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SOME RESULTS ON INCREMENTS OF THE WIENER PROCESS
WITH APPLICATIONS TO LAG SUMS OF LI.D. RANDOM
VARIABLES'
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S.U.N.Y.-Binghamton and S.U.N.Y.-Buffalo

Let W(t) be a standardized Wiener process. In this paper we prove that
|W(T) - WT -0  _
(2t[log(T/t) + log log ¢t1} /2

under suitable conditions on ar. In addition we prove various other related
results all of which are related to earlier work by Csorgé and Révész.
Let {X:} be an ii.d. sequence of random variables and let Sy = X; + -

. + Xn. Our original objective was to obtain results similar to the ones
obtained for the Wiener process but with N replacing T' and Sy replacing
W(T). Using the work of Komlés, Major, and Tusnady on the invariance
principle, we obtain the desired results for ii.d. sequences as immediate
corollaries to our work for the Wiener process.

1 as.

lim supr—~maxg,<¢<T

1. Introduction. The motivation for the work done here came from a specific
statistical problem. Suppose {X,} is a sequence of random variables whose distribution
functions approach (in some appropriate sense) a fixed distribution with mean p. If the
sequence is independent (or is appropriately dependent), then under mild regularity
conditions S,/n — p almost surely. There will usually be bias (or non-random error)
associated with the earlier X;’s. One might hope to reduce this bias by “throwing away”
some of these earlier X,’s, by considering averages of the form (S, — S, )/kx so that only
the %, most recent observations are used in computing the nth average.

In [9] we showed that max; <=n|S. — Sn—x|/k — 0 almost surely for appropriate
sequences {k,} under assumptions on E | X;|” or on E {exp(6X:)}. We assumed that {X}}
was an i.i.d. sequence of random variables but our method of proof can be extended to
cover certain non-i.i.d. cases as well.

We were originally interested only in obtaining (S, — Sn—#,)/k. — 0 almost surely. The
maximum came “free” (i.e., with no additional assumptions).

The purpose of this paper is to continue the investigation of the asymptotic behavior of
weighted sums of the form (S, — S.-:,)/d(n, k.). The sequence X, will clearly not be i.i.d.
in most statistical cases of interest; however, we restrict our attention to the i.i.d. case in
this paper. Our results in the non-i.i.d. case involve entirely different methods of proof
from those used in this paper and will be put into manuscript form later.

Our proofs here involve three things: a sort of duality between certain types of
asymptotic results; results on the Wiener process and arguments involving the Wiener
process, both of which are similar to those of Csorgé and Révész in [5]; and the invariance
principles of Komlés, Major, and Tusnady from [12] and [15].

In the next section we present our simple duality argument and use it to show how
closely related our work is to the Erd6s-Rényi new law of large numbers [8] and the body
of work which has arisen in that area (see, e.g., [1], [2], [7], and [20]).

In Section 3 we state and prove our results on the Wiener process. They are similar to
those given by Csorgé and Révész in [5] and are extensions of those results. Though our
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610 D. L. HANSON AND R. P. RUSSO

original purpose in obtaining the results of Section 3 was to use them in our investigation
of weighted sums, the results in Section 3 are of independent interest. Section 4 contains
some discussion of these results.

Our results on weighted sums are presented in Section 5 and discussed in Section 6.

2. On the relationship between our work and the Erdos-Rényi new law of
large numbers. Since completing our work in [9], we have become interested in’ the
complete limiting behavior of sequences of the form (S, — S, )/k.. We have become
aware that our work is very closely related to a body of work involving generalizations of
the Erd6s-Rényi new law of large numbers and that results related to ours have already
been obtained for Wiener processes.

The following extremely simple lemma is highly useful in our work on the Wiener
process, as well as being the main tool we will use in showing the relationship between
Theorem 2.1 of [9] and the Erdés-Rényi new law of large numbers.

LeEmMA 2.1. Suppose S = (0, ©) or S = (1,2, --- } and that for each x in S we have
sets A and B; of real numbers. Suppose m:S — S, lim,_,.m(x) = o, and

2.1) A, C Uz B, for every x in S.
Then
(2.2) lim sup:_.(sup A:) < lim sup,_..(sup B;).

The proof is easy and omitted. Note that if the relationship which exists between the
A.’s and the B.’s also holds when the roles of the A.’s and B,’s are interchanged, then we
have equality in (2.2). Note also that Lemma 2.1 says nothing about the relationship
between lim inf,_,. (sup A.) and lim inf,_,. (sup B.) unless lim,_,. (sup B;) exists. Similar
results hold for inf A, and inf B, but here we are interested only in (2.2).

The following theorem is an immediate consequence of Lemma 2.1.

- THEOREM 2.1. Suppose k. is a non-decreasing sequence of integers such that
kn—> o and for each n either kn+1 = ky or kn+1 =k, + 1. Then the following are all equal:

. Sn - Sn—lz
(2.3) lim sups—.maxg,<r<n (Tn,k—)_) )

. Sm - Sk
2.4 lml Suj n—)mma = m=n,kRn<=m-—, . I ’ d
(2.4) p, X0<k<msn,k mk(d(m’m_k)) an

. Stk — Sk
(2.5) lim sup,_,.MaXo<k=n—#, (m) .

The notation is meant to imply that d(n, &) is a real valued function defined (at least)
when its arguments are non-negative integers such that no < k£ < n, and also to imply that
S, is either a sequence of real numbers or a sequence of random variables. If the S,’s are
random variables we obtain equality of (2.3), (2.4), and (2.5), not just equality almost
everywhere.

