The Annals of Probability
1983, Vol. 11, No. 3, 656-668

ESTIMATE ON MOMENTS OF THE SOLUTIONS TO STOCHASTIC
DIFFERENTIAL EQUATIONS IN THE PLANE?

By J. REID
University of California, Irvine

Let (2, 4, P; J,) be a probability space with a family of sub-o-algebras
indexed by (s, ¢t) € [0, ®) X [0, =), satisfying the usual conditions. Let X (s, ¢)
be a solution of a stochastic differential equation in the plane with respect to
the Wiener-Yeh process. Under one of the usual conditions used to guarantee
existence and uniqueness of a solution to the equation, it is shown that the
absolute moments of X (s, ¢£) grow at most exponentially in sz. The estimate is
based on a version of the two parameter Ito formula and on an extension of
Gronwall’s inequality to functions of two variables.

1. Introduction and notation. In this paper we are concerned with the two-param-
eter stochastic differential equation

(1.1) dX(s,t) =e(s, t, X) dB(s, t) + f(s, t, X) dm(s, t)

where B(s, t), (s, t) € D = [0, ®) X [0, ) is the two-parameter Wiener-Yeh process, and
m is Lebesgue measure on D. Conditions on the coefficients e and f that assure existence
and uniqueness of a solution to (1.1) are known and will be reviewed below. Our purpose
is to derive an a priori estimate on the moments of such a solution. In fact, we show that
for any n = 4 there is a constant C > 0 such that the nth absolute moment of X (s, £) grows
at most on the order of exp(Cst). The constant C depends only on 7 and on the parameters
appearing in the conditions on e and £, i.e., C does not depend on the solution X (s, ¢) itself.

The probabilistic apparatus is as follows. All processes have indices in D, which is given
the partial ordering (s, t) < (s, ) iff s = s’ and ¢ < ¢’. The probability space (2, J; P) is
complete and {7;,| (s, t) € D} is a system of sub-¢-algebras of Fsatisfying the usual axioms
as introduced in Cairoli and Walsh [1]. The latter paper also contains the definitions of
martingale and weak martingale that we use.

In Yeh [6], stochastic differential equations are solved in the above setting; we outline
the results here. The Brownian motion B (s, ¢) can be assumed to be adapted to J;, and to
have the property that B(R) is independent of 7;, where R is any rectangle in D disjoint
from (0, s] X (0, ¢]. Let W be the space of continuous real-valued functions on D. Let
2%(W) be the o-algebra on W generated by sets of the form {(w € W|w(s, t) € E}, for
some (s, t) € Dand E € #(R). Let %,.(W) be the c-algebra on W generated by sets of the
form {w € W|w(u, v) € E} for some (u, v) < (s, t) and E € #(R). The coefficients e and
f are assumed to satisfy '

(a) eis a measurable map from (D X W, # (D) x #(W)) into (R, & (R));
(b) For every (s, t) € D, e(s, t, -) is a measurable map from (W, %,.(W)) into
(R, #(R)),

and similarly for . Then by a solution to (1.1) we mean a continu(.)us process X(s, t) such
that
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(@) E[forixwom |e(s, t, X)|*dm(s, t)] <o, and

(1.2) E[J | f(s, t, X) | dm(s, t)] <o forevery T>0
[0,T]1x[0,T]

(b) for all (s, t) € D, X(s, t) — X(s, 0) — X(0, t) + X(0, 0) = [po,s1x0,61 €(&, v, X) dB(u, v)
+ [o.s1xm0.0 (1, v, X) dm(u, v). )

The stochastic integral in (1.2b) can be defined as a continuous, square-integrable martin-
gale because of the integrability condition on e in (1.2a). Sufficient conditions on e and f
are given for existence and uniqueness of a solution to (1.1). One of these is the following
growth condition: there is a Borel measure A on D such that for every T > 0 there exists
a constant Lz > 0 such that

(1.3) e(s, t, w)? + f(s, t,w)? < LT(I + w(s, t)? + J w(u, v)? dA(u, v))
[0,s1%x[0,¢]

for all (s, t) = (T, T) and w € W. The measure A gives finite mass to finite rectangles.

