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‘ON THE CESARO MEANS OF ORTHOGONAL SEQUENCES
OF RANDOM VARIABLES

BY FErRENC MORICZ

Szeged University

Let {£&: & = 0} be an orthogonal sequence of random variables with finite
second moments E¢£3 = o}. It is well-known that if ¥ o7 (2 + 1)"[log(k +
2)? < o, then the first arithmetic means 75: = (n + 1)7' Y2-0 & — 0 as. (n
— ). Now we prove that the means 7}: = (n + 1)7! Y% (1 — k(n + 1) )&
— 0 a.s. (n— o) merely under the condition Y50 o (k + 1)72 < 0. We define
the means 7% for every real a, too and prove that under the latter condition
78— 0 a.s. (n — ) provided a > 0.

1. Cesaro means of numerical sequences. Let a be a real number, let {u.: £ = 0}
be a sequence of real numbers, and define
1

M =T DA

Yko An-ris n=01,...),
where A§ = 1 and

A:: (n=1,2)'°.)'

a+n)_ (a+)a+2)--. (a+n)
n | n!

In particular, if « = —1, =2, - - ., then A%, is zero for large enough n.
Introducing the notation

Sk = Y i-0 Af-rlnr,

we can write

s
@ th= (n+ 1)A2

(n=0,1,--.).
In particular,
89=Y%iou, and S;'=Up,.
We remind the following well-known identities (see, e.g. [4, pages 76-77]):
TeoAszt=(1—2)""
and
Toosaz = (1—2)"" Yo Un2",

where z is a real or complex parameter, | z| < 1. Hence one can deduce that

(3) AP =3E 0 ASAL
and
4) . SETAT =2 sEAL
for all « and 8. Furthermore, for a # —1, =2, - -«
na
(5) A7 T+l 1+0() (n—>x).
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2. Main results. Let {£&: k = 0} be an orthogonal sequence of random variables, i.e.
E&4é,=0 (k#¢k ¢=0,1,...)

with finite second moments

(6) Eti=0i (k=0,1,.-.).
According to (1), we set
o 1 n o —
Tn = (n T 1)A3 Ek-o An—k&k (n = 0, 1. ')'

In the special cases a = 0, 1 and 2 one gets in turn that
1 1 k
0 _ n_ 1 _ n_ —_
s DX L R (1 n+1) &>

s 1 N _ k _ k
T"_n+12k=0<1 n+1 1 n+2 &o-

A consequence of the famous Rademacher-Mensov theorem is formulated in the
following theorem (see, e.g. [2, pages 86-87]).

THEOREM A. If
0 g L [log(k + 2)]* < o
O+ 18 '

then
lim,,.To=0 as.
In this paper the logarithms are of base 2.

It is also pointed out that the sufficient condition (7) is the best possible in the following
sense.

THEOREM B. (Tandori [3]). If {ox: k = 0} is a sequence of positive numbers, for
which o/(k + 1) is nonincreasing and

2
E?;Loﬁ[log(k +2)F = oo,

then there exists an orthogonal sequence {£&: k = 0} of random variables such that (6) is
satisfied and
lim Sup,—w| 70| = as.

Now, the main result of the present paper is that the a.s. convergence behaviour of 7,
is much more favourable in comparison with that of 73. This is shown by the following

THEOREM 1. If
2

o0 . Ok
(8) Zk-o (k ¥ 1)2 < oo,
then
9 lim,.7t =0 a.s.

Another interesting fact is that, under condition (8), the a.s. convergence of the means
7% to 0 coincide for different a > 0.
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THEOREM 2. If condition (8) is satisfied, then for every a >0
(10) lim, .77 =0 aus.

3. Proof of Theorem 1. It will be done in three steps.

(i) First we prove that
(11) lim, 079 =0 as.
In fact, by orthogonality,

1
E['l'g]2 =—(n—+—1)§22=0 0%-

Thus

» o 1
2n=0 E[Tgn] Zn=0 (2,, T 1)2 Zk—o Uk = 2k=0 Gi ananakm

2
B+ 1)%

By (8), B. Levi’s theorem implies (11).
(ii) Our next step is to prove that

(12) lim, ,e(t9 —75) =0 as.

