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Let W(¢) be a standard Wiener process with local. time (occupation
density) L(x, t). Kesten showed that L(0, ¢) and sup.L(x, ¢£) have the same
LIL law as W(¢). Exploiting a famous theorem of P. Lévy, namely that
{Suposs<: W(s), t = 0} 2 (L(0, ¢t), ¢ = 0}, we study the almost sure behaviour
of big increments of L(0, ¢) in ¢. The very same increment problems in ¢ of
L(x, t) are also studied uniformly in x. The results in the latter case are
slightly different from those concerning L(0, ¢), and they coincide only for
Kesten’s above mentioned LIL.

Introduction. Let {W(¢), t = 0} be a Wiener process and 0 < a; < ¢ be a non-
decreasing function of ¢. Consider the process

X(t) = a;"? supose=t-a(W(s + ar) — W(s)).
Csorg6 and Révész (1979) investigated the limit behaviour of X(¢) (as ¢ — ) and proved

THEOREM A. Assume that t™'a, is non-increasing. Then

Lim sup;..8:X(¢) = lim sup,..B:(W(t + a;) — W(¢))

1
W = lim SuUpPs,SUPo=s<aBe(W(t + s) — W(t)) =1 aus.
where
2) B: = (2(log ta;* + loglog t))~'/2.
If we also assume that
) log ta;?
l >0 T =
@) B loglog ¢

then
limt_,m,B,X(t) =1 as.

The aim of the present paper is to give an analogous result for the local time of the
Wiener process W. For any Borel set A of the real line let

H(A, t) = As:s=t, W(s) € A}

be the occupation time of W, where A is the Lebesgue measure. It is well-known that
H(A, t) is a random measure absolutely continuous with respect to A\. The Radon-Nikodym
derivative of H is called the local time of W and will be denoted by L, i.e., L(x, t) is defined
by

HA,?) =J’ L(x, t) dx.
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594 CSAKI, CSORGO, FOLDES AND REVESZ

H. Trotter (1958) proved that L(x, t) is continuous in both arguments. Concerning the
modulus of continuity he proved

i L(x+ h,t) — L(x, t)
4) im SUPA—0SUP-o<z<oo A Tog AT =0 as.

for any ¢ > 0 and
. L(x,t+ h) — L(x, t
5) lim supp—,0SUPo<t<1—#SUP—co<x<oo (MTOg)h_l)—i/—a——_z =0 as.
(4) was improved by H. P. McKean Jr. (1962) and D. B. Ray (1963) as follows:

. L(x+h,t)— L(x, t
(6) lim Supa-oSUP-m<i<e (x i log 2_1)1/(;: ) - 2(Max-w<<eL(x, t))? as.

They also proved

. Lik, t) = L, ) _ "
lim Suph_mW = 2(L(0, t)) a.s.

for any fixed ¢ > 0.
As far as the modulus of continuity in ¢ is concerned, the best known results are the
following:

supozsin(L(O, t + h) — L(O, 8)) _

(7) limpo i log i) 1

(Hawkes, 1971), and
SUPo=t=1-#SUP-w<s<olL(x, t + h) — L(x, t)) _

8) lim sups.o @h log i) 1 as.
(Perkins, 1981).
Kesten (1965) proved the following law of iterated logarithm:
L — 00+ 00 >
©) lim sup;.. ©9 = lim supt_,mw= 1

(2t loglog t)'/* (2t loglog t)*/*

Denoting the process L(0, ¢) by L(¢), our main result says:

THEOREM 1. Let 0 < a; < t be a non-decreasing function of t. Assume that t 'a, is
non-increasing. Then

(10) lim sups»v:Y(t) = lim sup,..y:ar*(L(t) — L(t — a;,)) =1 as.
where

(11) Y(¢) = Y(t, a:) = ai"”? supose=e—a,(L(s + a:) — L(s))

and

12) v: = (log ta;* + 2 loglog ¢)~'/2,

If we also assume that (3) holds true, then
(13) lim; .7, Y(#) =1 as.