After some preliminary results we prove our main estimate in Section 4: if X is a
solution to (1.1) where e and f satisfy (1.3), and if X is constant on the axes, then for n =
2 or n = 4, and for every T > 0 there is a constant Cr > 0, depending only on n, Lz, and Kr
= A([0, T'] X [0, T']) such that

(1.4) E(|X(s,8)|") = (1 + E(|X(0,0)|"))exp(Crst) — 1

for every (s, t) < (T, T).

We use the following notation throughout. The rectangle [0, s] X [0, ¢] C D is denoted
by Rs.. If f(s, t) is any function of two variables, and if R = [s, s’] X [¢, t’] is any rectangle
in D, then f(R) = f(s', t') — f(s’, t) — f(s, t') + f(s, £).

2.Ito’s formula. Let L.(7;,) denote the class of two-parameter adapted, measurable
processes which are uniformly bounded. In [4] we prove the following theorem.

THEOREM 2.1. Let a, b € L.(7,,:) and denote

M(s, t) = f a(u, v) dB(u,v), J(s,t) =f a(u, v)? dm(u, v),
[0,s]%[0,£] [0,s]x[0,¢]

and

L(s, t) = f b(u, v) dm(u, v),
[0,s]x[0,'t]

for (s, t) € D. Let Y (s, t) be an adapted, continuous process satisfying

(2.1) Y(s,t) — Y(0,0) = M(s, t) + L(s, t),

for (s, t) € D, with Y (0, 0) bounded. Let g € C*(R") and suppose there exist constants
A, B> 0such that |g®(x) | < A exp(B|x|) forx € R* and k=0, 1, 2, 3, 4. Then

(2.2) g(Y(s, t)) — j T..&(Y(u, v)) dm(u, v)

10,51X[0,¢]
is a weak 7,.-martingale, where the operators Ts,, (s, t) € D, are defined by
Ts:8(x) = Ls (s, t)8'(x) + (Ls L; + %2 ) (s, 1)g" (x)
2.3) + W (Lo: + Led) (s, )8 (%)
+ Yo (s, )™ ().



658 J. REID

ExampLE. Ifa=1,b=0,and Y(s, t) = B(s, t), then

(lg”w(u, v)) + %’—’g“’(B(u, v))) dm.(u, v)

&(B(s, 1)) —J 3

[0,51x[0,¢]

is a weak martingale for any g of exponential growth.

The fact that an expression of the form (2.2) is a weak martingale can be inferred from
recent work of Guyon and Prum [2]; indeed, the weak martingale is identified as the sum
of stochastic integrals of @ and b. However, certain integrability conditions on g9(Y(s, t))
are assumed there; these are replaced in our result by the growth condition on g. Theorem
2.1 is obtained using a “martingale approach” adapted from Stroock and Varadhan [5]
which we intend to treat in another paper. Another result proved in [4] by similar
techniques and which we shall need in Section 4 is the following.

THEOREM 2.2. Let a(s, t) € L.(7;,;) and let
M, = Sup @ =05UPecal a(u, v, w)|

for (s, t) € D. Then

E[exp(j a(u, v) dB(u, v))] =2 exp(s—t Mf,) .
[0,51%[0,£] 2

3. An extension of Gronwall’s inequality. One of the key ingredients in the
derivation of the one-parameter analogue of the estimate (1.4) is Gronwall’s inequality
(see, for example, [3], Theorem 4.6). Our goal in this section is to obtain a two-parameter
version of this inequality.