=0(01) Yio—3

Since

TR Th= T 1)2 ———g k-1 ks,

a simple calculation gives that

1 n
2$=o E[Tgn - ‘l'é"]2 = Z:=0'('2—,7-+—1)—4 2%:1 k20£

1
=YY% k%} Vhoner ———= O(1) Y2,
Y1 sz.z_k(2n+l)4 (1) X5 (k+1)2
Again by (8), B. Levi’s theorem implies (12).
(iii) Finally, we prove that
(13) lim,_,oMaXgn pegmn| T — 75| =0 a.s.
To this effect, we use the following estimation:
M,: = maXy g | Th = Th| < Tilona |7} = 7))
= 2n/2 {2]2:;:"*‘1 [7/1 - T}_1]2}1/2 (n = 1’ 2’ M ')’
where we applied the Cauchy inequality. Since
k(27 +1) 1 .
1_ .l N _ =1),
T~ T 2k0<j2(j+1)2 JG+1) & (U )
a simple calculation provides that ’
EM2 < 2" Y2 5n. E[r} — 7)1]?
- . (R22)+1)? 1
=27 Y25 Yia - + %
smanL Lo (j‘(1+ DG+
5 +1
<527 Y5 L = 320 03
5 Foone1 Do PG+ S @1 Ekodk
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Thus,
1 n+1
2 EM2<5Y2,——— Y3 o
1 E. 2 1(2n+1)22k00k
=5 2?—0 olze 2 -2"+‘>k;= 0(1) 27; oo—%
- TETER R 4 1)? (B + 1)

whence B. Levi’s theorem implies (13).
Now, putting (11), (12) and (13) together, we obtain statemen§ 9).

4. Two auxiliary results for numerical sequences. In the proof of Theorem 2 we
need the following two lemmas.
LEemMma 1. If for an o > —1
(14) lim, ..t =0,
then for every e >0
(15) lim, .t = 0.

ProoF. It can be essentially found in [4, pages 77-78]. For the sake of completeness,
we present the modified proof here. By (2) and (4),

1 n o L
L =m2k=o S5AT:
1

=W2g-o ti(k + 1) ARAST, = Yioo Gmls,

where

a A el
=—(k+l)AkAn_k (k=0, 1’ ct n;n=0) 1’ "')‘

Ot = 1) AT

In other words, the 5+ are linear means of thet%. Using (4) and (5) one can verify that
lim, 0@ =0 (=01, ...)

and
Yio@n=0(1) (n=0,1,-...).

Since anx = 0, these two conditions are enough to ensure the implication (14) = (15).
LEMMA 2. Ifforana>—%
1
3 J— n_oles 2 — 0’
(16) lim,, n+12k o[ k]

then for every ¢ >0
17 lim, .52 = 0.

Proor. By (4) and (2),
SEH/Zre = Y R ATV = T o t5(k + 1)A3A 2™

Applying the Cauchy inequality,
|sg+1/2+e| < {2;:-0 [tz]2 2z=0 (k + 1)2[A%A;l4¢2+t]2} 1/2’
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then (3) and (5), one can get that
2;:=0 (k + I)Z[AﬁA;lﬁz*"]“’ O(nZ(a+1+e))

(cf. [1, page 189]). Hence, by (16),
sg+1/2+e - O(na+3/2+c)'

Taking this and again (5) into account, we find that

+1/2+
satl/2te

T nag o0

+1/2+
Lot/ =

in accordance with (17).

5. Proof of Theorem 2. It will be based on Lemmas 1 and 2, and the following
Lemmas 3 and 4.

LEmMA 3. If condition (8) is satisfied, then for every a > %

(18) — Y =P >0 as. (n— o).

T n+ 1
We note that for j = 0 the summand in (18) is zero, since 7§ = & for all a.
Proor. In great lines it follows the proof of a corresponding result pertaining to

orthogonal series (see, e.g. [1, pages 186-187]).
We begin with the representation

= 137 = AT e (ATAT — ATHAD G
= Uﬁﬁq—?FZLléA}'—_klA}’_lék-
Hence
Elr} = 17T = iy B Rl AT’
and
B8 =— g1 KoM AT

T2+ ) 2T+ DAY Zin

1 1 a1\ 2
- k 2 = ().
22" + 1) U+ )\ A

Now, using (4) and (5), one can obtain that

1 A 1 1
Zj—k'(j—_‘_T)'g<Aq> =0<?) <k=1,2,<---;a>§).
Thus, by (8),
Yr=1 E8% = O(1) ¥r-1 55—

1 zn ok
2" +1 £
1 %
=0(1) Zk =13 2n2">k on + 1 =0() Zk 1 < 0o,

This implies, via B. Levi’s theorem,

lim, 8% =0 a.s.
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g i < - 1’
For general m, say 2 m 2 we have
0= (Sma = 282'.4-1,

and the proof of statement (18) is complete.

LEMMA 4. If condition (8) is satisfied and (10) is also satisfied for some o > Y%, then

1

e T Yol 2P=0 as.

(19) lim,,

ProoF. It is clear that
Yico [P =200 157 = 1 + X0 [T

By virtue of Lemma 3, the first sum on the right-hand side is o(n), while the second sum
is also o(n) by assumption.

ProOF OoF THEOREM 2. First Theorem 1 shows that statement (10) holds true for «
= 1. By Lemma 1, statement (10) holds true also for every a = 1.

Applying Lemma 4, we obtain (19) for a« = 1, whence Lemma 2 implies the fulfilment of
(10) for a = % + ¢ with any ¢ > 0. Repeating this argument once more, we get (10) for «
= 2¢. Since ¢ > 0 is arbitrary, the proof of Theorem 2 is complete.
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