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A SIMPLE CRITERION FOR TRANSIENCE OF
A REVERSIBLE MARKOV CHAIN

By TERRY LyoNs

Imperial College of Science and Technology and University of California

An old argument of Royden and T'suji is modified to give a necessary and
sufficient condition for a reversible countable state Markov chain to be
transient. This Royden criterion is quite convenient and can, on occasion, be
used as a substitute for the criterion of Nash-Williams [6]. The result we give
here yields a very simple proof that the Nash-Williams criterion implies
recurrence. The Royden criterion also yields as a trivial corollary that a
recurrent reversible random walk on a state space X remains recurrent when
it is constrained to run on a subset X’ of X. An apparently weaker criterion for
transience is also given. As an application, we discuss the transience of a
random walk on a horn shaped subset of Z¢,

0. Introduction. In [7] Royden gave a necessary and sufficient condition for a
covering surface of a compact Riemann Surface to have a Green function. Roughly, the
criterion consisted of triangulating the surface and asking whether a flow could be
constructed on the dual graph with the following properties: with the exception of one
vertex, the flow into the vertex equals the flow out; at one vertex the flow out exceeds the
flow in; the whole flow should have “finite energy”.

Tsuji [8, Theorems X.44 and X.9] gave a simple proof of Royden’s result, and Mori [5]
used it to prove that a Z2 cover of a compact surface admits no Green function while a Z*
cover does. Considerably more recently, and independently, Debaun [1] has proved
analogous results for a Riemannian manifold.

The extension of Royden’s criterion to the setting of a reversible Markov chain is in
Section 1 and is straightforward. Royden’s criterion has a “physical” interpretation and
this is described in Section 2. Section 3 mentions some related probabilistic results; Section
4 includes, as a simple application of the recurrence part of the criterion, a simple proof of
Nash Williams’ test for recurrence.

Section 5 shows that a somewhat relaxed form of Royden’s condition also implies
transience.

Loosely it says that if there is a vector field u over our state space with [ |Vu|? < oo,
f|divu| < o, and [ divu # 0 then the Markov chain is transient.

In the final section we discuss the problem of determining how much one has to fatten
a 1 or 2 dimensional simple random walk into 3 space before it becomes transient. Our
results are sharp.

1. Royden’s criterion. We now state and prove the formulation of Royden’s criterion
appropriate to a Markov chain. Throughout this paper denote by (X, Y., p;;) the Markov
chain with countable state space X, process Y, and transition probabilities p,, (i, j € X). We
will use P’ and E‘ to denote the probability and expectation obtained when Y, is
conditioned to be i € X. The chain (X, Y, p) is reversible if there exist strictly positive
weights 7; (i € X) such that

TiPij = TPji
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394 TERRY LYONS

in which case we will denote m;p;; by a;; for brevity. Observe that p;; = a;;/Yx ai and 7; =
Y ja;;. Many of the usual Markov chains satisfy this reversibility condition. Henceforth we
assume that a Markov chain is reversible.

THEOREM. (X, Y, pij, m) is a transient reversible Markov chain if and only if we may
find real numbers u;(i, j € X) with the following properties:

(i) Uij = —Ui,
(ii) there exists iy € X such that Y, ju; ; # 0 and Y, ju;; = 0 for all i # i,
(i) ¥ u%/a; < o, where we adopt the convention that 0/0 = 0 and x/0 = « if x # 0.

We will refer to any sequence u;; of real numbers as a flow on X if (i), (ii) apply and if
u;; = 0 whenever p;; = 0. If a flow satisfies property (iii) we will say it has finite energy.

Proor. We first prove that the existence of a flow with finite energy implies that Y is
transient. The initial step is an elementary Hilbert space argument. Let H be the Hilbert
space of all sequences (v;;);jex satisfying (iii), and define an inner product on H by

Ui Wij

v, w) =3, .

a;j

Condition (ii) can be expressed as follows: for each i € X define ¢ € Hby
(€9)r = 8ijtin,
where 8;; = 1if i = j and zero otherwise. Trivial computation shows that (£ i ¢Y =q;and
justifies our claim that ¢’ is in H. A vector u € H has property (ii) if and only if
(¢ u)#0, (¢Lu)=0Vi%*i.