THEOREM 3.1. Let (S, T) € D and let f and g be bounded, measurable functions on
[0, S] X [0, T']. Suppose there exists a constant C > 0 such that

3.1) fis, ) =g(s t) + C J flu, v) dm(u, v),
[0,s1%[0,¢]
forall (s,t) = (S, T). Then
3.2) fis,t)=g(s, )+ C f g(u, v)J(C(t — v)(s — w) dm(u, v),
[0,s1%[0,¢]

for all (s, t) = (S, T'), where ‘

x’
(33) J(x) = Z?‘OW , X€E R.

Proor. We write du dv for dm(u, v). First, using estimate (3.1) for the integrand in
(3.1) we obtain .

s t
f(s, t) =g(s, t) + Cf J’ g(u, v) du dv
0 0

s t Uy 171
+C2J f f J f(uz, v2) duz dve duy du,
o Jo Jo 0

for (s, t) < (S, T). We shall show by induction that for alln =1, 2, 3, - - - we have

(3.4)
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s t _ _ k
f(s,0) = g(s, 8) + Cf f g(u, v) ¥328 (ce (1;)'()32 N g dv
0 Jo *

s rt ruy v Un Un
(3.5) + Cn+1 f j J J e J f f(un+1a vn+1)
o Jo Jo (] [} 0

 dUpny1 dUpsy «+- dur dvy, for (s, t) =< (S, T).

Indeed, for n = 1 (3.5) is just (3.4). Inductively, suppose that (3.5) holds for n, and let I;
denote the third term on the right side of (3.5). Using (3.1) for f(un+1, Un+1) We get

s t u vy Un Un
Il = Cn+1 J J J J A f f g(un+1, vn+l) dun+1 dvn+1 A dul dUl
0 Jo [ 0 0 0
s t Uy vy Un+1 Un+1
+ Cn+2 J J J f M J f(un+2, vn+2)
0o Jo Jo ) (V] (V]

. du,.+2 dl)n+2 v dul dl)1

(3.6)

=sL+0L, for (s5,8)<(S,T).
Next, upon interchanging order of integration (justified by the boundedness of g), we find

st s t s ot
cr f f 8(Un1, Un+1)(f J J J
0 Jo

Un+1 ¥ VUnsy YUp Y Up

s t
e f J du; duy - -+ du, dvn) dun+1 dUp+1

(3-7) s rt n
- - t— n
= C"+1f f g(un+1, vn+1) ((s un+(1,)l(')2 v +1)) dun+1 dvn+1
0 Jo °

- CJ J gy, ) CE= D" b (5, 0= (S, T).
. @)

Using (3.6) and (3.7) in (3.5) we have the statement that (3.5) holds for n + 1, and this
completes the induction proof.
Next we note that

s rtorur rUp Un+1 (Un+1
2
L=C* SUP (u,0)=(s, ) (&, V) J J J J e f J dupsz dUn+2 - -+ duy dovg
o Jo Jo Jo o o

(st)n+2
((n +2)1)*’

Using this fact, and (3.3) in (3.5) (with » replaced by n + 1) we obtain

= C"**supun=inf(y, v) (80=(S5T7T). °

fls,t)=g(s, t) + Cf f g, v)J(C(t — v)(s — u)) du dv
o Jo

(3.8)

C t n+2
+ Supw,n=nfK, v)ﬁ, (5,)=(S, T
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foralln=1,2,3, -... But f(x, v) is bounded on [0, S] X [0, T'], so
(Cst)n+2
((n + 2)")?

for all (s, t) = (S, T'). Thus (3.8) implies (3.2) and we are done. 0

SUP u,n=(s,nf (U, V) —0 as n—o

COROLLARY 3.2. Let h(s,t) be a non-negative continuous function on Rsr, dand
suppose there exist a € R and C = 1 such that
2,2

S t '
39 hAh(s,t)=a+ C(st +%) + Cf f (1 + wv)supw,vy=w,nh(@’, v') dm(u, v),
0 Jo

for all (s, t) = (S, T'). Then
(3.10) h(s,t) < 1+ a)e**™* -1, (s, )< (S, T).

