

EI(F11)F(S1) = P(F11)EF(S,) = @

Let
R =min{|Xi-X|:1=sj=n—r,j#i}.
Then,
EI(Fu)F(S) = EIFu)F(S(X1, RY)) < (n — n)7'F(S)(1 — F(8)) + F*(S).
The bounds (A.11-A.13) are immediate for r = n/4 and trivial (for large enough M) for r

> n/4.
b) j=2
EIFy) g - ( )P[FIZ A Fau] < 2a(m )—E(ﬂ‘ﬁ*'—’”z’) ( F(S) + F“’(S))

for r < n/4 and (A.11) follows. To prove (A.12) begin by writing,
(A.14) EI(F)F(S;) < EIX; = X1, Ri =< R\)F(S1) + EI(X; = X1, Rio > Ri.)F(S1)
. + Y1 EIX, =X, R > || X1 — %|)F(S))

where,

~

R10=min{||X-—X~1||‘X X, j#lL,1l=j=n-r}
Re=min{|&-X|:X;#X,j*L1=<j=n-r}.
Then, we bound
(A.15) EIX, = X, R < R\)F(S1) < EI(Xs, # X;)F(S1) = n"'F(S).
Next,
EIX, =X, Rio > Ri.)F(S1)
= E{P[Fs(S(Xi, Ru)) > F(S(X,, Ri)) | N, &1, Rie, X1 = X1 ]
-Fs(S(X1, Ri)I(X: = X1)}
= E[(1 - Fs(SXy; R1)) ' Fs(S(Xy, R NIX = X1)]
where K=n—r— N

(A.16)

1
= ENJ’ A-w " wdw=[(n—-rm—-r-1)]'EN
0

<MLIFes)
n
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for r < n/4.
The next to last inequality follows since, given X; = X; and N, Fs(Xi, R1.) is distributed
as the minimum of N uniform (0, 1) variables. Finally, arguing as above,

EI(Xl = X~1, Ry > " X - X " )F(Sl)
=E(1-Fs(S&,, | & — 5 D) Fs(SK, | X — % 1) I = Xh).

Given X; = Xi, we can apply Corollary A.1 noting that Fs(S(X,, I X - x;]|)) has the
distribution of @ with G = Fs, x; = yo. Since conditionally K — 1 has a binomial (n — r —
1, 1 — F(S)) distribution, we obtain as a bound for (A.17),

(A.18) MEK?| X, =X) = %M1 — F(S))2(n — r) 2

Therefore, we obtain

(A.17)

2
(A.19) Y EIXy = %o, R > || Xo — %, )F(S1) = M(fl—2 + F(S))
for
r< RS =l (say).
=7 4

Combining (A.15), (A.16) and (A.17) we obtain (A.12) for j = 2, since the restrictions on r
and F can be absorbed into M for the final bound. Finally,

(A20) EI(Fy,)S: < EIX, =X, R, < R)F(S1) + EIX, = X,, X, # X, )F(S(Xi, Ruw)).

The first term in (A.20) has been bounded in (A.14) and (A.19). The second is bounded as
in (A.15) by

1 - r 1
F(S)E(E ‘Xl = Xl) =< MF(S) o F(S) = 1

r = n/4. (A.13) follows for j = 2 and the lemma is proved.
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