By hypothesis there is a vector u € H with (¢, u) = 1, (¢, u) = 0 for all i € X with
i # io, and u;; = —u;; for all i, j € X. Let E denote the affine space of all vectors in H with
these three properties. Let w denote the unique vector in E which minimises (w, w). By
a standard argument from Hilbert spaces, w exists and moreover is characterised by the
following property:

(w,w—e)=0

for all e in E. This second fact will allow us to construct a function W on X (rather than
on X X X) such that

a;; (W; — W) = wy.

We construct W;. Let &, i1, -+ -, in = i be a path in X with p;,;,,, > 0 for each k < n.
Define W; by

Wi,
VV,‘ = Z ;e:é Kkt 1 3

aikikﬂ
To show that W; is well defined and independent of our choice of path we exploit (w, w
—e) = 0. Let jo, j1, -+ - ,jn = Jjo be an irreducible chain of vertices with p;,;,,, # 0 for all &
< n and ji # jn if k, m < n. It suffices to prove that

pol Wipdner _ 0.
ajkjk+1

Define (f;,) by f;,j,., = —fj...,= 1 for all £ < n, and by f = 0 otherwise. Then computation
shows that

—1 Wi —1 " Wjpnj
f, w) = Zz=$ -k .k+l + Zz=3 : k+‘l k;
Iulk+1 LA
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but Wi = —Wji and a;; = i, SO it follows that

(f, W) — 2 Zz;& w]lz]h+l .
Inlk+1
On the other hand (f, ¢°) = 0 for all i € X and so w + fis in E. Therefore (f, w) = 0 as
required.
We are halfway to our objective. We have constructed a function W; on X with the
following properties:
(i) W;,=0,
(i) W is not identically zero (because (w, £%) = 1),
(lll) VV, = ZjEXpijVVj fOI‘ all l 7& io,
(iv) Yijexai(Wi— W))? =Y jexmpi(W; — W;)? < oo,
We will now demonstrate that the existence of such a W is not compatible with the
hypothesis that Y be recurrent. Suppose Y is recurrent. Let T denote the first time Y hits
io. Then W(Yrar) is a P*-martingale and moreover it converges almost surely to zero as &
tends to «. We will prove that

supr EX((W (Yinr) — W(Y0))?) < oo,

and so that W(Yzar) = 0. This in turn would imply that W; = 0 for all i giving us the
desired contradiction. Let us obtain the mean square estimate: by the martingale property
we have

E([(W(Yinr) — W(Yo)P) = B\ [W(Ysnar) — W(Yiar)P)

= Ei(zg[W(Y(/‘H)/\T) - W(YjAT)]2)~

Let Y. be the o-field generated by (W(Y;a7))j=<r. Then the last expression may be rewritten
as

EYES E((W(Y(rnar) — WGAD) P E)) = Snexg G, 1) TnexDum (Wn — W, )2,

where g(i, n) is the P’ expected number of visits Y makes to n before hitting i. (If i = n
we count Y, in n as a visit to n.) A simple computation shows that mg(i, j) = mg(J, ©).
Moreover g(j, i) < g(i, i). Putting these two facts together we observe that

g, ) == gG, i).
i

Because Y eventually hits i, it follows that the P probability that Y, = i for some n > 0,
denoted by f;, is strictly less than one. But g(i, i) = Y ¥-o(f;)* and so is finite. Therefore
8@ 1)

i

ZnEXg(i, n) ZmeXpnm(Wn - Wm)2 = ZneXZmEX'”npnm(Wn - Wm)2 < 0,
as required.

The converse direction is easier. The idea is to take the gradient of the function W; =
P (Y, = i, for some n = 0). This will surely be a nonconstant flow if Y, is transient.
Moreover it is easy to prove that the energy of the flow is at most 27;. Although this fact
is already known to probabilists, formula 2.2 in [4] is essentially what we require, we give
an argument here for the convenience of the reader. Suppose (Y, X, p;;) is transient. Fix i,
and let W; = P*(Y, = i, for some n = 0). We claim that u given by

u;; = mpy;(W; — W)

has all the required properties. Certainly Y, ju; ; > 0 and Y} ;u;; = 0 for all i # &,. What needs
to be proved is that

30/ (Wi— W)Pmpy < oo
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Let F be a finite set containing io and F* = F\{i}. Define w; (depending on F) by
w; = P*(Y hits i, before quitting F).
Then
Yicr Liexmp i — w))’ = Viepm Ljexmipiw} — w?),
because i € F* implies that
w; = Y, jexPijWj.