PROOF. Let

A, ={(Sn— Su-r)/d(n, k): by=k=n)},
B,={(Sn—Sk)/dm,m —k):0<k<m=nand k,<m —k}, and
Co= {(Sksr, — Sp)/d(k + ku, Bn): 0= k=n—k,}.

Applying Lemma 2.1 all six possible ways to the sequences A,, B,, and C, gives the result.
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An easy way to do the “bookkeeping” necessary to verify that (2.1) holds in the various
cases is to define ¢(n, k) = (S, — S.—1)/d(n, k) and note that applying ¢ to various sets in
the plane gives A,, B,, and C,. For example, if A} = {(n, k): n = N, kv < k < N}, then
o(A%)=An,andif B = {((im,m —k):0=k<m=Nand ky=<=m — k}, then $(B%) = Bn;
the observation that BY C UZ,, A} implies that By C UX, A;, and an application of
Lemma 2.1 shows that (2.4) < (2.3).

Erdés and Rényi [8] proved (their new law of large numbers) that if X,<is an ii.d.
sequence of random variables having zero mean and moment generating function m(-)
existing in some open interval about zero, then if exp(—1/¢). = inf{m (6)exp(—60a)} we have

. Sh+ieogn) — Sk '\ _
(2.6) hmnqmmamsksn_[caogn)]< [ctlog 7)] = a almost surely.
Using Theorem 2.1 with d(n, k) = % and %k and k. = [c(log n)] we immediately obtain
2.7) lim sup,— wMaXeqogn)j<k=n (SL_ITS"—_"> = a almost surely
so that (in the i.i.d. case)

. Sn - Sn-k _ . ¢(k)
(2.8) llnln_mmax[c(logn)]sksn (—W) =0 as. Iif T—) 00
Since a — 0 as ¢ — o, we see that (2.7) plus a little argument will also give

Sn - Sn—k

(2.9) lim,,_mmaxknsksn< ) =0 as. ifk,/(logn)— oo.

k
Thus, when X is an i.i.d. sequence, our Theorem 2.1 in [9] is a consequence of the Erdés-
Rényi new law of large numbers.

Using the methods of this section; Theorem 1 of Csorgé and Révész [5]; and the
invariance principle results of Komlés, Major, and Tusnddy (Theorem 2 of [12] and the
Corollary to Theorem 1 in [15]) we can obtain (fairly quickly) (2.3) of our Theorem 3.1
_ from [9] when r > 2.

3. Results similar to those of Csorgé and Révész on the increments of a Wiener
process. Throughout this paper C will denote various positive constants whose exact
numerical values do not matter so that, for example, 1 + C = C might appear in this
notation. We will use “log log x” to mean

3.1) log log x = log log(max{x, e}).

W(t) for 0 < t < « will be a standardized Wiener process (with continuous sample paths).
Sometimes [x] will denote the greatest integer less than or equal to x; we hope it is clear
when this is the case.

In [5] Csorg6 and Révész presented the following two theorems.

THEOREM A. Let ar for T > 0 satisfy

(3.2) ar is nondecreasing,

(3.3) 0<ar=T,and

(3.45 ar/T is nonincreasing.

Define Br = {2ar[log(T/ar) + log log T} V2. Then

(3.5a) lim supz_,.supo=t=r-a,B7| Wt + ar) — W(t)| =1 as.
and

(3.5b) lim Supr_,SUPo=t<T-a,SUPoss=a:B7| Wt + s) — W(¢)| =1 as.
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If, in addition,
log(T/ar) _ w

(3.6) limr_,» W =

then “lim sup” may be replaced by “lim” in both (3.5a) and (3.5b).

THEOREM B. If ar satisfies (3.2), (3.3), and (3.4) then
3.7) lim supr—oBr| W(T) — W(T —ar)| =1 as.

This is not Theorem 2 from Csérgé and Révész [5], but instead is the result of Step 1
on page 735 in the proof of their Theorem 1. This form is more suitable for our purposes
than is their Theorem 2 which is a form of interest to Lai (see [13] and [14]).

In this section we will prove the following theorems. They are similar to, or extensions
of, the Cs6rg6-Révész results. Some will be used in Section 5. All are of interest independent
of their value in Section 5.

THEOREM 38.1. Suppose 0 < ar=T for T > 0 and that

(3.8) arT*— o as T — « for every a > 0.
Then
. |W(T) - W(T-t)|
(3.92a) lim supr_..max,,<t<1 [2tllog(T/D) + log log £1 72 =1 as.
and
W(T) - W(T -
(3.9b) lim supr-,»Mmaxa,<t<7MaXo<s<t | W(T) = WL N 1 as.

(2t[log(T/t) + log log ¢t}

THEOREM 3.2A.
| W(t+a) - W) 1 oas
(2a[log((t + a)/a) + log log a]}'* )
| W(t+s) — W) Tl oas
(2a[log((t + a)/a) + log log a]}'* )

(3.10a) lim,_, - SUpo=¢

(3.10b) lim,_, . SUPo=SUPo=s=a

THEOREM 3.2B. Suppose 0 < ar = T for T > 0 and that
(3.11) ar— o as T — o,
Then '

| W(t+ ar) — W(t)|
{2ar[log((¢ + ar)/ar) + log log ar]

(3.12a) lim supr—.»maxXo=t=7T—q; }1/25 1 as.

and .
|W(t+s)— W)
(2ar[log((t + ar)/ar) + log log ar]}**

(3.12b) lim SUP7-,»MaXp=t=T—a, MaXo=s=<ar

=1 as.
If, in addition, ar is onto, then we have equality in (3.12a) and (3.12b).
THEOREM 3.3A.
(3.13a) lim, ., SUpPo<u=v—a | W) - W) | 1 as.