REMARK 1. In case a; = ¢, (10) implies the first part of (9), i.e., by (10) we get

L(0, t)

@tloglog 1) 2~ %

lim sup,_,.,
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Introduce the process
M(t) = supo=s=t W(s).
A famous theorem of P. Lévy (cf. Knight, 1981, Theorem 5.3.7) says that the behaviour of
M(t) is just the same as that of L(¢). In fact we have
THEOREM B.
(14) (M), t =0} 2 {L(t), t=0).

This theorem implies that our Theorem 1 is equivalent to

THEOREM 2. Let
(15) Z(t) = a;"? suPoss=i—a,(M(s + a;) — M(s)).
Then the statements of Theorem 1 remain true when replacing Y(t) by Z(t) and L(t) by
M(t) in them.

Replacing L(t) = L(0, t) by L(x, ¢) in the definition of Y(¢), Theorem 1 clearly remains
true for any fixed real number x. However, the investigation of the largest possible
increment in ¢ when x is also varying is different, and seems to be also quite interesting
when compared to the x fixed case (cf. y: of (12) and B; of (18)). Let

(16) U(t) = afl/ZSup—m<x<+mSUPOSsst—a¢(L(x, s+ a;) — L(x, s)).

Then we have:

THEOREM 3. Let 0 < a; <t be a non-decreasing function of t, and assume also that
t'a; is non-increasing. Then

17 lim sup, ,.B:U(t) =1 as.
where B; is defined by (2). If we also assume that (3) holds true, then
(18) llInt_.m,BtU(t) =1 a.s.

The study of the continuity modulus of L(-) and M(-) is very similar to the problems
solved by Theorems 1 and 2. In fact we have

THEOREM 4.
. supe=ei-a(M(t + h) — M(t)) _
(19) limp o * log h—1)1/2 =1
. suposs<1-x(L(t + h) — L(t))
20 1 =1
(20) 1Mz 0 ( log h_1)1/2
@1) T SUPo=t<1-ASUP—w<s<+o(L(x, t + h) — L(x, 1)) _ 1

(2hlog A7")"?

‘Here, our relation (20) is not new at all, it is equivalent to the result of Hawkes (1971,
cf. (7)). (19) is a consequence of (20). This can be seen by applying the quoted theorem of
Lévy (cf. Theorem B). (21) is slightly stronger than the already mentioned theorem of
Perkins (1981, cf. (8)).

The proof of Theorem 1 is based on the following three lemmas:

LEMMA 1. Let 0 < a. <t be a non-decreasing function of t. Assume that t 'a, is non-
increasing and Condition (3) holds. Then
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(22) lim inf, ,7.Y(¢) =1 as.

LEMMA 2. Let 0 < a; <t be a non-decreasing function of t and assume that t a, is
non-increasing. Then
(23) lim sup;..y:Y(t) =1 as.

LEMMA 3. Let0< a,<t be a non-decreasing function of t. Assume that t a, is non-
increasing. Then
(24) lim sup;..y.a; V*(L(t) — L(t — a;)) =1 as.

Lemmas 1, 2, and 3 together clearly imply Theorem 1. Their proof will be presented in
the next three sections. The main ideas of the proof of Theorem 3 will be given in Section

4. The proof of Theorem 4 can be obtained by repeating the ideas of Lemmas 1 and 2 and
Theorem 3 without any major change. Hence the details of the proof of Theorem 4 will be

omitted.
We are indebted to the referee for calling our attention to the papers of Hawkes (1971)

and Perkins (1981).
1. Proof of Lemma 1. Let o = 0 and ¢, = & (a:), which is uniquely defined (with
probability 1) by
W(£1) = supo=s=da, W(s).
Also let
m=mla) =inf{s:s > &, W(s) = W(&)}, a1 =ai(a:) =m — a.
Further we define & = &(a:), 72 = n2(a;) and a2 = az(a;) by
W(&) = suppsssn+a, W(s), n2=inf{s:s > &, W(s) = W)}
and )
‘ az =n2 — (M1 + ap).
In general, if 5;(i = 1) is already defined, then we define &;+1, 7i+1, air1 by
W(ir1) = supp=s=q+a W(s),
Nir1 = inf {s:5 > &1, W(s) = W(&in1)},
Qir1 = N1 — (0 + as).
The following few lemmas are trivial or well-known.

