The Annals of Probability
1983, Vol. 11, No. 2, 346-354

ON THE ORDER OF MAGNITUDE OF CUMULANTS OF VON MISES
FUNCTIONALS AND RELATED STATISTICS

By R. N. BHATTACHARYA! AND M. L. Puri®

Indiana University

It is shown that under appropriate conditions the sth cumulant of a von
Mises statistic or a U (or V) statistic is O(n "), s = 2, as the sample size n
goes to infinity. A possible route toward the derivation of an asymptotic
expansion of the characteristic function is indicated.

1. Introduction. The Edgeworth expansion of the characteristic function of a nor-
malized sum of n independent and identically distributed (i.i.d) random variables derives
from the order of magnitude O(n~“"?/%) of the sth cumulant (s = 2) (See, e.g., Bhatta-
charya, 1977). For statistics which may be expressed as or approximated by polynomials
in several average sample characteristics (e.g., (i) polynomials in sample moments and (ii)
maximum likelihood estimators in the regular case), the validity of the so-called “formal
Edgeworth expansion” depends crucially on the above order of magnitude of the sth
cumulant (s = 2) of the normalized statistic (see Bhattacharya and Ghosh, 1978). In this
note it is shown that cumulants of normalized U-statistics and von Mises furictionals have
the above order of magnitude, if certain conditions are satisfied. For general background
on these statistics we refer to von Mises (1947) and Serfling (1980). Assuming the validity
of (a) the above order of magnitude of the cumulants and (b) the Edgeworth expansion of
the distribution function of a von Mises functional, Withers (1980) has given an algorithm
for computing the coefficients in the asymptotic expansion. Some of the moment compu-
tations in Section 2 are similar to those in Withers (loc. cit). In Section 3 a new method of
derivation of Cramér-Edgeworth expansions of characteristic functions of a class of
statistics is provided.

2. Moments and cumulants. Let x be a separable metric space (e.g., a subset of ‘

RY), A, its Borel sigma field, and P a given probability measure on %,, whose support is S.
Let 2 denote the set of all probability measures on %, N S having finite supports. Endow
Z;U {P} with the weak-star topology. Consider for each n the product space (x", %), and
let Xi, - -+, X, be the n coordinate random variables. Let G®* = G X G X .. X G denote
the product probability measure on %,., where G is a probability measure on %,. Under
G®" the random variables X, - - - , X, are i.i.d. with common distribution G. We shall write
Ec to denote expectation under G*". Denote the empirical distribution of the
“observations” Xi, -« - , X, by F,,, i.e., F, = n"'Y%, 8x,, where 8, is the Dirac measure with
point mass at x.

Let A(xy, x3, - -+ , X,) be a real-valued, Borel measurable, symmetric function on x’, for
some r = 2. Define the V-statistic (with kernel h)

(2.1) Vn =n"" ;:=1 e EZ=1 h(Xip Xlz) M) Xi,))

and the U-statistic (with kernel h)

(2.2) U, = (”)
r

where the summationisover 1= i1 <ix< .-+ <i,<n.

1
E h(Xip Xlzy ct )(l,)
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THEOREM 2.1. (a) If for some integer s = 3 one has
(23) EPlh(Xj]’ Xj2’ MY XJ',) |s <®

for all choices of ji, ja, +++, /(L < J1, Jo, =+« » Jr =), then the pth cumulant kp.(P) of V.
under P is of the form

(2.4) kpn(P) = Y2p 1 " Anp(P) + 0(n™),  (2=p=3s).

The quantities An,p(P) are independent of n.
(b) Suppose that, for some integer s = 3 one has

(2.5) Ep|h(Xy, Xz, ++ -, Xo) [P < o0,
Then the cumulants of the statistic U, also are of the form (2.4).