ProoF. Denote dm(u, v) = du dv,
f(s, t) = sup,u=enh(u, v),

and
2,2
g(s,t)=a+ C(st +s_4t_)

so that (3.9) becomes
h(s, t) = g(s, t) + Cf f 1+ uv)f(u,v) dudv, (s,t)= (S, T).
) )

(Note that fis continuous and non-negative since A is.) Since g(s, ¢) and [§ [b (1 + uv)
f(u, v) du dv are both increasing functions of (s, ) we actually have

s t
f(s,t) =g(s, t) + Cf f 1+ uv)f(u,v) dudv, (s, t)= (S, T).
0 0

In the latter integral we shall make the change of variables U(, v) = (u + u2v/2, v). We
note that U is a one-to-one continuously differentiable transformation, with Jacobian 1 +
uv. The continuous inverse transformation is given by

=14+ v1+ 2xy
—_—y}, ¥#O0
(3.11) U_l(x, y) = Y -

(%), y=0.
Thus we have
12 fls)=<gls) +C ff f(U(x,y) dx dy, for (s,'t)=< (S, T).
UR,)
We now define, for (x, y) =< (S + %S?T, T‘)
flx, ) = {f (U™(x,9)), (x,5) € UlRsr)

0, otherwise,

and

g(U ™ (x,y), (x,y) € URsr)
0, otherwise.

£(x,y) ={
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Note that for (s, ) = (S, T') we have
U(R,.) C U(Rsr),

and

2

U(R.s) C [0, s+ §2_t] x [0, £].
Thus for (s/, ') < (S + %S°T, T)
(3.13) fis', )< g(s’, ¢') + ff f(x, y) dx dy
UGk,

where s’ = s + s’/2 and ¢’ = ¢. Indeed, if gs', t') € U(Rs,T) thgn (3.13) is just a restatement
of (3.12) and if (s’, t’) & U(Rsr) then f(s’, t’) = 0. Since f(x, y) is non-negative (3.13)
implies

st
4 A ST
f(s',t')=8(s', t') +J f f(x,y) dxdy, for (s',¢t')=< (S + 5> T) .
0 0

But, f and £ are bounded measurable functions since f and g are continuous on [0, S] X
[0, T'], so Theorem 3.1 yields

fs', t')<g(s, t') + Cf f 8(x, y)J(C(s'— x)(t' — y)) dx dy,
(3.14) o -0

2
for (s',t')= (S +S2T, T) .

Now observe that #(x, ) < a + Cxy for (x, y) € D. Indeed, if (x, y) € U(Rsr) and y # 0,
then g(x, y) = g(U'(x, y))
_g(—l + V1 + 2xy

—_— )y}, by (.11
5 y) y )

_ / 2
=a+C((—1+\/1+2xy)+( 1+ ‘11+2xy)>

_ / 2
5a+c<(—1+J1+2xy)+( 1+ ;”xy))

=a + Cxy,

and the other cases are trivial. Thus (3.14) becomes

f(s’, t'y=a+ Cs't' + CJ J (a + Cxy)J(C(s’" — x)(t'— y)) dx dy,
0 0

2,
for (s/,t) =< <S+S T, T) .

(3:15)

2

It is elementary to compute that

CJ f (@ + Cxy)J (C(s'— x) (¢’ — y)) dx dy = (a + 1)J(Cs’t’) — (a + Cs't’) — 1,
o Jo
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so (3.15) becomes

., ST
fs', )< @+ DI(Cst) =1, for (s ¢)=(S+=,T).

Next f(s’, t') =f(s, t) = h(s, t) for (s, t) < (S, T') with s’ = s + s%/2, t’ = ¢, so the proof of
(3.10) will be complete once we show that

(3.16) J(Cs't') = e**, (s, )= (S, T).