LEMMA 1.1. O=mno=<m <n < --- is a sequence of stopping times (with respect to
w).

LEMMA 1.2, (cf. Knight, (1981), Lemma 2.11).

al 3L = LI
{(W(gt) - Wi + at))z yi=1,2 }

is a sequence of i.i.d. r.v.’s with

a;
P {(W(&) “ W a8 Wt “‘)}

x

v 2%V gy .= F(x).

= P{ u 25 x} =L
(W) — Wnis + ar)) V2r Jy
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REMARK 2. F(x) is a stable distribution function with parameters a = %, 8 =1,y =0.
Lemma 1.2 clearly implies

LEMMA 1.3.

! s % <xl= —19 ...
d {k22‘=l <W(&)—W(m_l+a,»2‘x} P k=12, ).

LEMMA 14. Let
R; = W(ir1) — W)
Then

Z(t) = a;'"* maxo<i<, R
where v, = v(a;) is the largest integer for which

Mmta=@w+)a+a+at- ---+a,<t

Applying Theorem B one gets:

LeEmMMA 1.5. Ry, R,, --- is a sequence of i.id. r.v.’s with

P{a;"?R, < x} = 2d(x) — 1.

£\ V2
P(Rl > C(at log ;) )
t

1/2
P(max(Rl, Ry, -+, Ry) > C(a,(logai + log k)) )
t

Hence

IA
/N
~|8
——

»

and

IA
/N
~|8
\/

- [

if C is a big enough constant.
Lemmas 1.3 and 1.5 together imply

LEMMA 1.6. For any 0 < ¢ < 4 and C large enough we have

& &/2
k> CRaf L : &
P{2,=1 o; > Ck at(a, log a +logk)};=C I

Proor. Replacing the denominators by max;<;<xR? in Lemma 1.3 we get
P{3 o < k’[max(R, Ry, -+, R)Fx} = Fl).
Now applying the third statement of Lemma 1.5 we get

2
t
P{Z,’-‘.,l o< czk“’(a,(log P + log k))x} = F(x) — (%‘-) ,
t
and letting x = (¢/a;)* (¢ > 0) we get Lemma 1.6.00

LEMMA 1.7. There exists a small enough C, > 0 and a large enough C> > 0 such that
for any 0 < ¢ < 4 we have
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(1-¢)/2 —1/2 &/2
t t a;
v P{V' = CI<E) (log?i) } = Cz<7) '

ProoF. Let
r=laft) " logl) | = f(®)
n ! a; gag )

WD) = C(fO) ( )(log +log f(t))
a; a;

where C is the constant of Lemma 1.6. Choosing C; small enough we have
W) <t —a(f(®) +1).
Choosing & in Lemma 1.6 to be the just defined f(¢) we get

and

e/2
c(gtf) = PS4 > 9(6)) = P(EQ &> ¢ — al f(8) + 1))

Since 7, is the largest integer for which
e+ Da:+ Y, i<t

it follows that the event {», < f(¢)} implies the event {3/ a; >t — (f(t) + 1)a.}, i.e.,

€/2
Pln<f@)}=P{TMau>t—(f®) +Da} = C(%) )

and we have (1.1).0

_ LEMMA 1.8. Assume that Condition (3) holds. Then for any 0 < p <1 there exists a
r.v. to = to(p, w) > O such that

(1.2) Z(t) = ((1 — p)log t/a;)'? a.s.

for all t = t,.

Proor. By Lemma 1.4

3 Z(t) = a;"* maxosiz, (W(&ir1) — Win:))
= a;"” maXosiz, SUPoss<a( W + 5) — Winy)).
Let

Ai(p) = {ar"? maxosi=,SUPo=s=a, (Wn: + 5) — W(n;)) = ((1 — p)log t/a;)"/*}.

