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THE NATURAL BOUNDARY PROBLEM FOR RANDOM POWER
SERIES WITH DEGENERATE TAIL FIELDS

By P. HoLGATE
Birkbeck College, London

If the sequence of coefficients of a random power series has a degenerate
tail field, then either its circle of convergence is a natural boundary, or this
situation can be achieved by subtracting a fixed series. This generalises the
known result for independent coefficient sequences.

1. Let {A,,n=0,1, ...} be a complex random sequence and F(z) = ¥, A,z" the
corresponding random power series in the complex variable z. Following a conjecture by
Blackwell, Ryll-Nardzewski [11] proved the following result:

If the A, are independent, there is a fixed (i.e. non-random or degenerately random)
power series f(z) = Y, a,2" such that

(i) with probability one, F(z) — f(2) is singular at every point of its circle of convergence
(i.e. it has a natural boundary);

(ii) the radius of convergence r(F — f) of F(z) — f(z) (which is almost surely (a.s.)
constant) is maximal with respect to the choice of fixed series;

(iii) if g(2) is another fixed series such that r(F — g) = r(F — f) a.s. then F(z) — g(2)
has a.s. a natural boundary.

By convention, an entire function is considered to have a “natural boundary” at infinity.

The background and many detailed results associated with the problem are described
by Arnold [2].

Ryll-Nardzewski’s proof is based on symmetrisation and median-centering (see Loeve
[9, vol. 1, section 18] and in this context particularly Walk [12]), and a theorem of
Marcinkiewicz and Zygmund [10, Theorem 7] which in turn depends on the Riesz-Fischer
Theorem. Kahane [6, Chapter 4] has given a neat alternative proof, also based on
symmetrisation. Ahmad [1] has provided a criterion for F(z) itself to have a.s. a natural
boundary, and his result has been strengthened by Hinderer and Walk [6, Section 5] (see
also Walk [12, 13]). Extensive studies of random power series, including results about
boundary behaviour that implies singularity, can be found in the work of Walk and
Hinderer [6, 12-15].

There have been a few references to the situation where the A, are not independent.
Walk has obtained results for properties implying a natural boundary subject to the
assumptions of two types of weak dependence [11, 14] and a further kind of multiplicative
dependence [15].

In this note, a complement to [7] in which I discussed the distribution of the radius of
convergence of a random power series with non-independent coefficients, I show that Ryll-
Nardzewski’s theorem continues to hold in the dependent case, provided only that the
sequence of coefficients has a degenerate tail field. The essential role of the tail field was
foreshadowed by Borel [4].

The most important non-independent sequences whose tail fields are degenerate are
certain, not necessarily homogeneous, Markov chains. If {4,} is such a sequence, let
M, .(w) = sup{Pr(S) — Pr(S|F;)} where F, is the sub field in the probability space
generated by A;, and S runs through the sets of the subfield generated by A, for ¢ > s.
Cohn [5] has shown that lim_,elim, .M, (w) exists a.s., and that the tail field of the
chain is degenerate if and only if the limit is a.s. zero. Particular cases of degeneracy were
established earlier, e.g. by Blackwell and Freedman [3].
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2. The tail field of a random sequence is said to be degenerate if every set in it has
probability O or 1. '

ProrosiTION. If the tail field of {A,} is degenerate, the propositions of Ryll-Nard-
zewski’s Theorem hold for the random power series F(z) = Y, A,z".