(2(v — w)[log(w/(v — ) + log log(v — W} >
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and
| W(t) — W(s)|

{2(v — Wlog(v/(v — w)) + log log(v — W} 1 as.

(3.13b) lilna—»ooSUPOSussstsu,asv—u

THEOREM 3.3B. Suppose 0 < ar =< T for T > 0 and that ar — » as T — . Then

lim | W(v) — W)
(3.143) SUPT-MaAXo<u<v<T,ar<v—u {2(0_ u)[log(v/(v — u)) ¥ log log(v — u)]} 172
=1 as.
and
Wi(t) — Wi
(3'14b lim SUP7T-—MaAXo<y<s<t<v=T,ar<v—u I ( ) (S)I

{2(v — w[log(v/(v — u)) + log log(v — w)]}**
=1 a.s.

Some of the relationships between Theorems 3.1, 3.2(A and B), and 3.3(A and B) via
the methods of Lemma 2.1 will become apparent in our proofs.
We will need the following lemma in our proofs. Define

(3.15) d(T, t) = (2t[log(T/t) + log log ¢]}'2.

LeEmmA 3.1. For each fixed t > 0, d(T, t) is an increasing function of T for T > t. For
each fixed T = e°, d(T, t) is an increasing function of t for 0 < t < T. For each fixed s >
0, d(s + t, t) is an increasing function of t for > 0.

Proor. The first assertion is obvious. The second requires an analysis of the partial
derivative of (d(T, t))® with respect to ¢; the cases0 <t <e, e <t <e®, and e° < t < T must
be considered individually. The third assertion again requires calculus arguments and uses
the fact that f(x) = log(1 + x) + (1 + x)~! — 1 is positive for x > 0.

ProoF oF THEOREM 3.2A. The proof is similar to the Csorgé-Révész proof, but the
change in denominators requires some alterations in the proof.
Suppose 6 > 1. Let a, = 6*,

(3.16) A(a) = supo=/maxo=s=c| W(t + s) — W(¢)|/d(t + a, a),
and A, = A(a;). Thenife >0
Yi-i P{Ar=1+ ¢}

(3.17)
| Wit + s) — W(t)|

d(t + ar, ar)

= Z;:‘l Z:;l P<max(n—l)a:.SZSna,.,OSSSa,. =1+ 8)

(3.18) = Yi=1 Yn=1 P(Maxosi<a, 0550, | W(E + 5) — W()|/d(nar, a) = 1 +¢).
Using Lemma 1* from [5] we bound (3.18) by
v Yk=1Ln=1C exp{—(é(l +¢)%/(2 + ¢))(log n + log log ax)).
Let y = 2(1 + €)%/(2 + ¢). We note that y > 1 and obtain
(3.16) = Y71 Yn=1C(nlog(ar)) "= V5-1 Ck™7 < oo,
Thus, via the Borel-Cantelli lemma, lim sup;_,»A (a;) < 1 + ¢ for every ¢ > 0 so

(3.19) lim sup;—.A(@*) =1 as. forevery> 1.
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It follows that (still using a, = 8*) for every § > 1 we have
lim Sup,—«SUPo=¢SUPo=s=a| W(t + s) — W(¢)|/d(¢t + a, a)
= lim SUPk—, »SUPa,=a=as,, SUPo=¢SUPo=s=a| W (£ + s) — W(¢)|/d(t + a, a)
< (im SUPr—=SUPo=s=a,..,0st| W(E + s) — W(t)|/d(t + are1, Qr+1))

d(t + ar+1, Gre1)
d(t + ar, ar)

Ollog((¢ + ar+1)/ar+1) +log log ar1] 2 _ 97 as
log((t + ar)/ax) + log log ax e

(3.20a)
X (sup.)st

=1X <sup05,

We deal with “lim inf” as follows:
(3.20b) lim inf,_,.supo=:| W(t + a) — W(¢)|/d(t + a, a)

= lim inf, ..Supo<i<a®—a| W(t + @) — W(¢)|/d(t + a, a)

= lim infr_.suposi=r—vr| W(t + vT) — W(t)|/d(t + VT, VT)
(3.20¢) = lim infrwsupoi<r—v7Br| W(t + VT) — W(2)|

where Br = (2VT[log(T/VT) + log log T1} 2 so that 87" is the Csorgs-Révész denomi-
nator with a7 = vT. By (3) of their Theorem 1 [5] we see that (3.20c) = 1 a.s. and hence
(3.20b) =1 a.s. It follows that (3.10a) is true. The “lim inf” in (3.10b) is greater than or
equal to the “lim inf” in (3.10a), so is greater than or equal to one. Hence (3.10b) is true
also.