Then by Lemma 1.7

¢ (1—¢)/2 ¢ -1/2
P(Adp)) = P A,(p>,v,<cl( ) (log—) )

Qa:

1 (1-¢)/2 £\ V2
+ P(A,(m, b= cl( ) (log _) )
a; a;

—1/2
= Cz( t) + P { / MaXo=i=C, (¢/a,)~(logt/a,)~1/?
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1/2
SUPoss=q,( W(n: + 5) — W(ny)) = ((1 — p)log a—t,) }

a\? o\
-ofs) +(-(%) )
t t
/2 (o—e)/2 -1/2
Qa; C [t t
= Cz(;) + exp<— 5 <(_z:) (log ;{) ) .

Letting now ¢ = p/2 and & = 6, (6 > 1) then (by Condition (3))
$ie1 P{A(p)} < .

[Ci(t/a)2(logt/a,) /%]

Hence
(1.4) Z;, > ((1 — p)log tx/a.,)"*

for all large enough % with probability 1.
Since a}’?Z; is nondecreasing in ¢, for #.-, < ¢t < t; we have

(1.5) al’z, = ai® Z,, = (1 — p)ay,_log(te-1/ay_))'"?

with probability 1 for all but finitely many % (by (1.4)). Also, on account of a./t \y 0, we
have

(1.6) 1<% % b B _ B
Qs b Q. 1 b
and, on account of a, being nondecreasing,
tr Qi Q,
1mn l=s—.—=0-—"2=4.
Qg, tr-1 Qg

Now choosing 4 close enough to one and % large enough, we get

tk_l 1- p tk
1- 1 >——aylog —
( p)atk_] o8 atk—l 0 atk o8 0atk
1- p log /) t
1.8 = 1- log —
(L8) g ( log tx/ a,,,>a"e o8 a,

t; t
=(1- 2p)at,¢loga—'e > (1 — 2p)a:log .
ty t

Hence (1.5) and (1.8) combined give Lemma 1.8.0
ProoF oF LEMMA 1. Theorem B and Lemma 1.8 together imply Lemma 1.

REMARK 3. It follows from the proof of Lemma 1.8 that
it P(Ac(p)} = 0
provided lim,,.a;/t = 0. This implies
lim sup;.y:a: 2 maxo=iz, (W(giv1) — Win)) =1 as.
which in turn implies

lim sup;swy:Z(t) =1 as.



600 CSAKI, CSORGO, FOLDES AND REVESZ

provided a./t — 0 as ¢ — «. However a stronger statement will be proved when proving
Lemma 3.

2. Proof of Lemma 2.

LeEmMMA 2.1. For any positive V, T, and u we have

V 2
@.1) P{L(T+ V) = L(T) = uJV} = 24 /—T—;—T/exp{-— “?} .

ProoF. Using the exact distribution of the local time due to P. Lévy, the estimation
1 — ®(x) < exp{—(x%/2)} (x = 0), and a simple conditioning argument, we get
P{I(T+ V) = L(T) > u'V}

=f P{L(T + V) = L(T) > uJV| W(T) = 2} dP (W(T) < 2)
1-o(5+4) ()
= 2o(1-0o[Z2+u))de(—=
ﬁm( Qm “)) \r
© 1/ z z 1 22
- =t [[ool-s(F+) S ool -in)
-4 ex| {—u—z}JWeX {—l[zz<i+l)+-2—zg}}dz
BT T 2 o P72 V' T) Jv
ol )k [ {4
T 2 | V2x )y 2°\v T

1% u?
‘2V?IV“4‘?}‘”

LEMMA 2.2. For any ¢ > 0, there exists a constant C = C(¢) > 0 such that the
inequality

t 2
(2.3) P{supo=r=—v(L(T + V) = L(T)) > uJV} < c\/‘:, exp{— 2‘_‘F e}
holds for every positive u, and 0 < V < t.