The symmetry of 7;p;; allows us to cancel most of the terms on the right hand side. (This
is Green’s Theorem). Further observe that w; = w; = wj for all i in F, for all j in X\F.
Using these two facts, we obtain’

Yiem Yiexmipy (Wi — w))? = Yiem Xjex rrpi(w] — w?)
+ Yicr mipi, (Wi — wi)
< Yiep mibii, (W}, — w}) = m;,.

Now allow F to vary; let El c...CF,C e be any collection of finite subsets X with
U F; = X and let w{™ be P(Y hits i, before leaving F,). Then lim,_,.w} = W; and so by
Fatou’s theorem we obtain

Sinio 2 jexmiPy (Wi — W))* < m.
On inserting & into the sum we have
YiexY jex mpy(Wi — W))* < 2m;,.

The theorem is proved.

2. Physical interpretation. Imagine the points i € X to be nodes connected together
by tubes of length 1, the cross-sectional area of the pipe from i to j being a;,. Insist that
Y ja;; the total cross-sectional area at any node is finite. Then the a;, are symmetric and
determine a reversible Markov chain in the usual way with =; = Y, ;a;, and p;; = a;;/m.

Suppose that # is a node of X, and that an incompressible fluid enters the system at io
at a constant rate, but can escape at no other vertex. Suppose also that the pipes are all
full of the liquid. Then let u;; be the volume rate at which fluid flows from i to j along the
pipe between them. Then the incompressibility implies that Y, ju;; = 0 for i # i, and by
hypothesis ¥, u;; # 0. The mass of fluid in the pipe from i to j is just ay; its velocity is
given by u;;/a;;. The total kinetic energy of the fluid is therefore given by

2 2
Uij uy
a2 ) =Y, 2
Zl,/ 7 ( aij) Eh! aij
Royden’s criterion for transience then reads: (X, Y, a) is transient if and only if we can
construct a flow through the network with finite kinetic energy.

3. General remarks. We should make some remarks concerning the connections
between Royden’s criterion and existing probabilistic results. The idea of using energy in
Markov chain theory is not new. Doyle and Snell used the electrical network to motivate
a similar approach to the problem of determining recurrence and transience [2, particularly
page 125]. That paper also mentions several more classical sources.

Nash-Williams [6] has a criterion for recurrence. This criterion was extensively exploited
by Griffeath and Liggett [4] (and a new proof of sufficiency of the criterion was given). A
major purpose of [4] was to give a necessary and sufficient condition for recurrence for a
class of reversible Markov chains. Royden’s criterion gives an alternative proof of the
transience result there and also yields a very quick proof of the sufficiency of the Nash-
Williams criterion for recurrence. We will give the latter proof in the next section.
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Let (X, Y., a;;) be a reversible Markov process; let d;; be any sequence of real numbers
satisfying 0 < d;; < a;; and d;; = G;;. Let X = {(i: 7, = ¥ ;4;; > 0}, and ¥ the Markov process
with transition probabilities given by p;; = d;;/#; for i, j in X. We will call the process (X,
Y., a;) subordinate to (X, Y,, a;;). If X’ C X is any subset of X, we may restrict the
process to X' by taking ai; = a;; if i, j € X’ and a}; = 0 otherwise.

A trivial consequence of Royden’s criterion is the following: if (X, Y,, a;;) is recurrent
and (X, V., @;;) is subordinate to it, then X Y., @;) is also recurrent. In the case of X =
Z* this was a problem of Feller [3, page 425]. This sort of result is not obvious if one uses
traditional Fourier analysis techniques.

4. The Nash Williams result. All the essential ingredients of the Nash Williams
result can already be seen in the following easy application of Royden’s criterion.

ExamMpPLE. The simple random walk on Z? is recurrent.