2,42

But J(Cs't’) = J C(st + Tt)) =< max(J (2Cst), J(Cs’t?)), since J(x) is an increasing
function of x = 0. Also it is clear from the definition of o that J(2Cst) < e%¢*, Finally,

2
(‘/ESt)k) (Zk-o (‘/ESt)k> = o2/0st < g20st

J(Cs*) = $imo (

since C = 1 (this is the only place we used C = 1). Hence (3.16) holds and the proof is
complete. 0

4. The main estimate. In this section we derive the estimate on the moments of a
solution to (1.1) with coefficients satisfying (1.3). We shall need to assume that X is
constant on the axes, i.e.,

for all (s, t) € D and w € Q. This is due to the fact that Ito’s formula, Theorem 2.1, is valid
only for processes which are constant on the axes, in the above sense.
We first prove an elementary lemma which is used repeatedly in the proof of Theorem

4.2.

LEMMA 4.1. Let Y(s, t) be a non-negative measurable process, (s, t) € D, and
B, ooy fm, M2 1 be Borel measures on D which are finite on compact subsets of D. Let
n, a;, and b;, 1 < i < m, be non-negative numbers with the property that

{aiSn,lsiSm, and
2,'";1 a;bi=n
Then for every (s, t) € D we have
b
(4.1) E( i'il(f Y« d,ui) ) = T2 pe(Ree)%+ (1 + SUP vy (s, E(Y (1, O)*)).
R .

8,¢
(Note: we interpret Y° = 1).

Proor. Consider first the case m = 1. Assume that a; > 0, b; > 0; otherwise (4.1) is
trivial. If b; = 1 then

by .
E(( J Yo dp.1)\ ) = E<NI(RS,,)5--1 J yab dyl)
R - R

8,¢ 8t
(by Jensen’s inequality) \
= w(Rs,) ! f EY*5 dy,
i3

8t

= (R, )! f 1+ EY") du,
R,

8¢
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since a1 b: < n,

= ﬂl(Rs,t)bl(l + Sup(u,v)s(s,t)EY(u’ v)n)’

([, )= (e( )

(by Holder’s inequality)

by
= (j EY‘I1 d’Ll)
R

8t

b,
s(f (1+EY")du1),
R,

8,

and if b; < 1 then

since a; =< n,
= wi(Rs,1)?(1 + Sup(w,v)=(s,) EY (u, v)")™
= wi(Rs,¢)?(1 + sup(u,vy=(s 0 EY (1, v)"),

for (s, t) € D. Thus (4.1) holds for m = 1.

For the case of m = 2, we again see that without loss of generality we may assume a;
>0, b; >0, 1 =< i =< m, since if a; = 0 for some i, then a factor of y;(R;, ;)" appears on each
side of (4.1), and if b; = 0 for some i, then a factor of 1 appears on each side of (4.1). Now
define

Zf’il a;b;

=1, 1=k=m.
akbk

br=

By Holder’s inequality (generalized to m exponents) we have for (s, ¢) € D

wn (ne f f voan) ) =iz (x(( f j vean)"))"

Now for fixed i, 1 < i < m, we have a; < n and a;- (b;p;) = Y71 arby < n, so by the first
part of the proof

b,p,
(4.3) E((J’f Y dm) ) = pi(Rs, )" (1 + SUP( 0= (5,0 E (Y (1, 1))

R,

Combining (4.2) and (4.3), and using the fact that Z;’Lll. = 1, we obtain

o[

= [Eu(p(Re) % (1 + supw,vy=sn E (Y (1, v)™))"?)
= 121 i Rs,e) %+ (1 + sup o) =5, E (Y (u, v)")),
for (s, t) € D, which is the desired result. 0O

THEOREM 4.2. Let X be a solution to (1.1) with coefficients satisfying (1.3) and
assume that dX = X (0, 0). Let n = 2 or n = 4. Then for every T > 0 there is a constant Cr
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> 0, depending only on n, Ky and Lt such that
(4.4) E|X(s,t)|"= (1 + E(|X(0,0)["))e’™ — 1,
for (s, t) = (T, T).
ProoF. We may assume E | X (0, 0)|"* < o; otherwise (4.4) is trivial (and unmberestmg)