Proor. (a) Write
(2.6) Vn = J oo J h(xl, MY xr)Fn(d{xl) e Fn(dxr)~

For G = YL, ad,, in #, F, may be expressed as Y1 4,5, (with G®"-probability one), where
&; is the proportion of y;’s in the “sample” {Xj, - .-, X,.}. Thus V, becomes a polyhomial
in the g-variables &;, 1 < i =< ¢q. Hence by a result of James and Mayne (1962) (this may
also be derived from the results of Leonov and Shiryaev, 1959), the pth cumulant of V,
under G is of the form

(2.7) kp,n(G) = :‘rlz’:p—l n_m}\m,p(G); (p = 2)‘
On the other hand, for all G such that Eg| V,|? < «, one has (for all n > rp)

EgVE =n""Eg J’ oo J’ ([T4=1 A(xre=—1y41, ==+ 5 X))
- (Ox, + 0x, + -+ + 8x,)(dx1) -+ (Ox, + 8x, + -+ + 8x,)(dxrp)

(2.8) J J (TT%=1 A(®r—1y41, =+ =, Xre))

I:Zm =173y 22 21 EG{BXl(deu)axl(dxhz) tte 8Xl(dlexl)

6x2(dxj21) LR sz(dxj%) se 3xm(dxjm]) ses (Sxm(dxjm%)}].

Here, for a given m, Y» denotes summation over all collections of m positive integers {si,
Sg, +++ , S} satisfying ¥'s; = rp, for a given collection {s, sy, - - - , S}, Y1 denotes summation
over all partitions of {1, 2, ..., rp} into m groups of si, s;, -+, S, elements, a typical
partition being ({Ju1, 1z, *++, Jis,}, {Jo1, Jo2, <+ ,J2s}s {Jmi, jmas +++ ,Jms,}). Denote by
H,(G) the distribution of the s-dimensional random vector (X;, X, - - - , X1) under G, and
let H; ,, ... s, (G) stand for the measure

H; s, ... sn(G)(dx1dxz « + - dxrp) = Y1 H, (G)(dxj, dxj,, « - - dx;, ) H,,(G)

(2.9)
- (dxjp,dxyy, « - - dxjy,) -+ Ho, (dx;,dx;,, -« dx;,, ).
Also note that
—7p n! —1p.
(210) n m=n n(n—l)---(n—m+1)

=Y (=)™ TP (m — m'y m — 1),

where 6(i; N) is the sum of all products of ¢ distinct integers taken from {1, 2, ---, N},
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6(0; N) = 1. From (2.8)-(2.10) one obtains

EGVE = Y1 Yowmt (1) n 7P (m — m'; m — 1)
* J’ M J’ (Hlt,=1 h(xr(t—1)+1, Tty xrt)) 22 Hs],sz,n- ,sm(G)(dxl b dxrp)
(2.11) = Y2 n ISy (—1)"PY0(m — 1p + j;m — 1)

. J cee J (Hf;1 A(Xre1)+1s * = X)) D2 Hy s, ... s.(G)(dx1 -+ dxp)}

=35 n7wp(G), (=ps=s),

say. Here u; ,(@) is a linear combination (with coefficients not depending on n, G or h) of
terms like

(2~12) J e J (Hi;l h(xr(t—l)+1, Tty xrt))Hsl,sz,... ,s,,,(G)(dxl e dxrp)~

Using the familiar relations between moments and cumulants one has
(2.13) kpn(G) = Y5 n7N;0(G),

where A, ,(G) is a polynomial in u; ,-(1 < p’ < p), whose coefficients are absolute constants.
Since the map G — H,(G) is continuous in the weak-star topology, so is the map G —
H,,, ... s.(G).It follows that for a bounded continuous 4 the integral (2.12) is a weak-star
continuous function of G; this implies that the maps G — pj, and, therefore, G —
An.p(G) are continuous. If p = 2, thenX,, ,(G) =0for2=<m <p — 1 and G € Z. Also there
exists Gy € Z(N =1, 2, - . +) such that Gy converges to P (This is where the separability
of x is made use of; see, e.g., Parthasarathy (1967), Theorem 6.3). Therefore, one must
have A, ,(P) = 0 for 1 < m < p — 1. This completes the proof of (a) for bounded con-
tinuous A. Since functions of the form [[%-: A(xre-1+1, +-+, %) belonging to
L'(x®, Hy,s,, ... s»(P)) may be approximated (in L') by continuous bounded functions of
the same form, the proof is complete. Note that for this last argument (2.3) is needed.