ProoF. Let R = 2" and choose the integer K = K(V, R) such'that

(2.4) ‘ K—;.—l-s V<§

should hold, where R will be specified later. For an aribtrary 7'in [0, ] such that j/R =T
< (j + 1)/R, the local time increment L(T + V) — L(T') can be estimated by L(j/R +
(K + 1)/R) — L(j/R), and hence
+K+1 i
supj/r<r<(i+1/R(L(T + V) — L(T)) = L<J—R'—> - L(é) .

Consequently by Lemma 2.1
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P{supo<r=-v(L(T + V) = L(T)) > uJV}

5 o))
25) =ZE”';J*‘P{L(J+K+1> (%)>u~/‘_/\/l_2 K+1}

<9 u?VR S /K+1
saexp— 2(K+1) J+K+1°

u?’VR u(K - 1)
20K+1)" 20K+1)°

Applying (2.4) we get

(2.6)

Moreover by (2.4) we also have

K+1 1
[tR}+1 /K + 1 Sur+2 |2
2 20 \lj+K+1_2 /=1 \/;
2.7 tK t
. 501VK+1 *T,—+2501(K+2) ‘—/
with an absolute constant C;.
Choose K, = Ky(e) such that, for the given ¢ > 0, and any K = K,
K-1 1
—_—_—
20K+1) 2+e¢
should hold. Then by (2.5)-(2.8) we have

(2.8)

2
29)  P{supo=r<t—vL(T + V) = L(T) > uvV} = Ci(K + 2) \/‘Z/exp{— 2‘: E}

for any K > K.
Choose R such that K(V, R) (for the given V) should be larger than K, (defined by
(2.8)) and

Ko = VR < 2K,.
Then for K given by (2.4) we have also
(2.10) K, < K = 2K,.
Hence from (2.9)

2
P{supo<r=-v(L(T + V) — L(T)) > uv'V} = Cle) \/‘e"p{ e e}

where C(¢) = C,(2Ko(e) + 2).0

ProoF oF LEMMA 2. By Lemma 2.2 for any e > 0

P{v.Y(t) > V1 +¢)
= P{(log ta;" + 2 loglog £)™?a; *suposest-a(L(s + a;) — L(s)) > V1 +¢)
-1
(2.11) = C\/z exp{— (1 + ¢)(log ta:"' + 2 loglog t)}
a 2+¢

¢ —(14¢)/(2+¢) a £/(2(2+¢)) 1
=C —— =cl~ y Py
\/> (atlog t) ( ¢ ) (log ¢)*+9/ e
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Let # = 6% (§ > 1). Then by (2.11)

Yo P{y,Y(te) > V1 +¢) <
for every € > 0, and 8 > 1. Consequently
(2.12) lim supswy,, Y(t) < 1.

Moreover it is easy to see that if % is big enough then

-1/2
a
1< .‘Yt”—t"_l/z <4.
Ythﬂathﬂ

Hence, if we choose # near enough to one, the statement of Lemma 2 follows from (2.12),
since a}/2Y(t) is non-decreasing, and y.a;"/? is non-increasing in ¢.0

3. Proof of Lemma 3. This proof runs along the same lines as Step 2 in Csorgd and
Révész (1981), Theorem 1.2.1. The main difficulty, however, lies in the lack of independence
of local time increments over disjoint intervals.

Assume throughout that the conditions of Lemma 3 hold true, i.e. a; and T/ar are non-
decreasing and moreover limz..ar/T < 1. In the case when limr,ar/T = 1, which holds
if and only if ar = T, we refer to the law of iterated logarithm due to Kesten (1965) (cf. (9)
in this paper). Hence we assume that ar/T =< p < 1 for large enough T with some constant
o. Let T1 = 1 and define T%+1 by

(3.1) The1 — ar,,, = Tk) k= 1» 29 e

(We note that our conditions on a, imply that a, is a continuous function of ¢ and that ¢
— a, is a strictly increasing function if p < 1). Let the events A, be defined by
3.2) Ar= {L(Tk) — L(T — aTh) = a%l,fuk},

where

Ty

- T 1/2
B3 w= (log (—?— + 2(1 — ¢)loglog T» — 2 log(loga—k + 2(1 — ¢)loglog Tk)) .
Ty,

We show that for any 0 <e <1,
(34) P{A;io} =1,

which implies Lemma 3. The events A, however are not independent, therefore it is not
sufficient to show only that ¥ P(A;) = «. We apply the following version of Borel-Cantelli
lemma, due to Erd6s and Rényi (cf. Rényi (1970), page 391).