Proor. For any integer &, let {4¥}, s = 0, ---, 2 — 1 be random sequences,
independent of each other, with the same distribution as {4,}. Let F.(2) = ¥ AY2z". Write
B = 2xn/k and set ’

(1) Hy(2) = Y55 e Y0 AP 2"
) = Y0 2" 12 €A,

Since the tail field of {A4,} is degenerate, each point z is either a.s. regular or a.s. singular
for the random series F(z). Let y(F, r) denote the angular measure of the largest arc of a.s.
regularity of F on the circle | z| = r. Let z be an a.s. regular point for F(z). Since Hy(z) is
the sum of & independent series, each of which is a.s. regular at z, it is itself a.s. regular at
2. Hence

G Y(He, r) Z y(F, 1).
Now
@ Hi(ze') = T 27" Tih AL

k-1 i —
= 2:;0 " 28_0 elBSA’(f n)modk'

Let {a,}, {u-} be any sequences of complex numbers, and consider the random sequences
{t.}, {rn} defined by

th = (zg;(} eiﬁsAI(zS) - an)/ﬂno
T = (BA5 Aok _ )/,

" Now by our hypothesis any complex number A is a.s. a limit point of {¢,}, or a.s. not. If it
is, it must be an a.s. limit point of the subsequence {¢.:+.} for at least one £=0, ..., k —
1. Since the joint distribution of the {A%},s=0, - -, & — 1 is invariant under permutation
of the s, {Tnz+,} is equidistributed with {¢.z+.} and hence also has A as a.s. limit point.
Hence A is an a.s. limit point of {r.}. The % subsequences for /=0, ..., & — 1 have
different dependence structures for the two sequences, but this does not affect the
occurrence of an event whose probability is one. The argument is reversible, and since the
choice of {a.}, {B.} is arbitrary, the standard tests for regularity of points with respect to
power series show that Hy(z) and Hi(ze'#) have the same singularities. In other words, if
H,(2) is a.s. singular at zo, it is also a.s. singular at zoe'#, and hence at ze***, s = 2, .-,
k — 1. Thus for any r > 0 we have three possibilities:

(a) Hi(2) is a.s. regular everywhere on|z|=r.
(5) (b) 0 < y(Hi,r)<2n/k=8

(¢) y(Hg, r) =0, i.e. Hp(z) is a.s. singular everywhere on|z| =r.

We choose & > 27/v(F, r). Then there is a contradiction between (3) and (5), so case (b)
cannot occur. In case (a), as in [8, page 34], we take a sample realisation of {4}, s =1,
.+, k — 1 and form

(6) f(2) ==&l e® Yo ADZ"
Then F(z) — f(2) is a.s. regular on | z| = r, with probability one in respect of the sampling

procedure. In particular, one such f(z) can be found, and we say that it clears the disk
| 2| = r of singularities.
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In case (c), it follows from (3) that F(z) is also a.s. singular at every point on | 2| = r.
Suppose it were possible to find a fixed function g(z) such that the a.s. singularity set of
F(z) — g(z) on |z| = r is smaller than the whole circle. Then by (3), so is that of
Y e (F ) (2) — g(2)} = Hy(2), which is a contradiction.

Thus for each r it is either possible to find a fixed function f(z), possibly zero, such that
F(z2) — f(2) is a.s. regular everywhere on |z| = r; or it is not possible and F(z) is a.s.
singular on | z| = r. If the second alternative holds for some r, it clearly holds for all greater
values. Let p be the infimum of these case (c) values. It then follows by a contradiction
argument that there is some f(z) such that F(z) — f(z) has a.s. rio singularities in | 2| < p,
and |z| = p is a.s. a natural boundary. The other assertions of the theorem are easily

checked.

The truth of the conclusions of Ryll-Nardzewski’s theorem does not imply the degen-
eracy of the tail field of {A,}. However the proposition does enable us to summarise fairly
satisfactorily the natural boundary problem for general random power series, in terms of
the following obvious corollary.

CorOLLARY. Corresponding to every random power series Y, A,z" there corresponds
a random power series ®(z), measurable with respect to the tail field of {A,}, such that
the conclusions of Ryll-Nardzewski’s Theorem hold, with “maximal” in (i) and the
equality in (iii) being required to hold almost everywhere.

The degree of complication of ®(z) can therefore be expressed in term of the results
given in [5].
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