(b) First assume (i) A(x1, %2, ---, %) = 0 if x; = x; for some i, j(i # j). Then the
cumulants of U, satisfy (2.4), since

-1 -1
U, = <—L> n'V, = ((1 —1)<1 —3) (1 _r= 1)) V= (1 +0(1)V,.
(n—r) n n n

Next, instead of (i) assume (ii) P ~Aas no atoms. Then modify A so as to satisfy (i); this does
not change U, except on a set of probability zero. Finally, consider an arbitrary P. Let D
be its set of atoms. Let D’ be a subset of reals in one-one correspondence with D. Consider
the space x’ = (x\D) U R, with x\D and R each carrying its own topology but their union
is topologically disconnected. Then P lifted to this space x’ (by placing the discrete mass
on D’) is a weak-star limit of nonatomic probability measures. Extend A to (x)” by setting
it zero if any coordinate is in R\D’. Now apply an argument entirely analogous to that in
the preceding paragraph.

REMARK 2.1.1. The U, and V, defined above are not centered around their expecta-
tions (under P). Centering has been avoided deliberately to ensure that 4 does not depend
on P. For the general von Mises functional considered below centering seems unavoidable;
this causes some technical problems.

REMARK 2.1.2. Under the hypotheses of Theorem 2.1 the pth cumulants of the
normalized statistics Vn(V, — EV,), Vn(U, — EU,) are of the order O(n~?"2/%), 2 <p <

S.

Let T be a von Mises functional defined on 2 U {P}, and let the statistic T'(F,) have
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the expansion
214 T(F,) — T(G) = Yia J' oo J’ TG; x1, %2, -+ + , %) [[5=1 (Fr. — G)(dx;) + R
—zz-l an)+R (GE%U {P})’

where T is a real-valued, symmetric (in the arguments x;, -, x;), Borel measurable
function on % U {P} X x’ satisfying

(2.15) Ep|TOP; X)), X+, X)) <o,  (I=isT),
for all 1 =i, jo, - -+, Ji: = r, and the “remainder term” R, satisfies
(2.16) . Ep|R,|?” = o(n™**), (l=p=ys).

Write

(2.17) Va(@) = Yie1 Vai(G).

Then

(2.18) EcVi(G) =35 Vi (G) Voo (G) -+ Vi (G),

where Y3 denotes summation over all p-tuples (i1, &, -+, i,) suchthat 1 < iy, ---, i, <r.
Now let I, = i; + - -- i, and write, as in (2.8),

EcVi(G) =33 Eg f cee f (151 T*(G; XI_i+1, *** 5 X1)

(2.19) [ N '22 Y1 0x, — G)(dx;,,)0x, — G)(dx;,)

1 (n
- (0x, — G)(dx;,,) + -+ Ox, — G)(dx;,) +-- Ox, — G)(dxj,,,sm)]

Here, for a given m, Y% denotes summation over all collections of m integers {s;, sz, -« -,
Sm} satisfying s, = 2 and Ys; = I; and ) denotes, for each collection {si, sz, + -+, Sm},
summation over all partitions of {1, 2, - - , I,,} into m subgroups of sy, sz, - - - , S, elements
such as ({Ji, iz, *** s J1s,}> **+ s {Jmi, Jm2s **+ »Jms,}). Note that expectations of terms
involving s; = 1 for some i vanish. Next let Hy(iy, i3, - - - , is; G) denote the distribution of
a g-dimensional random vector whose iith, - - - , i,th coordinates are X;, while the remaining
coordinates are i.i.d with distribution G and independent of X;. Write H,(G) for the signed
measure

(2.20) B(G) =Y (-1 S Hyliy, -+, i G),

where Y4 denotes summation over all choices {i, i3, ---, i} of /distinct integers from
{1,2, ..., q}. Now define

}‘.j’sl,sz ,s,,,(G; dxdxs -+ dxlp)
= 2,1 ﬁsl(G)(dxjudlez e dxju[) eve ITIS,,,(G)(dxjmldxjm e dxfmm)~

(2.21)

Then, as in (2.10),

EcVA(G) = s [ 3o ] n—f{zl,,{zé“’,}-, (=)™ G(m — I, + j;m — 1)

I+l

’=[T
. J ... j (M2 TG %a_ oy =+ + 5 %1)) T2 Hy . (G s - - - dxzp)}].
For G = Y~1 a:d,, Va(G) is a polynomial in &; — «;, so that the pth cumulant of V,,(G) is of

the order O(n"*') under G(2 < p = s). In view of (2.16) and (2.22), the proof of the
following theorem is now complete.