If Y. P{Ar} = o and

St o1 P{ARAL) _
i PIAY°

(3.5) lim inf, .

then P{A;i0} = 1.

LEMMA 3.1. Forany V=0,T >0, u> 0 we have

2 (1 —;1,‘;)(1 —M)ﬁexp{—l‘;} < P{L(T + V) = L(T) > uVV}

Tu u
<2 \/Vex _@
“au: NT P 2

(3.6)
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Proor. Using the estimation

—1—-<l——1—>ex (—f—z><l—¢(x)< - ex (_x2)
Vo \x )P\ 2 Sl T2 )

as in the proof of Lemma 2.1 we obtain

P{L(T+ V) = L(T) > uVV}

LA

On the other hand
P{L(T+ V) = L(T) > uJV}

[ (o) o)

2 [C 1 o _z_2_(z+u«/‘_/')2 1 1 dz
7), T P\ TeT T 2v 2 N\
u+— —_
v (”*ﬁ)

11 V+T u’T
"), T P\ AN VT VT+V 3TV

2 1 1 wl u? + uT \/17
=7 2) 12 T2 v+ [ NT
- . -
. j ——-———————exp(— -82—) ds,
W uV

VI(T + V)

where in the last step we used the substitution

s YT, J T
=ANvr " NT+ v

Integration by parts gives

* 1
J’ se~"2 ds
WNTIT+V) uV
sls+

VT(T + V)




604 CSAKI, CSORGO, FOLDES AND REVESZ

uV
2 0 +——f—__' 2
=—13exp{— _uT }_J' I(T+V) 2exp(—%—) ds
u 2T+ V) TV s2<s M uV )

+
VI(T + V)

u? 2T+ V) ut T sVT(T + V) 2

240

>1x_u2T _ Tx_u2T
=P\ Ty T v IR BTy e 7Y

from which (3.6) follows. [

LEMMA 3.2. Let A, be the events defined by (3.2). Then
(37) Zk P{Ak} = 00,

ProoF. Putting V = ar,, T = T: — ar, and u = u, (given by (3.3)) in (3.6), for large
enough %, we obtain
ar, 1

with some constant C. But

p o1 -
(3.9) Y-z T, (og T = (og T, )

n_ 0T,
Yi-s T,
and because —log(1 — x) = K,x for 0 < x < p, and some K, > 0,
T) ar . @
(3.10) lOg T.= 2;:=2 logT_l:l: = _EZ=2 log( - TT:) = Kp Zk.—_z -%:,
and this combined with (3.9) yields (3.7).0

LEMMA 33. LetO<T,,0<V,, T+ Vi<T:,0< V2, 0<u,0<u. Then
P{L(T; + V1) — L(T1) > wiNVi, L(Tz + V3) — L(Ts) > usV'Va}

- 4 ’ ViVe expd — u% + u%
~ wuiud V T(T:— T — V1) P 2 ’

(3.11)

Proor. The following conditional distribution can be obtained from Lévy (1939):
[x1] + | %2 )
——+u

.¢< N7

{25)

P{L(T+ V) = L(T) > uJV|W(T) = x:, W(T + V) = %} =

From this it is easy to obtain
P{L(T, + V1) — L(T\) > t;N'Vi, L(Ts + Va) — L(T2) > usV'Va)

[ o) e )