ProoF oF THEOREM 3.2B. (3.12a) and (3.12b) follow immediately from (3.10a) and

(3.10b) respectively.
If ar is onto then, since ar — o,

lim Supr_..MaXosi<r-ar] Wt + ar) — W(t)|/d(t + ar, ar)
= lim supr_.»| W(ar) — W(0)|/d(ar, ar)
= lim sup,_,..| W(£)|/{2¢t(log log £)}* =1 as.
by the law of the iterated logarithm. Thus we have equality in (3.12a), and hence in (3.12b).

LEMMA 32. If0<a=<1then
(3.21) lim supr—..maxr®<i<r| W(T) — W(T — t)|/d(T,t) =1 aus.

Proor. This is an immediate corollary to (3.12a) of Theorem 3.2B. Set ar = 7. Then
an application of Lemma 2.1 gives
| W(T) — W(T —¢t)|
d(T, t)

lim supr..maxr®<;<r

JWE+ar) - Wi(t)|
d(t + ar, ar)

=< lim supz_.«Mmaxo=t<7-T

and (3.12a) bounds this above by one. Equality is obtained by noting that a lower bound
is lim supr—.| W(T')|/d(T, T) which is at least one by the law of the iterated logarithm.

LEMMA 3.3. Suppose0<ar=T for T>0, that ar | 0 as T — o, that (3.8) holds, and
that € > 0. Then there is a  in (0, 1) such that

(3.22) lim Supr_.»maxg,=<t=r40=s=<t| W(T) — W(T — s)|/d(T, t)<1+¢ as.
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Proor. Let 8 in (0, ) be arbitrary and choose 0 < 8 < min{1, ¢/(1 + ¢)}. Let by =
[1/8an], let uy = [(1 + (N — 1)#)/8an] + 1, let x{N) = N — jdan, and for 0 <j < by and 1
< k=< un=N*/8aylet

Pj(iv) = P{maX(k_l)saNstsksaNl W(x}N)) - W(x}N) - t)| = (1 + G) d(N, k(saN)}.

Since P{maxa<t<s| W(b) — W(t)|/(b — a)/* = s} < 4e¢”*/*for all s = 1, if N is large enough
then log(N/unday) > 1 and (for j = 0, ---, by and k = 1, -+, un) we have P} =<
4 exp{—(1 + £)%log(N/kdan)} < 4(kdan/N)'**; thus

un+1
(Pn =) 3% 3% PO < C(by + 1)(an/N) ”2‘] x'Pe dx
1

= Clan) ™ an/N)"**(N*[an)?** = C(ay) 2N-1-2cb=)
and, from (3.8) and our choice of B, we get ) Py < . Thus
(3.23) lim SUPN-«MAaXo<)<py,1<k<unDAX (k- 1)arst<ksan| W (x)
- W™ - ¢)|/d(N, kéay) < 1+¢ as.

Consider any sufficiently large T and any ¢ in [ar, T#?]. Then for some large N we have
N—-1<T = N;for somej=0, ---, by we have x\"’ — day = T < x"; and for some
k=1/8 we have x"' — kSan < T — t = x™ — (k — 1)8ay so that

max,,<s<i<7t | W(T) — W(T — s)|/d(T, t) =max,,<,<ps | W(T) — W(T - 5)|/d(T, s)
(3.24) < maxo,<s, (max, _,_pl| W) — W(T)|/d(T, ¢)
+ | W) — W(T - t)|/d(T, 51}
= {maxos <s,MaXoxr=say| W(x{) — W(x{™ — t)|/d(N, dan)}
-{d(N, 8an)/d(T, ar)}

| W) — W™ — )|
+ | MaXo< =5, MAX1/5<k=<u, MAX(k—1)say=t=<hkbay d(N, Foan)

X (maxi/s<k=uy d(N, kdan)/d(T, (k — 1)8an))
= (A)(B) + (C)(D).
Now from (3.23) we see that
(3.25) lim supy—«(A) =1 +¢ as. and limsupy—o(C)=<1+¢ as.
lim supy_..maxy_i1<r=n(B) < lim supy_d (N, dan)/d(N — 1, aN;

(8.26) = lim supn—...{8 log(N/8an) /log((N — 1)/ax)}"* = 8",

lim supy-,maxy_i1=r=n(D)

@3 2;7) < lim supy—..maxi/s<i<uy d(N, k8an)/d(N — 1 (k — 1)8ay)

=< lim supn_..maxys<e=un(k/(k — 1))* = (1 — §)7"%
Thus
— W(T -
(3.28) lim supT_)<x,max¢,,535,5w:I W(T)d(ng ul =@+ 1-8)"")1+¢ as.

Now



616 D. L. HANSON AND R. P. RUSSO

MaXy<s<ozi<rt | W(T) — W(T — 5)|/d(T, t) = maXo<s=a,| W(T) — W(T — 5)|/d(T, ar)
= {maxo<j=4MaXo=s=sa, | W(x{"") — W(x{ — #)|/d (N, San)}
-{d(N, 8an)/d(T, ar)}

[ W) — W™ - o)
d(N, kdan)

X (maxi<r=a/s+1 d(N, kdan)/d(T, ar))

(3.29) + (maxosjsbNmaxxsks(l/s)+1maX(k—1)aaNstskaaN

= (A)(B) + (C)(D).

(A) and (B) are (A) and (B) from our treatment of (3.24). (C) is treated (via (3.23)) like
(C) from our treatment of (3.24).

lim supz_,.maxy—_i<r=n(D)

(3.30)
= lim supy_« d(N, (1 + 8)an)/d(N — 1, ay) = (1 + §)2
Thus
lim supr_..maxycs<y <i<72| W(T) — W(T — s)|/d(T, t)
(3.31)

=((1+8)+8H(1 +¢) as.

