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ON THE SPLICING OF MEASURES

By G. KALLIANPUR AND D. RAMACHANDRAN

The University of North Carolina at Chapel Hill

Given probabilities p and v on (X, /) and (X, #) respectively, a probability
non (X, &\ #) is called a splicing of p and v if n(A N B) = p(A) v(B) for all
A € o, B € #. Using a result of Marczewski we give an elementary proof of
Stroock’s result on the existence of splicing. We also discuss the splicing
problem when p and » are compact measures.

Let X be a nonempty set and let &/ and # be two o-algebras of subsets of X. Given
probabilities p and » on (X, &) and (X, %) respectively, we say that a probability # on
(X, o\ B) where o \/ B = o(£ U &) is a splicing of p and » if

n1(ANB)=u(Aw(B) forall A€« BE R

We denote sets from o/ by A, A, Ay, - - -, sets from & by B, By, By, - - - ; Yicr G: denotes the
union of sets {G;, { € I'} that are pairwise disjoint. With this notation, % = {}7-1 (4: N B)),
n = 1)} is an algebra generating <7 \/ # and a splicing of u and » exists if and only if 7 on
%o given by

1) N1 (Ai N By)) = Y1 n(A)v(B)

is well-defined and countably additive.
The problem of existence of splicing has been treated by several authors (see [3] and
references therein). Marczewski [1] showed that the condition

2) ANB=¢=u(A)rB)=0

is necessary and sufficient for a finitely additive splicing to exist, that is, for 1 given by (1)
to be well-defined and finitely additive. Stroock [3] introduced the following condition

- @) X =Ur-1 (An N By) = Y- p(An)v(Bn) = 1

and showed it to be necessary and sufficient for a splicing to exist.

Stroock’s proof does not utilize Marczewski’s result but requires the construction of
certain quotient spaces and ¢-isomorphism of the given space to a subset of their product.
However, (3) clearly implies (2) (by writing X=(A NB)UANB)UA°NB)U (AN
B©)) and so 7, given by (1), is a finitely additive splicing by Marczewski’s result; at this
juncture, to show that 7 is a splicing it only remains to check its countable subadditivity.
The aim of this note is to provide an elementary proof of Stroock’s result by directly
verifying that the finitely additive 7 is countably subadditive when (3) holds (Proposition

1). Since we use Marczewski’s result we include a simple proof of it different from that of

Marczewski’s (Proposition 2). Finally, we add some remarks on the splicing problem when
w and » are compact measures.

PROPOSITION 1. A splicing exists if and only if (3) holds.’

Proor. It is obvious that condition (3) is necessary. To prove sufficiency first note
that (3) implies (2), by writing

X=ANB)UANB)U A NB)UA°NB).
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Thus 7 defined by (1) is a finitely additive splicing by Proposition 2. Henceé 7 is countably
superadditive and it suffices to establish its countable subadditivity.

Let F = Y21 (A: N B), Fv = Y7 (AY N BY) be such that F = Y%_; Fy.
For each fixed i
ANB =31 (ANB)NFn=3%13Y™ (A:NAM) N (B;N BY)
and so
X=Cra1XMANAN) N (B:NBM) U AN B)U (A;N B$) U (A¢N Bj).
Hence, by (3) and using the fact that 5 given by (1) is finitely additive we have
(EF-1 X7 u(A: N AN (B: 0 BY) + n(Av(B) + p(A)v(BY) + p(AHr(BY) = 1
or
(4) YR=1 27 u(A; N ANy (B; N BY) = n(Ai)v(B).
Now ,
N(F) = X% p(A)v(B) = Y TR-1 X724 w(A: N AM)v(B:N BY) by (4)
= YR X7 X1 p(A:i N A})v(B: N BY)
=Y %=1 1(Fn)

proving countable subadditivity of 5. O

ProposITION 2 (Marczewski). A finitely additive splicing exists if and only if (2)
holds.

Proor. The necessity is clear. To prove sufficiency, consider

(XXX, o X B, pXv) Let D= {(x, x) : x € X} and let ¥= {31 (A;: X B)), n = 1}.
Since

ANB=¢=(AXB)ND=¢
and
(p X »)(A X B) = u(A)»(B)
(2) is equivalent to
(5) (AXB)ND=¢= (uXv)(AXB)=0.
Let (5) hold and define 8 on &N D by
B(SND)=(pxv)S), (SE€).

If S€ %and SN D = ¢ then (p X v)(S) =0; for, S = Y (A; X B), SN D = ¢ implies
(A; X B;)) N D = ¢ for each i and so (p X #)(S) = Yi-1 (¢ X v)(A; X B;) = 0 by (5). Now if
S1, Sz € y; S] NnD= Sz N D then (S1A Sz) € y; (S1A Sz) NnD-= ¢ and so (,U. X V)(SlA Sz)
= 0. Thus (p X »)(S1) = (p X »)(S2) and B is well-defined.