BIG INCREMENTS OF LOCAL TIME 605

1 X3 — Xy ) 1 (Ixsl + | x4 )
X — (=2 4wy ) dxy dxs dixs dxs
VT, - T (JTZ T, — i/ vV, Ve

<i 1 exp{— u1+uz}
T VTWViT: = Th — V) Va 2

f f f f exp{ (xl + x2) — \/-127 (x3 + x4)} dx, dxz dxs dxs,
2

which, by integrating out, gives (3.11).0

In order to verify (3.5) we prove

LEMMA 3.4. Let the events A, be defined by (3.2). For any given 8 > 0 and positive
integer k, define the integer ¢, = ¢o(k, 6) by

(3.12) to = max(f: % < Tl(-}-+)28)—2—1—)
Then for large enough k and ¢> ¢, + 1 we have

(3.13) P{A A} < (1 + 8)°P{AL}P{A.}.
Moreover

(3.14) 1 P{ArA;} = CP{A:},

where C = C(8) is a constant depending only on é.

Proor. Comparing (3.6) and (3.11) it is easily seen that for large enough &,

(3.15) PlArAe) = (14 ) \[ 7= 10 T PUANP(Am) (R< )

Now (3.13) follows by the definition of ¢,.
We will use the following inequalities:

log % 1
(3.16) = ;;k =7
and
log % log —T;,—tl
@17 f—szo—k+l'

(3.16) follows from the concavity of log function, while (3.17) follows from the fact that

-1

a
log lf 2{=k+1 log<1 - %)
T: ¢

-k -k

(3.18)

is an arithmetic mean of nonincreasing terms and hence is nonincreasing itself. Therefore
fork</=< 6
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T, T, T T, 1 <T4, bo—k+1 1

T,— Tk=-7—'; T;—TkSTk T/_?k Twer ¢—Fk
log — log
(3.19) T T
1+ 8)? f0+1—k_Cd’o+1—k
= 1+8?: ¢—k ¢k
2
(28+8)1g23+82
Now

(3200 ¥2,., \/T o= VO Vo + 1 - kY%, J_s 2VCi(to + 1 — k).

Since ar/T is nonincreasing, we get

1+8)2 T T -
lo (28 8)2 = log —4] =Y logi;—— =Yfp log(l - E)

3.21) 2 S Sz (4= B) = (lo— B) - Tt

T, T, To Th

26 + 82 aTk
= (b= B g
hence
(3.22) (+1-k) =< Czﬂ,
ar,

or

T, T
(3.29) %400 \/T ™ =20,V0 =
- Tk

From (3.6) for k < £one obtains

ar,

Ti(log Tx)'™’
therefore from (3.15), (3.23) and (3.24) it follows that
Y P{ArAS} < 2P{Ar} + T2, P{ArAs1)

< 2P{Ax} + X%,., (1 +8)+ / I P{A}P{As1}
T,— T

=< 2P{Ax} + 2(1 + 8)C:C'VC; P{A} (log T)™"** = CP{As},
i.e., we have (3.14).0

(3.24) PA}=C

Now by Lemmas 3.2 and 3.4 it is easy to verify (3.5), which completes the proof of
Lemma 3.0

4. Proof of Theorem 3. This proof is again very similar to that of Theorem 1.2.1
in Csorgé and Révész (1981). The main point is that, contrary to the nonindependence
of the increments L(T; + V;) — L(T;) for T; + V; = Tis1,1 =0, 1, 2, , the increments
sup.(L(x, T; + V;) — L(x, T})) for T; + V; < Ti+1,i=0,1,2, ..., are clearly independent.
Instead of repeating the whole proof of the above mentioned theorem, we will emphasize
only two important points. The first is to give an upper bound for P{B.U(¢t) >v1 + ¢}. In
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order to solve this problem we give an analogue of Lemma 2.2. Let

UV(T) = Sup—m<x<+w(L(xy T+ V)—-L(x,T)).