(2.22)
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THEOREM 2.2 Suppose that (2.14)-(2.16) hold. Assume, in addition, that there exists
a sequence {Gn:N = 1} having finite support such that

(223)  limy.wEcy([[%1 T%(Gw; X,y -+ -, X,)) = Ep([[i= T (P; X, - - » X.,))

foralll =iy, «+-,pb<randalll <ttty -+ ,t;, <rp (1 <t=<p). Then the pth
cumulant of T(F,) under P is of the order O(n™"*") for2<p <ss.

REMARK 2.2.1. Notice that the statement “condition (2.23) holds for some
{Gn; N = 1} C 2 is much weaker than the statement “condition (2.23) holds for all
sequences {Gn: N = 1} converging to P (weak-star)”, the latter being equivalent to saying
that the integral is weak-star continuous at P (on & U {P}). To illustrate this point, note
that even such functionals as T(G) = [x*G(dx), & = 1, are not weak-star continuous on
% U {P}, where P is a probability measure on the line having a finite £th moment. The
difficulty is that one may place a mass O(N~2) at x = N which goes to zero to ensure
weak-star convergence, but is large enough to blow up the integral as N — . On the other
hand, one may integrate (with respect to P) a step-function approximation, fx(x) to x*,
which amounts to integrating x* with respect to an appropriate Gy € %; and the latter
integral [x*Gn(dx) will converge to [x*P(dx), as the intervals of constancy decrease to
zero in width. These considerations apply to more general functions (see, Serfling (1980),
pages 214-216, for examples).

REMARK 2.2.2. The fact that the sth cumulant of V,, (or T,) is O(n**') when G has
finite support means the vanishing of a number of polynomials in the variables y1,(G). One
should be able to prove that these polynomials are identically zero by showing that the
up(G)’s assume a broad enough spectrum of values as G ranges over the set of all
probability measures having finite support. This would enable one to dispense with the
condition (2.23) in Theorem 2.2. However, we are unable to make this algebraic argument
firm.

Finally, the method used here should be more widely applicable in deriving orders of
magnitudes of cumulants.

3. A method of derivation of Edgeworth expansions of characteristic func-
tions, and an unsolved problem. In the present section we provide a method (which
appears to be new) for the derivation of Cramér-Edgeworth expansions of characteristic
functions of a class of statistics 7', having zero means, finite moment generating functions
(m.g.f’s), and cumulants x,,. satisfying

3.1) Xon =0 P\ 4 o(n PV (p=2), A>0.
Let

(3.2) fn(§) = E exp{i{T}

denote the characteristic function of T),. One may write

3.3 (&) = [ e),

with e = n7"/2, Under the additional assumption that f (£, ¢) has an absolutely convergent
power series expansion in § and ¢ in a neighborhood of the origin (0, 0), it is shown in
Theorem 3.1 that f.(£) and its derivatives have a proper asymptotic expansion of the
Cramér-Edgeworth type. The unsolved problem is to identify a large enough class of von
Mises functionals for which this analyticity holds. In particular, we do not know if the
analyticity property holds for U-statistics (see (2.2)) with kernels A satisfying:

(3.4) E exp{th(X, X, -+-, X))} <, (—o <t <),

In remarks following the corollaries to Theorem 3.1 it is shown that the assumption of
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analyticity does hold for some special classes. We expect the moment computations of
Section 2 to be crucial in resolving the problem of analyticity in the general case.