We put (3.28) and (3.31) together, observe that § > 0 was arbitrary (and independent of
B), and let & | 0 to finish the proof of the lemma.

LEMMA 34. Suppose ar satisfies the hypotheses of Lemma 3.3. Then
(3.32) lim supr_..maxa,<c<r| W(T) — W(T — t)|/d(T,t) <1 as.

ProoF. Fix e > 0 and choose 8 = B(e) from Lemma 3.3. Then, from Lemma 3.2 and
Lemma 3.3

lim supr_.max,,<.<r| W(T) — W(T — t)|/d(T, ¢t)

| W(T) — W(T - t)|
d(T, ’

| W(T) — W(T — t)]
d(T,t)

= max(lim SUPT—MaX e

lim supz_..max,,o;<7s

=max(l +¢ 1}.
Since £ > 0 was arbitrary we are done.

PROOF OF THEOREM 3.1. Since d(T, t) is an increasing function of ¢ for T' = e® (via
Lemma 3.1), if T' = e® then

. W) - W= _ ] W(T) — W(T — )|
AXa,<t=<T,ap<sst d(T, o) p<t<T d(T, 0

Thus, if ar | 0 we see that Lemma 3.4 gives
(3.33) lim supr_..maxa,<s<t<r| W(T) — W(T = s)|/d(T, t) <1 as.

If a7 | 0 then Lemma 3.3 implies that
lim supr—.«maXoss<a,<t=r| W(T') — W(T — s)|/d(T, ?)

(3.34)
= lim Supr_.«MaXosssa,=t| W(T) — W(T —s) | /d(T, t) = 1 +¢ as.
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for every & > 0. Putting (3.33) and (3.34) together and letting ¢ | 0 gives an upper bound of
one in (3.9b) and hence in (3.9a). Looking at what happens when ¢ = T'in (3.9a), and when
s =t = T in (3.9b), we get a lower bound of one via the law of the iterated logarithm.
Finally, we note that we have proved the theorem only under the assumption that ar | 0,
but that once it is known to be true for such az’s then the theorem is clearly true also
when the assumption ar | 0 is removed.

ProOF OF THEOREM 3.3A. We will prove (3.13b). Note that

(3.35) = limao—bcosupﬂsuSe:stsv,aosasu—uI W) — W(s)l/d(v, v—u)
= lim,_,Supo u| W(t) — W(s)|/d(v, v —u)

so the limit (possibly infinite) in (3.13b) exists.

Let ar = log T and suppose w is such that the “lim sup” in (3.9b) is equal to one. Fix
w. Suppose ¢ > 0. Choose T) so that 7o = e° and so that

(3.36) SUP 1< 7MAX ;<< rMAXo<s=t| W(T) — W(T = s)|/d(T, t) = 1 +e.

If ao = log T, then, using Lemma 3.1 and letting 7 = min{v — u, ¢}, we see that

susssitsv,q=a=

(3.37) = SUP 7,=¢SUP g,=p—uMAX = s=v—u,0=s| W(E) — W(s)|/d(v,v—u)
= Supg,<,MaxX, <,<MaAXoss—s=.| W(t) — W(t — (t — s))|/d(t,7) = 1 +e.

In addition, maxo=s=:=7,| W(t) — W(s)| is finite, and d (v, v — u) — o uniformly in v (note
that v=v — u) as v — u — o, so that

(3.38) lim SUpa—swSUP o< y=o=t<v,av—u=n| W(E) — W(s)|/d(v, v —u) = 0.

Combining (3.37) and (3.38) and noting that e > 0 was arbitrary shows that (3.35) =1 a.s.
Letting u = s = 0 and ¢ = v = a and using the law of the iterated logarithm gives (3.13b).
(3.13a) follows from (3.13b) and the law of the iterated logarithm.

Proor oF THEOREM 3.3B. The upper bounds in (3.14a) and (3.14b) follow easily from
(3.13a) and (3.13b) respectively.

We note that if a, is replaced by some br = ar then the “lim sup’s” in (3.14a) and
(3.14b) will not be increased. We choose b7 so as to be continuous and non-decreasing. We
then obtain equality in (3.14a) and (3.14b) via the law of the iterated logarithm.

4, Remarks. The second form of each of our theorems (as given in (3.9b), (3.10b),
(3.12b), (3.13b), and (3.14b)) is given for comparison with the second form of the original
Csorg6-Révész results. The additional generality provided is not that great and the
relationships between the various results are obscured by the technicalities involved in the
proofs of the second forms. On the other hand, if ar satisfies (in addition to (3.11))

4.1) ar is continuous and non-decreasing,
4

then the “lim sup’s” in (3.9a), (3.12a), and (3.14a) are all equal via six applications of
Lemma 2.1. As an example:

{((t+ar,ar):0=t=T—ar} CU, o,<r{(1, t):ar=t=7} C U, {(r,t):a, = t=17}
so that
{|{W(t+ ar) — W@)|/d(t + ar,ar): 0= t=T — ar}
CUger (| W) — W(r —t)|/d(r, t): @, < t=1T)};
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it follows (via Lemma 2.1) that

lim supr_.«maxo<t=r-ao,| W(t + ar) — W(t)|/d(t + ar, ar)
< lim Sup7—wmax, ,<g| W(T) — W(T — #)|/d(T, t).

