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ON THE MAXIMUM OF A RANDOM WALK
WITH SMALL NEGATIVE DRIFT

By MicHAEL J. Krass!

University of California, Berkeley

Let X;, X, -+ be iid. mean zero random variables. Let S, = X; + ---
+ X, and M, = sup.=1(S, — ne)* for ¢ > 0. Suppose o = E (X;)? is positive and
finite. Then EM, < o and 2e0 2EM, converges to 1 as ¢ \y 0*. In this paper we
obtain an approximation of the discrepancy 1 — 2e6 2EM, as ¢ \y 0*. To do so
we derive a first order approximation of P (M, < y) which is uniforminy as ¢
N\ 0" and asymptotically exact for y on [ y., ) provided y.— o. Approximation
of P(M, < y) necessitates a digression ‘into renewal theory. We derive an
approximation of the expected time Er, required by a sum 7, = Y, + ... +
Y. of i.i.d. non-negative random variables to reach or exceed y. The bounds
obtained are of particular interest when EX = o and are best possible in a
rather strong sense.

0. Introduction. Throughout this paper let X, X, X5, . .- be i.i.d. mean zero random
variables and also let S, = X; + -+ + X,,, X, = X — ¢, and M, = sup,=1(S. — ne) *. It is well
known (cf. Kiefer-Wolfowitz, 1956) that the condition E(X*)%2 < o (henceforth always
assumed to hold) is necessary and sufficient for EM, to be finite. Kingman (1962) has
shown that when 0 < 02 = EX? < oo,

0.1) EM, = (2) {EX? — E(X; — M.)*")*}.

Since M, —»,,. ® as ¢ \, 0" and EX? = o2 + ¢? it is obvious that whenever 0 < 0% < «, we
obtain the asymptotic formula

(0.2) 260 2EM,—> 1 as ¢\ 0"

In this paper we derive a better asymptotic approximation of EM, as ¢ tends to zero.
To do so, we find an asymptotically accurate expression for the error term E ((X; — M.)™*)%,
together with simple approximations thereto. This necessitates approximation of
P(M, < y) for all y > 0. Previous attention seems to have focused on the tail probability
P(M, > y) rather than P(M, < y), with good approximations presented only for y = §/¢
and X-distributions having a moment generating function in some neighborhood of the
origin (see Cramer (1954), Borovkov (1962), Feller (1966, page 393), von Bahr (1974),
Siegmund (1975a,b; 1978), Woodroofe (1978)).

As an associated matter, but one of independent interest, we introduce an elementary
but apparently new result in renewal theory. It gives a best-possible approximation of the
expected time taken by a sum of non-negative (possibly infinite mean) ii.d. random
variables to cross a horizontal boundary.

These results may have some application to insurance risk theory, storage theory,
scheduling, and queueing theory (cf. Feller, 1966, page 180). For illustration, consider the
problem of an insurance company contemplating issuance of a new policy. Let C denote
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the magnitude of a random claim and suppose the distribution of claims is (would that it
were only possible) known. Clearly, the insurance company must charge more than EC
dollars per policy or face certain bankruptcy. Suppose for simplicity that each claim is
settled before the next policy is sold. Letting X, = C — EC — ¢, M, represents the amount
of capital the company would require for its policy to become profitable. Hence the interest
in EM. for various & > 0.

The paper is organized as follows: Section 1 contains a simple derivation of two results,
(0.1), and the relationship between EM, and the first ladder height. Though these results
are perhaps well known, they serve to make the paper almost self-contained. Section 2
develops a uniformly accurate approximation of P(M. < y), valid for y on any collection of
intervals [ y., ®) provided y. — ® as ¢ \y 0*. The derivation of this result depends upon
proof that (at least if EX” < o) the first ladder height of S, — ne converges in L' to the
first ladder height of S,.. Section 3 presents our digression into renewal theory. Section 4
introduces approximations of P (M, < y), valid for low-order y. These approximations are
partially dependent on Section 3. Section 5 applies the results of Sections 2-4 to both
asymptotic evaluation and asymptotic approximation of the error term E (X — M,)*)?
and, more generally, E((X; — M.)")* for « > 1. In particular, whenever EX? < oo, it is
shown that L = lim..o-¢ 'E((X; — M.)")? <  iff E(X7)® < co. Moreover, a relatively
simple asymptotic expression is found for E ((X; — M,)*)?> when L = , i.e. when E (X ")
= . Note that x* = max{x, 0} and x~ = max{—x, 0}.

1. Classical results. We present a slight extension of Kingman’s result (1962).

THEOREM 1.1. Given the basic hypotheses of this paper,
(1.1) EM. = (2¢) {E(X!)* + E{(X.)* - (X; — M.)")%H).
If in fact EX® = ¢° < x then

(1.2) EM. = (2¢) {0 + e — E((X: — M.)*)?}.

ProOF. Write M2 — (X, + M.)*)? as
M? - (Xe + M£)2 + ((Xs + Me)_)z
=—(X7)? = 2X.M. — (X:)*I(X; = M,) + I(X: > M,)) + (X; — M.)*")2.