ProoF. Let u;, be a flow on the lattice Z? with source at 0 of strength 1. Let [A", A™*"]
denote the set of 8n + 4 edges connecting the square A™ of width 2n to the square A **?
of width (n + 1). By hypothesis ¥ ) eran a1 4y = 1. A simple computation shows that

Z(i,,')e[Au,Am]ui, =1 for a.ll n.
By the Cauchy Schwartz inequality
u
i —
Vi jretan,am+1] .= (B netanamy || PIE 6 peran,avnay]™
ij
= [Yeneranamnay] ™

To consider the simple random walk on Z* we put a;; = 1 if i and j are nearest neighbours
and zero otherwise. Then we obtain

1
8n + 4

ul
Yiipez? —= Y=o s
a;;
and the flow does not have finite energy. This completes the argument because the flow
was arbitrary.
We now prove the Nash Williams result.

THEOREM 6.4. Suppose (X, Y, a) is a reversible Markov chain and that X =
U%-o A* where the A* are disjoint. Suppose further that i € A* and a;; > 0 together imply
J € AU A* U A*, and that for each k the sum Yienr jex a;; < . Let [A*™", A¥] denote
the (i, j) such that i € A*7', j € A*. The Markov chain (X, Y, a) is recurrent if

-0 [T jreraran @il = .

Proor. Assume, without loss of generality, that A° contains a single point i, and that
u;jis a flow on X with source i, and strength 1. (That is to say ), u;, = 1 and Y} u;; = 0 if
i # l.) We must prove that u has infinite energy. Suppose that for some k the sum Y;ear jex
| uij| is infinite. Then the Cauchy Schwartz estimate used above and the hypothesis that
Yieatjex a,; < « together imply that Yicarjex (u%/a;)) is infinite and the proof is finished.
So we may assume that Y;eat,ex W, is absolutely convergent for each k. In this case the
sum is 1 for each k. To show this we reorder the sum. For £ > 0 we see that summation
over the X-coordinate first gives

Yieatjex tj = 0.

On the other hand if i is in A* then u,, 5 0 only if j € A*™' U A* U A**!, moreover u;; =
—uy, for all i, j; combining these observations one obtains

Z(ij)e[A",A"+1] U, = Z(i,j)e[A”",A’“]uif
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and by induction
Z(i‘j)E[Ale'Ak_‘_l]uij =1 fOI‘ all k

Therefore the Cauchy-Schwartz estimate gives us for each k:
2
Uiy -
(Zu,j)e[/\”",/\'*] a—l) = (S e an | 4 S penran @)~
ij

-1
= (Dajem-,nn @)~

Summing over & we obtain the theorem.

In [6] Nash-Williams gives a sort of converse result to this. He shows how any recurrent
graph can be modified so that it is in the form required by the theorem. But life is not
simple; there is a recurrent reversible Markov chain (X, Y5, a;;) and a partition of X into
Ug A* (A* disjoint) such that | A*| = 2 and Yu(X; jerar an @)~ < .

While this paper was being revised, Tom Liggett pointed out that a generalised form of
Nash Williams criterion is true. Let X be a disjoint union of sets A*, and suppose that
Yieat jex @i; < o for each k. Let G = Yieatjean ;. If the random walk on the set of A*
induced by the @ is recurrent then the random walk on X is recurrent. The proof is
essentially the same.

5. A better test for transience. To use Royden’s criterion to prove transience of
a particular Markov chain, one must find a flow with a single source and finite energy.
This restriction can lead to considerable algebraic complexity in the description of the
flow. In fact it suffices that there be a net influx of material into the network, without
constraint on the number of sources or sinks.

THEOREM. Let (X, Y., a;)) be an irreducible and reversible Markov chain. Suppose
there exist real numbers (u;)); jex with the following properties.
@ wiy = —u;
() Yiex | Yjex ;| <o and Yiex ¥jex uy) # 0,
(iil) Yiex Yjex uli/ai; < co.
Then Y is transient. The converse follows trivially from Royden’s criterion.

Proor. Suppose such a flow u exists. By a simple modification of the flow we may
assume that there exists an i, € X such that

XJ Wigj > Viin| 2y Ui |-

As before let H be the Hilbert space of all vectors satisfying (i) and (iii), and let ¢* € H be
the vector which gives

(LLv)y =Y v
Our object will be to construct w € H such that
(&, wy=(Luy Vizip
and
(€, W)| = Tiwiy [( £, W]

The vector u — w would satisfy Royden’s criterion and the theorem would be proved. The
vector w will now be constructed as a weak limit.