LeEMMA 4.1. For any € > 0, there exists a constant C = C(e) such that the inequality

2
4.1) P{supo=r<:vU"(T) = uVV} < ct exp{— “ }
|4 2+e¢

holds for every positiveu and 0 < T < t.
Proor. Kesten (1965) proved that for any fixed § > 0 if x —

P02 ) - ofemf - 0],

Consequently, for any fixed o > 0, there exists a constant C = C(8) such that for every x
>0

Uv(T) x?
(4.2) P{ N =xp < Csexp —-2—-(1—8) .
Let R and K be defined as in Lemma 2.2. By the same argument, from (4.2) we obtain
] vVR
P{suposr=—vU"(T) = uvV} < YR} P{ UK+ /R (i) > ﬂ}
R} Vk+1V R
u?VR
Now by (2.4)
VR K-1
=
K+1 K+1
Choose a 6 = 8(¢) > 0 such that
1-6 1
_—
2 2+¢

should hold. Now choose K, = Ky(¢) such that for K = K,

K—1 1
sk+D >

Then, again by (2.4),

2
P{supo=r=—vU"(T) > uvV} = Ca(s)exp{— ': £}(tR +2)

) ¢t 2
= a — — V+—
Ca( )exp{ + } V <R t‘/)

} %(ZKO +2),

(3

|

[ ]

™

|

[

= C.;(E)exp{— T

since K < 2K, by (2.10).0

The second point is the observation that for the probability
P{Brat"*sup—w<icsw(L(x, T) — L(x, T — ar)) > 1 — ¢}
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we may give the same lower bound as for the probability containing the corresponding
increment of the Wiener process. Namely we have

P{Brar/*sup.(L(x, T) — L(x, T — ar)) = 1 — ¢}

= P{Brar"’sup:L(x, ar) = 1 — €}

= P(fra7 L0, ar) = 1 - ¢) = 2(1 - @(1 z ))
Pr

exp{—(l —¢)? [log g— + loglog T]}
T

> > ar ) -
- Ve T \TlgT/) ’
\/277(2 (log az + loglog T)) &
T

if T is large enough.
These two observations and Theorem 1.2.1 in Csérgé and Révész (1981) render the

proof of Theorem 3 obvious.

Acknowledgments. The authors wish to thank the referee for the careful reading of
their manuscript and for calling their attention to the papers of Hawkes (1971) and Perkins

(1981).

REFERENCES

[1] Cs6rG6, M. and REvEsz, P. (1979). How big are the increments of a Wiener process? Ann.
Probability 7 731-7317.
[2] Cs6rG6, M. and REvEsz, P. (1981). Strong Approximations in Probability and Statistics.
Academic, New York.
[3] HawkEs, J. (1971). A lower Lipschitz condition for the stable subordinator. Z. Wahrsch. verw.
Gebiete 17 23-32.
[4] KESTEN, H. (1965). An iterated logarithm law for local time. Duke Math. oJ. 32 447-456.
[5] KnicHT, F. (1981). Essentials of Brownian motion and diffusion. Mathematical Surveys 18. Am.
) Math. Society, Providence, Rhode Island.
[6] L&vy, P. (1939). Sur certains processus stochastiques homogénes. Compositio Math. 7 283-339.
(7] McKEeaN, H. P. Jr. (1962). A Hélder condition for Brownian local time. J. Math. Kyoto Univ.
1 195-201.
[8] PERKINS, E. (1981). The exact Hausdorff measure of the level sets of Brownian motion. Z.
Wahrsch. verw. Gebiete 58 373-388.
[9] Ray, D. B. (1963). Sojourn times of a diffusion process. Illinois J. Math. 7 615-630.
[10] RENYI, A. (1970). Probability Theory. North Holland, Amsterdam and Akadémiai Kiado,
Budapest.
[11] TROTTER, H. F. (1958). A property of Brownian motion paths. Illinois J. Math. 2 425-433.

E. Csiki, A. FOLDES AND P. REvEsz ’ M. CsOrGO

MATHEMATICAL INSTITUTE OF THE DEPARTMENT OF MATHEMATICS AND
HUNGARIAN ACADEMY OF SCIENCES STATISTICS

1053 BUDAPEST CARLETON UNIVERSITY

REALTANODA U. 13-15 Orrawa K1S 5B6

HUNGARY CANADA