The denominators which we use did not arise from an attempt to generalize the Csorgs-
Révész results, but rather from an attempt (via Lemma 2.1) to understand the relationship
between weighted differences of the form (W(T) — W(T — t))/(denominator)—which
appear in Theorem 3.1 and are of the right form for our application to weighted sums
of iid. random variables—and weighted differences of the form (W(t + ar) —
W (t))/(denominator)—which appear in the Csorg6-Révész work and in our generalizations
of it, Theorems 3.2A and 3.2B.

Think of T as time. Then in the “A” version of each of our theorems, at a given time we
are looking at various differences W (¢t) — W(s) divided by the denominator d(¢, ¢ — s)
which may depend on T indirectly, but should be thought of as depending only on the
leading index ¢ and either the other index s or the difference ¢ — s. In the original Csérgé-
Révész results a particular difference W (¢ + ar) — W(t) may have different denominators
at different “times” if ar = as for T # S or if different functions ar are used (i.e., when a}
= aT).

As long as ar — « our Theorem 3.2B gives stronger upper bound results than do the
Csorg6-Révész theorems; our denominators for certain differences may be quite a bit
smaller than theirs and, in addition, we require neither (3.2) nor (3.4). Furthermore,
because of our denominator, we can get the more elegant results contained in Theorem
3.2A. Note that in both (3.12a) and (3.12b) of Theorem 3.2B we could replace maxo<;< T—a,
by maxo=:, but then the relationships between (3.12a) and both (3.9a) and (3.14a) become
less clear.

The assumption ar — « is required in Theorem 3.2B. If 0 < lim infr_,.ar < o then
there exist a A in (0, ) and an increasing sequence T’ such that T}, — o and ar, — A.
Then taking ¢ = 0 gives

lim supr_, »maxo<i=r-o| W(t + ar) — W(t)|/d(t + ar, ar)
- = lime—.| W(ar,) — W(0)|/d(az,, ar,)

which is | W(A)|/d(A, A) if ar is continuous. Since W(A) is N (0, A), this last quantity is
larger than one with positive probability. In Theorem 3.2B we could replace the assumption
that ar — o by the assumption lim infr,.ar > 0 if we replace our denominator
d(t + ar, ar) by some denominator D(T, ¢t + ar, ar) such as {2ar[log((t + ar)/ar) +
max{log log ar, log log log T'}]}"/? which is, in a sense, intermediate asymptotically to
d(t + ar, ar) and (B7)". The sole function of the addition of the term log log log T is to
insure that the denominator goes to infinity as T'— o« no matter what ¢ and ar are.

In most of our results, once we obtained an upper bound of one on our lim sup’s,
showing that one is also a lower bound was easy via the law of the iterated logarithm. The
same was true in Theorem 3.2B once we assumed that ar is continuous. (Note, as pointed
out by Csorgé and Révész, that continuity of ar is implied by Conditions (3.2), (3.3), and
(3.4) of their theorem.) However, the fact that our various lim sup’s are bounded below by
one is of only minor interest compared to questions related to behavior like that in (3.7) of
Theorem B of Csorgé and Révész which provides much more precise lower bound
information. Note that, because of the particular term they pick to look at, their denomi-
nator is almost ours for that term. Le.,

Br| W(T) — W(T — ar)| = | W(T) — W(T — ar)|/d(T, ar).

The difference in the denominators is that the log log T term in B was replaced by
log log ar in our denominator. Most of the time this will make no asymptotic difference,
but in any case 87 =< 1/d(T, ar) so that the lower bound results obtained by Csorgé and
Révész apply to our case as well.
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QUESTION 4.1. Under what conditions on ar do we get
lim supr.| W(T) — W(T — ar)|/d(T,ar) =1 as.?

"Le., can the Csorgé-Révész conditions be relaxed?

In Theorems 3.2B and 3.3B the requirement that ar — © as T' — o« is necessary.
Otherwise a fixed term | W(¢; w) — W(0; w)|/d(¢, t) for a fixed w will appear (in the sets
over which maxima or suprema are taken) for arbitrarily large values of 7. If this term is
bigger than one, then the lim sup must be bigger than one. The following discussion is
pertinent only to Theorem 3.1 unless our denominator is changed.

We originally proved Theorem 3.1 under the assumption that az — o (as in Theorems
3.2B and 3.3B), then assuming that az = A > 0, and finally under our condition (3.8) which
allows ar — 0 if it does so slowly enough. The following questions about Theorem 3.1
arise:

QUESTION 4.2. Can assumption (3.8) be weakened or eliminated?
QUESTION 4.3. In (3.9a) can max, ... be replaced by supo<:=7?

QUESTION 4.4. If the answer to the Question 4.3 is “no”, can the denominator in (3.9a)
be changed so as to allow this replacement, and if so, how?

Let S(h, a, b) = max.<.<s| W(t + h) — W(¢)|. An extension of the arguments of P.
Lévy (see the discussion in [17]) shows that

(4.2) P{limoS(h, a, b)/[2h(og A1) =1} = 1.

This shows that supo<¢<r| W(T) — W(T — t)|/d(T, ¢) is finite a.s. Thus the obvious way
to get “no” as an answer to Question 4.3 doesn’t work.
Note that under condition (3.6) (which amounts to ar = T (log T')"*T’ where ¢(T) —
) Csorgd and Révész were able to replace “lim supr..’ by “limr..”. Because the
arguments required were simple, we used “lim” instead of “lim sup” in Theorem 3.2A and
- Theorem 3.3A, but our results contain no detailed study of the “lim inf’s”.