IfS, S, -, S €S 8:NS;N D = ¢ for i # j, then

Y1 (SN D)= Ui S)ND=(TR)ND

where Ri =S, R;= S, — (U4 S)), i > 1.
Further, for each i,

Si—R)ND=(S;ND)NUZI(SSND)=¢
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and so (u X »)(S;) = (¢ X v)(R;). Hence
BQLi (S;iN D)) = B((Ui1 Si) N D) = B(X*1 R:) N D)
= (0 X ) (X1 Ry) = ¥l (p X v)(Ry)
=Yk (kX 0)(S) =X B(SiN D)

and so B is finitely additive.
Since 7 defined by (1) on %, satisfies

Q1 (AN By)) = B %1 (A: X B;) N D)
and since the correspondence
M(ANB)o Y (AiXxB)ND

from %, to ¥ N D is 1-1, onto, preserves finite unions, finite intersections, and complements,
it follows that 7 is well-defined and finitely additive. 0O

Since the compactness of a finitely additive measure implies its countable additivity
(see Proposition 1.3.1 in [2]) one might ask whether the compactness of ¢ and » together
with condition (2) imply that a splicing exists. The answer is in the negative and is
furnished by Stroock’s example which we briefly discuss.

Let & = {0, 1}%® where Z is the set of all integers. For n = 1, let

M7 =o({wr: k=n}), &/ =0c({w: k=< —n))

and let B8 on  be the product of the measure P on {0, 1} given by P({0}) = P({1}) = %.
Let

B+ =Blaw, B-=B|yw
and let
X={w € Q:limye|wn — w-n| = 0}.

It is easy to see that C € £V U &/, X C C implies C = Q; hence 8%(X) = f*(X) =1
where B%, B* are the corresponding outer measures. Let

A=MNX,p(MNX)=B.(M), Me ™
B=N"NX,»(NNX)=pB-(N),NeEN&D,

In [3] it is shown that (2) holds in this example and that there is no splicing of u and ».

We shall show that the measures p and » in this example are compact. The compactness
of u, for instance, is established as follows: Let #'C .#® be the compact subsets in .#
Then, 4 is a compact class approximating 8. Note that if {K,} C A, N7=1 (K. NX) =¢
then X C UZ-; K& € 4 and so Ug-; K& =  which implies that N5—; K, = ¢. Since X is
a compact class N7, K, = ¢ for some m = 1; so Ny~; (K, N X) = ¢ and hence N Xisa
compact class which approximates u. Hence u is compact and », similarly, is compact.

The following example shows that even when p and » are compact and (3) holds (that
is, a splicing also exists) the splicing need not be compact.

ExaMPLE. Let I be the unit interval, %; the Borel o-algebra on I and A the Lebesgue
measure on (I, #;). Consider (I X I, % X %1, A X A). We need the following lemma.

LEMMA. There exists a subset X of I X I such that (i) X intersects every closed subset
of I X I of positive A X \ measure and (i) X is a graph both ways, that is, for every
x € I the sets {y: (x,y) € X} and {y: (¥, x) € X} are exactly singletons.
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ProoF. Let {A.: a < w.} be a well ordering of closed subsets of I X I of positive
A X A measure where w, is the first ordinal corresponding to c, the cardinality of the
continuum. We define a transfinite sequence {p., = (x., ¥4): @ < w.} as follows. Take p;
= (x1, y1) € A; with x; # y1. Suppose { p. = (X4 ¥o): @ < 8} have been defined for 8 < w,.
The set {x: A((Ag):) > 0} is an uncountable Borel set and hence has cardinality c. So we
can find xgin {x:A((Ap):) >0} — {x., ¥u: @ < B}. Again (A).s being an uncountable Borel
set has cardinality c. Take yz € (Ag)xr — {{%a, Yo: @ < 8}, x5} and let pg = (x4, y5). Let X,
=TI — {Xa4, ¥a: @ < wc} and define

X = {(%a) Ya)y Gar Xu): @ <.} U {(x, x): xE X)}.

X has the required properties.

Since both X and (I X I) — X intersect every closed subset of positive A X A measure we
have (A X A)*(X) = 1, (A X A),(X) = 0 where (A X A)* and (A X A), are the outer and
inner measures induced by A X A. Let # = Y N X, # = #? N X where 2" = (Bx I: B
€ B1}, B? = {IXB:BE AB;}. Let p = (A X \)*| o, »= (A X A\)*| 4. Let fand g be defined
on I X I by

f((xly x2)) = X1, g((xly x2)) = Xa.

It can be checked that (X, &, p) and (X, 4, v) are isomorphic to (I, #;, A) under f and g
respectively. Since A is compact it follows that u and » are compact. Clearly &/ \/ 2 =
(%1 X #B1) N X and n = (A X A\)*| 4, #is a splicing of p and ».

If C is a compact subset of X then C is a compact subset of I X I and so 5(C) =
(A X A)(C) = 0since (A X A),(X) = 0. Thus 7 is not tight and, hence, cannot be compact.
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