Let N > 0 be given. For (s, t) € D, let
1, if supwun=wo|X (¥, v, w)| =N,

(4'5) IN(s, t) 0)) = {

0, otherwise,
so that | InX| =< N for all (s, ¢), . Note that
(4.6) In(s, t) = In(u, v)In(s, t), for (u,v)=(s,t),

since if In(s, ¢) = 1 then In(u, v) = 1. Also, note that Iy € L.(7,,) since X is an adapted
continuous process.
We introduce the coefficients

an(s, t,w) = In(s, t,w)e(s, t, X(-, -, w))
(4.7) {
bN(s) t, w) = IN(S) t,w)f(sa t)X(') ',w))a

and the process

s t
Yn (s, t) = In(0, 0)X(0, 0) +f j an (u, v) dB(u, v)
0 0

S t
+ f J bn (u, v) dm(u, v),
0 0

for (s, t) € D. Note first that Yx(0, 0) = In(0, 0) X (0, 0) is bounded by N. Next, we claim
that an, by € L (75,). Indeed, the required measurability conditions follows from those of
Iy, e, and f, and the boundedness follows from

ak(s, t) + bk(s, t) = In(s, t)(e(s, t, X)* + f(s, t, X))

(4.8)

= 1In(s, t)LT(l + X(s, )2 + J'J' X(u, v)? dA(u, v))
R,
=Lr(1+ N*+ N°Kr) <,
for (s, t) < (T, T), by (4.7), (1.3), and (4.6). Next, we claim that
4.9) In(s, ) Yn(s, t) = In(s, t) X (s, t), (s,t)E D.

In view of (4.6), (4.7), (4.8), and (1.2b) and the fact that X =X (O,. 0), (4.9) will follow from
In(s, t) fs ft e(u, v, X) dB(u, v) = In(s, t) fs J’t In (u, v)e(u, v, X) dB(u, v),
o Jo . o Jo
and
In(s, t) j’ ft f(u, v, X) dm(u, v) = In(s, t) fs ft Iy (u, v)f(u, v, X) dm(u, v),
o Jo 0. Jo

for (s, t) € D. But these are easy: on {w|In(s, ¢, w) = 0} the equalities are trivial, and on
{w|In(s, t, w) = 1} we have In(u, v, w) = 1 for (u, v) = (s, t) and again the equalities hold.
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Now let n = 2 or n = 4 be fixed. Define
gx) =x"
(4.10)
h(x) =|x|n,xER.
Then k € C*(R), in fact for n = 2, h = g, and for n = 4,
g®(|x|), k=24
AP (x) = .
g®(|x|)Sign(x), k=1,3.

Also, it is clear that A and its derivatives are bounded above by an exponential function.
Thus we may apply Theorem 2.1 to the process Yx and the function A, obtaining that

(4.11)

h(Yn(s, t))—f J (T,0h) (Yn (1w, v)) dm(u, v)
0 0

is a weak martingale (with the notation of Theorem 2.1). In particular, noting that
h(Yy(0, 0)) = h(X(0, 0)), we have

Eh(Yn(s, t)) = ER(Yn(0, 0)) + Ef f (To\,0 B) (Yn (u, v)) dm(u, v)
0 Jo

4.12) = ER(Yn(0,0)) + fo fo E(T.oh) (Y (4, v)) dm(u, v)

=< Eh(X(0, 0)) +j j E|(T.oh)(Yn(u, v))| dm(u, v) <o, for (s,t)€E D,
o Jo

where the finiteness is by Theorem 2.2. Now from (2.3) with a and b replaced by any and
by, respectively,