QUESTION 4.5. Under what conditions can we replace “lim sup” by “lim” in the
theorems of Section 3? When we can’t replace “lim sup” by “lim”, what is “lim inf™?

We note in passing that for our applications in the next section we can assume that
lim infr_,»ar > 0 so that Questions 4.2, 4.3, and 4.4 are of interest in the study of Brownian
motion but would seem to be of no interest in connection with its application to sums of
ii.d. random variables.

5. Results for i.i.d. sequences. As mentioned in the introduction, the original
motivation for all the work in this paper was the investigation of the limiting behavior of
(properly normed) sums of the form S, — S,—, . In the i.i.d. case (to which this paper is
restricted) our results are all fairly easy corollaries to our results in Section 3 on the
increments of a Wiener process and the results of Komlés, Major, and Tusnady on the
invariance principle. When we began this investigation we were hunting for results like
those in Theorems 5.1 and 5.1*. The other theorems came about when we discovered the
relationships between our work and that of other investigators.

The numbering of our theorems is intended to draw attention to the relationship
between the theorems of this section and the theorems (on which they are based) from
Section 3.

Throughout this section we assume that:

(5.1a) X, X, X, - - is an i.i.d. sequence of random variables,
(5.1b) EX=0and Var X = EX*> =1,
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(5.1c) ayis a sequence of non-negative integers such that 1 < ay < N, and
(5.2) m(6) = E(e%).

THEOREM 5.1. Suppose (5.1) and (5.2) hold,
(5.3a) there is a 8§ > 0 such that m(8) < « for all 6 in (-8, §), and
(5.3b) an/log N — .

Then
. | Sy — Sn—z| _
(5.4a) lim supy_,.max,,<p<n (2Flog(N/%) + log log AT} 2 1 as.
and
| Sy — Sn-j|

1 as.

(64b) T SUpw— o Xy, << MOAXos =k T pTIoo IN/R) + log log KTV

ProoF oF THEOREM 5.1. We go to a new probability space on which we have an
image of our ii.d. sequence and a Wiener process, related via the Komlés, Major, and
Tusnady construction. From (3.9b) of Theorem 3.1 we get

(6.5a)  lim supy_.max,, ,<yMaxo=j=i| W(N) — W(N —j)|/d(N, k) <1 as.

From Theorem 1 of Komlés, Major, and Tusnady [12], W(N) — Sy = O(log N) a.s. so
that, using Lemma 3.1 and considering separately those N’s for which ay < (log N)? and

those N’s for which ay = (log N)?, we get

(5.5b) lim SUpy—«max, <<y W(N) — Sx|/d(N, k) =0 as.

and

(5.5¢)  lim SupN_»mMax,,<;,<ymaxo=j=k| W(N —j) — Sn—;|/d(N, k) =0 as.

The fact that one is an upper bound in (5.4) follows immediately from (5.5a, b, c¢). Equality
follows by using the law of the iterated logarithm and j = 2 = N.

THEOREM 5.1*. Suppose (5.1) holds,
(5.6a) R>2and E|X|® < o, and
(5.6b) lim infy_,«ay(log N)/N*® > 0.
Then (5.4a) and (5.4b) hold.

ProoF oF THEOREM 5.1*. This proof is like that of Theorem 5.1 and is omitted.
Instead of using Theorem 1 from [12] we use Theorem 2 of [12] and the Corollary to
Theorem 1 in Major’s paper [15]. Combined they show that W(N) — Sy = o(N Ry,

THEOREM 5.2A. Suppose (5.1), (5.2), and (5.3a) hold, and that

(6.7) (log az)/k — 0.
Then
N . | Sn+k - Sn I _
(5.8a) lim supi«maxosr<a, (2% [log((n + %)/%) + log log FT12 1 as.
and
| Sney = il 1 as.

5. i —>00 =n=a, =j= =
(5.8b) lim Supi—.»maxosr=a,MaXo<j=r (2k[log((n + )/%) + log log k)2
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THEOREM 5.24*. Suppose (5.1) and (5.6a) hold, and that
(5.9) lim sups_.«ax/(k log &) */% < oo,
Then (5.8a) and (5.8b) hold.

ProoF oF THEOREM 5.2A. The proof is similar to the proof of Theorem 5.1. Those n’s
for which n =< exp{%'®} should be considered separately from those n’s for which
exp(k*} <n = ay.

PROOF OF THEOREM 5.2A*. The proof is similar to the proof of Theorem 5.1*. Those
n’s for which n < 2% should be considered separately from those n’s for which %2 < n
= Q.

THEOREM 5.2B. Suppose (5.1), (56.2), and (5.3) hold. Then

| Sk+ay — S|
{2an[log((% + an)/an) + log log an]

(5.10a) lim SUpNy_oMaXo<i<N-—ay }1/25 1 as.

and
| Sk+j — Skl
(2an[log((k + an)/an) + log log an]}?

lim SUPN—>0MNAXo<k<N—ayMNAX0<)<ay

(5.10b)
=1 as.

THEOREM 5.2B*. Suppose (5.1) and (5.6) hold. Then (5.10a) and (5.10b) also hold.