THEOREM 3.1. Let To(n =1, 2, --.) be a sequence of random variables having zero
means. Assume that (i) E exp{tT,} < o for all t(—» < t < ») and n, (ii) f(i§ ¢€) can be
extended as an analytic function f(z,n) of the complex variables z and 1 in a neighbor-
hood of the origin (0, 0) in C? and (iii) the cumulants x . of T satisfy (3.1). Then the
following results hold:

(a) There exist a positive constant 8, and polynomials P;, whose coefficients do not
depend on n, such that for all &, —&vn < ¢ < Bosfz one has

f6) = éxp{— 2\2—2 52}(1 + ¥51 n7Pi9).

(b) For every pair of integers m and p satisfying p = 2, 0 = m < p, there exist positive
constants 8, c1, Co such that
dm
d‘gm

[fn@ exp{— g }(1 - n-f/ZPj(is»]‘
< 6177 P exp(—eit), (8] < 8.

Proor. Since f(z, n) is analytic in a neighborhood of (0, 0), and f(0, 0) = 1, ¢(z, ) =
log f(z, n) (we take the principal branch of the logarithm) is defined and analytic in a
neighborhood of (0, 0). In view of (3.1) and the fact that ET, = 0, one may express

¢(2, 1) as

2

k
oz, m) = % M2 + X1 Ao m’) + - + — n’“ 2(X0 M) + -
(3.5) ’

k-2
[Zk =2 "> (T'Z) (2]—0 Ak ¥ )] (Ak,o = Ak).

Since this last series is absolutely convergent in a neighborhood of (0, 0), so is the series
within square brackets. Let 8;, 8. be two positive numbers such that this last series is
absolutely convergent for |z| = 81, || = 82. Then

k=2
(36) WL S S

It follows that (3.5) is absolutely convergent for | zn| < 8:8: and || < .. Therefore, the last
expression in (3.5) defines an analytic function in the region D = {(z, n) € C% |z| <
8182/|m|, |m| < 82}, and over this region exp{¢(z, 1)} defines an analytic continuation of
f(z, m). We shall refer to this extension also by f(z, 7). Since the characteristic function
£ — f.(§) is entire (by assumption (i)) and since analytic continuations are unique, f,(£¢) =
f(i&, n™%) for — ® < £ < » (note that one could not assume a priori that this equality
holds between f,, and the analytically extended f). In addition, on D one has

3.7 |fz,m) —1|<e' <1,

for some constant ¢’, and ¢(z, n) is the principal branch of the logarithm of f(z, ) on D.
The relations (3.5) now hold on D and one may rewrite the first relation in (3.5) as

(3.8) log /(2 m) ~ 32 2 = T 1@, &M ED,



352 R. N. BHATTACHARYA AND M. L. PURI

where @, is a polynomial of degree j + 2. Thus

39 f(zm) eXP{" % 22} = exp {23'11 n’Qf(Z)} =1+357'P(2), (2,m) €D,
where Pj’s are appropriate polynomials. From (3.9) one gets

(3.10) f(z,m) = exp {2\2—2 22} 1+ %1 9’Pi2)), (2, €D,

and, in particular (with z = i§, n = n™Y?),

(311)  ful§) = eXp{— % éz} (1 + Y5 n72P(ig), (=8 Vn < £ < 818, V).

This proves part (a). To prove part (b) one may first approximate log f(z, n) by

k=2
.12 ootz = 22 S (S0 M)
Writing
Az 2 >\2 2
(3.13) Wz, ) = ¢z, ) — 5 2 Un(2,m) = p(2,m) — 52

one has (using (3.6), or analyticity on D)
(3.14)  [d(z, 1) — dplz, M| =¥z, n) — oz, )| < as|n|"7 2", (z,m) € D,
for an appropriate constant cs. By (3.6) and (3.14), if 8, is small, then

}\ 2
(3.15) lexp{y(z, n)} — exp{Yp(z, M} = as|n|"7}| 2|7 exp{%},

for some constant cy; this may be written as
X,

(3.16) e 2 [f(z,m) — exp{p(z n)}]

Ae|z|?
=cn|?7 2|7 exp{%}.