(E|(Ts:h)(Yn(s, t))| < E|Lu(s, )h'(Yn (s, t))|

+ E|L.Li(s, t)h" (Yn(s, t))|

+ E|% Ju(s, t)h"(Yn(s, t)|

4.13) 3 + E|% Ly Ji(s, t)h® (Yn (s, t))|
+ E|% LiJy(s, )R (Yn(s, )|
+ E|Ya JiJi(s, )R (Yn (s, 1))

L =ci(s t) + (s, t) + -+ + (s, 2),

for (s, t) € D. We shall show that for 1 < & < 6 there is a constant Ci, r depending only on
Lr, Kr and n such that

(4.14) cr(s, t) < Cpr(1 + st)(1 + sup,v)=(s,0) EA(Yn (1, V))),

for (s, t) = (T, T'). Before verifying (4.14), we can finish the ‘proof. Let
Cr = (6 max;<x=6Cr 1) Vv 1.

Combining (4.12), (4.13), (4.14) we get

242
ER(Yw(s, t)) < ER(X(0, 0)) + CT<st +s—4t—)

s pt °
+ CTJ f (1 + wv)supw,v)=@w,nEA(Yn(u’, v')) dm(u, v),
0 0
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for (s, t) < (T, T). We see from (4.12) that Eh(Yn~(s, t)) is a continuous function of (s, ¢).
Thus Corollary 3.2 applies, yielding

(4.15) Eh(Yn(s, t)) = (1 + ER(X(0, 0)))&°r™ — 1,

for (s, t) < (T, T). Now by (4.5) and the continuity of X we have that In(s, ) T 1 as
N > o, so by (4.9) Yn(s, t) = X(s, t) as N — o, for (s, t) € D. Thus by (4.10), Fatou’s
Lemma, and (4.15) ’

E IX(S) t)ln = E(limN—)ool YN(s) t)ln) = ]-im ian—»ath(YN (sy t))
=1+ E|X(0,0)|*)e*r — 1,
for (s, t) < (T, T). Thus we have obtained (4.4) with Cr replacing 2Cr.

The proof of Theorem 4.2 is complete except for the derivation of (4.14). Let us
introduce the following notation

a(s, t) = J’J’ Yn(u, v)2 dA(u, v)

R

8t

ai(s, t)=J’ | Yn(u, t)| du, o2(s, t)=J’ Yn(u, t)* du
) )

t t
Ti(s, t) =I | Yn(s, v)| dv, 72(s, t) =J’ Yn (s, v)* dv
0 0

@ =|Yn(s )", O0=k=<4,
and
Q=1+ supun=cnE| Ynu, v)|™

Since N and T are fixed in this part of the proof we denote Y, an, bn, In, Kr, and Lt by
Y, a, b, I, K, and L, respectively. Also, all functions on D shall be evaluated at (s, ¢) unless

otherwise indicated.
To begin the derivation of (4.14) first note that from (4.10) and (4.11) we have

g(x) =x
(4.16) [A®P(x)| =g®(|x]), k=1,234,
and hA(x) =g(|x|) =]x|™
Next, fix (s, t) < (T, T'). Then :
(6] =1I|f(s,t,X)| by 4.7)

1/2
SIL1/2<1 + X%+ J’J’ X(u, v)? d\(u, v)) , by (1.3)

RB, t

. 1/2:
4.17) 3 = IL1/2<1 +|X| + <JJ X(u, v)? dA(u, v)) )
R

8t

1/2
sILW(l +|Y|+ <J’f Y(u, v)? dA(u, v)) )
R

st

L < LY+ | Y|+ o',
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Similarly,
(4.18) a’<L(1+ Y%+ a).

We now derive (4.14) for 1 < k& =< 6. The proofs for each case are similar but we write
them all out for the sake of completeness.

(i) Estimate for ¢; = E| LA’ (Y)|. First,
| Lk (Y)| =0 |K(Y)| = LY*A + | Y|+ oD (| Y)),
=nLY%q, + ¢, + q:a'?), by (4.16), (4.17).
Hence
(4.19) ¢ = nl'*(Eq, + Eqo + Eq1a'?).