Theorems 3.3A and 3.3B have the same analog in the context of this section. The analog
of Theorem 3.3A requires some sort of bound (in terms of a) on v in order to use our
method of proof. In Theorem 3.3B, as long as ar— ® as T — « it does not matter whether
we take lim supr-.., or lim sup,, .

THEOREM 5.3. Suppose (5.1), (5.2), and (5.3) hold. Then
lim su max | Sn = S|
P ERosmn=tiansn-n [an — m)llog(n/(n — m) + log log (n — m)1}*

(5.11a)

=1 as.
and
lim SUP NooMAXg<p<j<k<n=N,av<n-— ISk — ,Sji
SMEJSEERSNAERTM (9(n — m)[log(n/(n — m)) + log log(n — m)]}**
(5.11b) =1 as

THEOREM 5.3*. Suppose (5.1) and (5.6) hold. Then (5.11a) and (5.11b) hold.

As indicated, some proofs were omitted since they are like another proof that has been
given.

6. More remarks. In comparing the results of Section 5 with those of Section 3, one
immediately notices that rates of convergence of an to infinity were required for the
theorems in Section 5 while no corresponding rates were required for those in Section 3.
These rates were required to eliminate the error obtained when Sy was approximated by
W(N). It is natural to ask whether these rates are necessary for our theorems or only for
our method of proof (i.e., whether our results are “sharp”).



622 D. L. HANSON AND R. P. RUSSO

Suppose R > 2 and that {X,} is an i.i.d. sequence such that P{X, = 0} = a and such
that, except for the jump at zero, the distribution of the X,’s is absolutely continuous with
density function f(x) = C|x| % '(log|x|)™° for | x| = 2. We adjust the constants a and
C so that we have a probability distribution and so that E (X2) = 1. EX,, = 0 automatically
from symmetry. We note that E[|X,|®(log*| X, |)*] < » if @ < 8, but that this expected
value is infinite if a = 8. It follows that if Ay = {w: | X~|®log(]X~|)® = N} and By =
{w:| Xn|®log(| X~ |)** = N}, then P{w|w € Ay N By infinitely often} = 1. Now R(log x)
+ (6/2)(log log x) ~ R(log x) so that if NV is large enough and w € AyBy then we get
R(log|Xn|) = 2(og N) and |Xny| = NYB(log|Xn|)™*® = CN'R(log N)™¥% =
NVE(log N)™* so that P{|Xny| = N“®(log N)™? io.} = 1. Now suppose ay ~
N¥®(log N)™'"*. Then d (N, an) ~ CN*®(log N)™*% If § < ¢ then for almost all w’s we have

(6.1) lim supy_.«|Xn|/d(N, an) = +
Then if kv = min{an, an+1} — 1, for the w’s for which (6.1) holds we get
(6.2) lim supN_mmaxU Sy — SN—kNl/d(N, kN), |SN+1 - SN—kNI/d(N + 1’ ky + 1)} = o,

Thus the “lim sup’s” in (5.4a) and (5.4b) are infinite almost surely. The point of this
example is that (5.6b) can’t be relaxed significantly, that if the conditions under which
Theorem 5.1* holds can be improved, the improvement will not be a major one.

We can make a similar argument about Theorem 5.1. If ay ~ C(log N) then d(N, axy)
~ (2C)*(log N). For every ¢ > 0 we can choose a distribution so that EXy = 0, E(X%)
=1, Efexp(e| X,.|/2)] < o, but E[exp(e| X»|)] = o so that P{| Xy| = ¢ '(log N) i.0.} = 1.
By adjusting ¢ we can make the “lim sup’s” in (5.4a) and (5.4b) arbitrarily (though not
infinitely) large with probability one.

We note that our assumption in (5.3a) is only that m(f) < o for 4 in a finite interval.

QUESTION 6.1. Can (5.3b) be relaxed if more is assumed about the tails of the
distribution of the X,,’s? Suppose, for example, that the X,’s are assumed to be bounded or
that P{|X.|= t} =1 — ®(ct) for some ¢ > 0 where ® is the standardized normal
distribution function.

Book and Shore [3] have done some work in this direction; see their Theorem 3.

As mentioned in the introduction, we have results like those in Section 5 but for the
non-i.i.d. case. (We are putting them in a separate manuscript.) Our results in the non-i.i.d.
case are not nearly as good as those obtained in Section 5. Due to the lack of really good
rates results for the invariance principle in the non-i.i.d. case, we have been forced to use
entirely different methods of proof in the non-i.i.d. case from the method used in Section
5. Can the invariance principle results of Komlos, Major, and Tusnady be extended to
cover the non-i.i.d. case?

QUESTION 6.2. If one assumes appropriate bounds on the tails of the distributions
involved (e.g., those given by (1.1) or by (1.4) and (1.5)), can the results of Section 5 be
extended to cover the non-i.i.d. case?

Book has worked on results like Theorems 5.2B and 5.2B* for some time. His denomi-
nators were a little different from ours. Book and Shore [5] investigate the “lim inf” in
their setting (as well as obtaining other results). Under Assumption (3.6) where the Csorgo-
Révész theorem gives a limit, not just a “lim sup”, Csorgé and Steinebach [7] have shown
the existence of a limit for the corresponding weighted sums. Their situation is again like
that in our Theorems 5.2B and 5.2B* and our method of proof in Section 5 copies theirs.

QUESTION 6.3. What happens in the results of Section 5 when “lim sup” is replaced by
“lim inf”?
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