Choose a finite subset F of X containing i, and such that the restriction of a;; to F'is an
irreducible Markov chain. Let F'* denote F'\{io}. Let wr be the vector in H with minimal
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norm subject to the constraints
(¢, w)=(¢,u) ViEF*

As we allow F to vary, the norm of wr stays uniformly bounded. Let F, increase to X, and
let w be a weak limit point of the (wr,). Certainly (¢‘, w) = (£*, u) for all i in X\ {io}. We
will have completed our argument if we show that

[( &% wr)| < Yier-

for any choice of F. The remainder of our argument will be a proof of this fact.
The minimality of w implies the existence of a function ¢: X — R such that if (w;)); jex
= wy then

(@) wi; = ay[p() — ¢ ()],
(b) ¢ is zero on X\F*.

<fi) WF)l

Property (a) follows from an identical argument to that used in the proof of Royden’s
criterion. Property (b) can be seen as follows—firstly ¢ as determined by (a) is only defined
up to a constant; therefore we may as well assume ¢ (i) = 0. Fix any i € X\F. If a;; > 0
then the fact that wr has minimal norm implies that w;; = 0 and so ¢ (i) = ¢ (i) = 0. On
the other hand if a;; = 0 we simply change it so that it is strictly positive. Imbedding the
old Hilbert space (with a;; = 0) into the new one in the natural way, we see that if we do
not change the constraint then wr is minimal in this larger space also. Therefore ¢ (i) =
¢ (io) = 0 as required. To obtain our required bound on |(£*, wr)| we decompose ¢ into
two “potentials”.

Let j be in F* and define g(i, j) to be the P‘ expected number of visits ¥ makes to j
before leaving F*. (If i = j then we count the starting point as the first visit). Then

( {jy WF)

6@) =Y erg,Jj) W

To prove this let ¢ denote the right hand expression and T the first exit time of Y from F'*.
Then (¢ — ¢)(Y.ar) is a martingale but ¢ = ¢ is zero off F* and so ¢ = ¢. Because ¢ (i)
=0

(¢% wr) ==Y jer i ;$(J),
and so (because the function g = 0)

) £k
[(£%, wr)| < ¥, er+ Y rer @i,;8(J, k)li—{%f))—ls Yk (¢ wr)|

as required. This last inequality holds because
Sigre Yier ai; 8(J, k) = (¢, ¢%).
Crudely this expression says that the amount of fluid put into the finite system F* at % is

balanced by an equal amount coming out at the edges of F'*. It is proved by putting u;; =
a;(g(i, k) — g(j, k). Then

Sier Yiex Wi = Y ur = m = (£*, ¢*).

Because the sum is absolutely convergent we may cancel the terms u;; + u;; which appear.
If we do this we obtain the required formulae

(Cr, Cr) = Y jer Yigr &l 8(J, k) — (L, k)] =Y jer Digr+ ai;8(J, k)
and so
(lry Or) > Yjer ai;8(J, k)

as we required.
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6. An application. It is well known that the random walk on Z* is transient. Both
forms of the criterion given here lead to simple proofs. An exact flow [5] can be constructed
using the Green function 1/r for R®. Divide R® up into disjoint unit cubes centered at the
points of Z°. Put the flow between the adjacent points u, v of Z* equal to the integral of
(V1/r) - (w — v) across the common face of the cubes centered at u, v. The magnitude of
the flow is of order 1/r® and [% [1/r*]’r? dr < o so the flow has finite energy.

A more naive approach is to put the flow between i and j equal to [1/]i| — 1/|j|] A 2
where i and j are adjacent points of Z° It is easy to check that this flow satisfies all the
requirements of our relaxed form of Royden’s criterion described in the last section. The
strength of the source at j # 0 should be estimated using Taylor’s theorem and the fact
that Al/r = 0 (for r # 0); it is of order 1/|j|°.

We wish to take the discussion further, and discuss the transience of random walks on
some straightforward subsets of Z¢. In particular, how much does one have to “fatten” a
1- or 2-dimensional walk before it becomes transient?

More precisely let x*(n), -+, x®(n) be a collection of % positive increasing integer
valued functions on {n € Z, n = 0}. Suppose further that x°(0) = 0, and that x'(n + 1) —
x%(n) = 1 for each i. The following theorem is true.