But Eq; = @ by Lemma 4.1 with m = 1, y; = 8¢, &1 = n — 1, and &, = 1. Similarly, Eq,
= @. (Of course we don’t need a lemma for these trivial inequalities, but Lemma 4.1 is
definitely needed for later estimates; it also covers the trivial cases.) By Lemma 4.1 we also
have Eqia? = A(R,,;)*Q (take m = 2, 1 = 855, piz2 = A, @1 =n—1,b; =1, az = 2 and
b, = ). Using these estimates in (4.19) we obtain ¢; < nLY?(2 + K'/?)Q. Thus (4.14) holds
for £ = 1 with

Cir=nL"?@2 + K"?).

(ii) Estimate for cc= E|L;L.:h"(Y)|. Using (4.16) and (4.17) we obtain

| LsL:h"(Y)| = f b(s,v) dv . ‘ h"(Y) ‘
0

j b(u, t) du
0

=n(n-1)L < J' [1+]|Y(s, v)| + als, v)*/] dv)
0

. <f [1+]Y(,t)|+ aly, t)'?] du) - Q2
o

=n(n—1)L(t+ 71 + ta*? (s + 01 + sa*'?) @

since a(s, ¢) is an increasing function of (s, ¢). Thus multiplying out the factors in the last
expression and taking expectation we find

c2=<n(n — 1)L(stEq; + sEt,q; + stEqsa'? + tEo, q» + Eo171q:
+ tEo1q2a'? + stEqsa'? + sEr10*%q, + stEqza).
Now by Lemma 4.1 we find
Eq:=Q, Eriq:=1Q, Eq:a* <A(R..)"?Q, Eo1q:=< sQ,
Eoi11q: < stQ, Eo1q:0"* < sA(R,,:)"*Q, Et1¢q20""* < IA(R...)"?Q,
and
Eaq: =\(R;.)Q.
Thus c; < n(n — 1)Lst(4 + 4KY? + K")Q, since A(Rs,:) < K. So, (4.14) holds for £ = 2 with
Cor=n(n—1)L(4 + 4K + K).
(iii) Estimate for c3; = E | %J:h”(Y)|. Using (4.16) and (4.18);
|Juh”(Y)| = a’g”(| Y|) < Ln(n — 1)(1 + Y + a)qs.

Thus ¢s = % n(n — 1)L(Eq: + Eqo + Eaq,) < %n(n — 1)L(Q + @ + K@), again by
Lemma 4.1. Thus (4.14) holds for £ = 3 with
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Cs,r = Y%n(n —1)(2 + K).
(iv) Estimate for ¢, = E | %LsJ;A®(Y)|. By the same technique as in (i) — (iii) we arrive
at
=% n(n—1)(n— 2)L¥stEqs + sEqsti + stEqsa'? + tEqso: + Eqsoem:
+ tEqs020*? + stEqsa + sEqstea + stEqsa®?]
=%amr-1)m-2)L"s1+1+K72+1+1+ K2 + K + K+ K¥1Q.

Thus (4.14) holds for & = 4 with
Cyr = ¥%n(n —1)(n — 2)L**(4 + 2K + 2K + K%,

(v) Estimate for ¢; = E|%L,J;h®(Y)|. Since (v) is the same as (iv) with s and ¢
interchanged, we obtain (4.14) for £ = 5 with

Cs,T = C4,T~
Finally,
(vi) Estimate for cs = E | %dsJJ,A(Y)].
cc<¥nn—1)(n—2)(n— 3)LYstEq: + sEq.m: + 2 st Equa
+ tEquo: + Equosms + tEqs0:a + sEqumsa + stgsa’]
=Y%Umn-1)n-2(n—-3)L%tf1+1+2K+1+1+K+K+ K?1Q.

Thus (4.14) holds for 2 = 6 with
Cor=Yn(n—1)(n—2)(n—3)L*(4+ 4K+ K?). 0
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