Letting z = i£, n = n™/%, (3.16) becomes

(817 |fu® — exp{dp(i&, n7VH)}| = cun™ PV g P eXP{— Z\f £2}, (€] < 8:8; Vn).

The comparison of exp{¢,(i£, n™/%)} with exp{ — %gz} (1 + Y22 n72P;(i¢)) is carried
out exactly as in Lemmas 9.7, 9.8 in Bhattacharya and Ranga Rao (1976). O

COROLLARY 3.1.1. Under the hypothesis of Theorem 3.1 one has the Berry-Esseen
bound

(3.18) sup:| P(T, < x) — ®p,(x)| < cn™'?,

for some constant ¢ > 0. Here ®,, is the normal distribution function with mean zero and
variance As.

Proor. Use Theorem 3.1 (b) and Esseen’s inequality (see Lemmas 12.1, 12.2 in
Bhattacharya and Ranga Rao (1976)). O

COROLLARY 3.1.2. Assume the hypothesis of Theorem 3.1. If, for somep = 2, g is a
p-times continuously differentiable function on IR' such that sup{(1 + |x|?)|g"™(x)|:
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x €EIR"Y} < for 0 <m < p, then

(3.19) |Eg(T.) — f

IR!

: d
g(x) [1 + X5 n 7P (— %)] on(0)dx| < dn~ V72
for some positive constant d.

ProorF. One may apply the method of Gotze and Hipp (1978) to the estimate in
Theorem 3.1 (b) to derive (3.19) directly. Alternatively, first establish (3.19) for the class
of all Schwartz functions as in Bhattacharya and Ranga Rao (1976), Theorem 20.7,
expressing the error estimate in terms of a Sobolev norm; then extend the result to a wider
class by completion in the Sobolev norm. I

REMARK 3.1.3. Let Xi, X, --- be an ii.d. sequence having mean zero and a positive
variance. The hypothesis of Theorem 3.1 is satisfied for the statistics T,, = n™"*(X; + - - -
+ X,,) if the m.g.f. of X; is finite everywhere. Of course, in this classical case Theorem 3.1
(b) holds under less stringent assumptions (see, e.g., Bhattacharya and Ranga Rao (1976),
Chapter 2). Note, however, the conclusion of part (a) of Theorem 3.1 requires stronger
assumptions than finiteness of moments.

REMARK 3.1.4 Let U, be a U-statistic with kernel A (see (2.2)). Assume, without loss
of generality, that EA(X;, X5, +++ , X,) = 0. If E exp{th(Xy, --- , X))} <o forallt, —o < ¢t
< o, then hypothesis (i) of Theorem 3.1 is satisfied for the statistic T, = Vn U, (see
Serfling (1980), Lemma C, page 200). In addition, assume E¢*(X;) = A, > 0, where ¢(x) =
Eh(x, X5, --+ , X;). Then T, is asymptotically normal (see Serfling (1980), Theorem A,
page 192) and, by Theorem 2.1 (b), hypothesis (iii) of Theorem 3.1 also holds. It would be
of great interest to see if hypothesis (ii) of Theorem 3.1 is a consequence of the above
assumptions. We emphasize that this is the main unresolved problem in the context of the
present article. For kernels 4 which are sums of products of functions of single variables,
analyticity of f(z, n) in a neighborhood of the origin in C? has been proved by methods of
statistical mechanics (see, e.g., Ruelle, 1969). However, for these special kernels an
adequate theory of Edgeworth expansions has been derived in Bhattacharya and Ghosh
(1978) under less stringent assumptions.

REMARK 3.1.5. Some partial expansions of characteristic functions of U-statistics have
been obtained by Callaert, Janssen and Veraverbeke (1980).

Acknowledgement. The authors wish to thank the referee for suggesting that some
terse comments in an earlier draft be expanded; the present Section 3 constitutes the
resulting expansion. Thanks are also due to the Associate Editor for indicating that
asymptotic expansions for von Mises functionals are of potential use in robust estimation.
Finally, we are indebted to Charles M. Newman for pointing out that the analyticity
hypothesis in Theorem 3.1 has been verified in the context of statistical mechanics for the
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