THEOREM. Let Q2= {(ys, -+, vt n) € Z*"!| | v:| = x”(n) V i}. Then the restriction of
the simple random walk on Z** to Q is transient if and only if .

1
—_— <
L aOm+1)

=0

REMARK. Interesting special cases of this are x”'(n) = n, x®(n) = n. In this case Q is
a wedge in Z°, and Y7 1/n® < » so the random walk on Z° is again seen to be recurrent.
Somewhat more interesting is to take x”(n) = n, and x®(n) to be the integer part of
[log(n + 1)]*. Then £ C Z* will have a transient random walk of « > 1. But £ is just a slight
fattening of the quadrant in Z2. This reflects the fact that the random walk on Z? only just
fails to be transient.

Proor. The convergence of the sum is clearly required if the random walk on € is to
be transient. That much follows directly from Nash-Williams’ result. To complete the
proof, we will sketch the construction of a flow on §2 whose energy is comparable with

. 1
Zi-o [T (x9(n) + 1)°

We do this in two stages. In the first we construct flows on the &' = {(y, n)| | y| =
x“(n)} and then we will describe a method for taking products of such flows. (Of course
no flow on &' can have finite energy.)

First construct flow u on the quadrant Q° = {(y, n)| | y| = n} in Z* with a single source
at (0, 0) and such that

— 1 0
u((y, n), (y,n+1)) =+ 1 (y,n) €2,
lultvm), 0, M S oy Iy =Y I=1,
and
| u((% n)’ (Y’) n))l = 0 |Y - YI | # 1‘

We may “stretch” this flow to form a flow u" on Q' by adding extra pipes parallel to the
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n-axis. Then

(@) = ) i
u((y,n), (y,n + 1)) ) 1 (y, n) €,
) 1
[6) ’ | =
| u®((y, n), (y,n))lSm, ly =y I=1,
and
| u(i)(('y, n)) (Y’) n))l =0 | Y — Y/ | # 1,

At the end of this section we describe a method for constructing product flows. It will
be clear that w = u®™*u®x...xu® is a flow on © with the following properties

oo ~ 2" .
W((l, n)’ (l, n+ 1)) - H'I:t=1 (2x(m)(n) + 1) (l> n) € ﬂ,
. . Cr s e
|W((l, n), (J’ n))l = H£¢=l (2x(m)(n) + 1) |l =) | =1
and
|w(G, n), G, n)| =0 li—j|=1

To compute the energy of the flow w we see that we are considering, for each n,
O([Th=1(2x"(n) + 1)) terms of order 1/([]%=1(2x“(n) + 1))>. Summing over n we see
that the energy of the flow is comparable to

2;.:=1 ] 3;,1) .
[Im=1[2x"(n) + 1]

The construction of a product of two flows has nothing to do with probability. Let G, H
be graphs. Define G+H to be the graph whose vertex set is the Cartesian product of the
vertex sets for G and H, and let two vertices (g, &) and (g’, 2’) be connected by an edge
if and only if g = g’, and £ is connected to 2’ in H or if A = A’ and g is connected to g’ in
G. For example Z¢ connected by the nearest neighbour relation is Z*Z".

Let u be a flow on G*Z and v be a flow on H+Z. We now define a flow w = u*v on
G+H+Z as follows:

w((g, h, n), (g h,n 1)) ==x2u((g n), (g nx1)v((h n), (h,n £ 1)),
w((g, h, n), (g, h, n)) = ul(g, n), (&', n))[v((h, n), (h, n + 1)) — v((h, n), (h, n — 1))],
w((g, h, n), (g, k', n)) =v((h, n), (A, n))[u((g, n), (& n+ 1)) —ul(g, n), (g n—1))],

whenever g is connected to g’ in G or A to A’ in H. Set w = 0 elsewhere.

The main point of this construction is that if u has no source or sink at (g, n) and v has
none at (A, n) then w has none at (g, A, n); moreover the flows in the n-direction are easily
calculable.

If u® are the flows previously defined on ", then extend them to Z+*Z by setting them
equal to zero off the 2“”s. Define w to be u” * ... * u*). Then because one of the u® will
be zero at any point not in £, it is clear that w = u? = ... » u® is zero off Q and w is
really supported on 2; moreover its only source is (0, - - -, 0). The theorem now follows
from the earlier remarks,
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