Observe that E(X?})? < =, and so by Kiefer and Wolfowitz (1956) E | X.M.| = E|X.|EM,
<o, E(X:) I(X; =M., = EX;M,=EX.EM, < «, and

0= E{(X.)* — (X0 — M)} (X: > M,) < E2X; M.I(X; > M,)
=2EX.M.=2EX.EM. < .

Hence M? — ((X. + M.)*)?is Lebesgue integrable. But since M, and (X, + M,)* have the
same distribution, the integral must be zero. Hence

—2EM.EX. = E(X!)*+ EX:) [(X; =M,) + E{(X;)* - (X; — M,)2}I(M, < X7).

Since EX, = E(X — ) = —¢, (1.1) follows and (1.2) is a trivial further consequence. 0

REMARK 1.2. Y.S. Chow and T.L. Lai (1978) have pointed out that by considering
ME = (X + M) = MF! — (X, + M)**' + (—(X. + M,) ") **", Kingman’s techniques
can be used to generate an expression for EM* in terms of EM,, -.. , EM*™', EX? EX?,
«++, EX*' and E((X; — M.)*)**". Such an expression makes EM* amenable to highly
accurate approximation as e \y 0*. The Chow-Lai idea can be sharpened using our method
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of proving (1.1). This is useful if E (X)) = o for some 2 <j < k + 1. Thereby, we obtain,

EM! = {(k + 1)e} {Ti-2 (k ;’ 1)EM§“"EX{

3 H (k + 1>EM£““‘"E((X£)*)’
(1.3) J
+ TR (k : 1>EMf“-f<—X;)fI(X: <M,)

S <k ;— 1>EM5*“’(—X?)jI(ME <X:))

provided E(X*)**! < o and E(X")' < o forsome 1 i<k + 1.
When i = k£ + 1 we obtain the Chow-Lai result

(14) EM* = {((k+ De} {37 (k j 1)EM§“‘/’EX{ + (-1)*E((X; — M,)")*).

We introduce some additional notation which will be used throughout the sequel. For
e=0let

(6) = 1*n=1: S, — ne > 0 if such n exists
T+ 7 otherwise

and
T7-(e)=1%n=1:8—ne<0.

Let 7. = 74(0), 7— = 7-(0).

THEOREM 1.3. Fore>0,
(1.5 E (S, — em+(€)) (14 (e) < ) = P(M. = 0)EM..

ProoF. Let Yi, Y, --- be iid. random variables, where Yi. = S; o — er+(e),
conditional on the event 7. (¢) < . Let L. be a geometric random variable independent of
(Y.} such that for integers n = 0, P(L. = n) = p.(1 — p.)", where p. = P(M, = 0). Then

M, has the same distribution as Y%, Yj., a fact also noted and utilized by Siegmund (1978,
Theorem 1). Hence

EM,=EL.EY:.,= (1 — p.)EY1./p. = E(Sr.0 — €7+ () (14 () <) /P(M.=0). O
2. Uniform asymptotic approximation of P(M. < y) for large y as ¢ 0.

LEMMA 2.1. Let X1, Xs, --- be iid. mean zero random variables with variance 0 <
o?<w LetS,=X,+ +++ + X,.. Let

re=1%n.8,>0, 7-=1%n:S,<0.
Then
(2.1) ES, ES; = d¢%/2.

Proor. From Chung (1968, page 262, Theorem 8.4.6) we obtain

ES,, = (a/s/é)exp{qu% (5—P(S,> 0))}
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and )

ES; = (a/&)exp{z;';l % (5—P(S, =< 0))} )
Multiplying these two expressions yields (2.1).

LEMMA 2.2. Under the conditions of Lemma 2.1, let M, = sup,=1(S. — ne)*,
) = 1®*n: S, — ne > 0 if such n < » exists
¥ =1  otherwise

() =1%n: S, — ne<0.

Then

(2.2) lim,\ 0*E (Sr.0 — €7+ (€))I (14 (e) < ) = ES,,,
(2.3) lim,\o*E(S;_9 — e7-(¢)) " = ES7,

and

(2.4) lim,o+¢ 'P(M, = 0) = 20 °ES,,.

Proor. We recall the following facts.
(i) EM, ~ ¢%/2¢ (see (0.2))
(i) s+ (e) = E(S; ) — er+ () (1+(e) < ) = P(M. = 0) EM, (see (1.5))
(iii) P(M, = 0) = 1/E7—_(¢) (see Feller, 1966)
(iv) eET_(¢) = E (S, ) —e7-(¢))” = s_(¢) (Wald’s equation)
Using (i) and (ii) it is obvious that (2.4) follows from (2.2).
Hence we focus on (2.2) and (2.3). Algebraic manipulation of (i) — (iv) shows

(2.5) 8+ (e)s- () ~ 0*/2.
Clearly,
’ (Srato = e (NI(7:(e) < @) =0 S,
and
' (Sreio = e7-(6)) ~—a S5
By Fatou’s lemma,
ES,, = lim inf.\ o+ s+ (¢)
and
ES; =< lim inf,\ o+s-(¢).
In view of (2.1) and (2.5) we must have
lim sup.o+s+(¢e) < ES,,
and
lim sup,vo+s-(e) < ES7,
which proves (2.2) and (2.3).0
COROLLARY 2.3. For any sequence {y.} such thaty.— © ase \ 0%,
(2.6) lime o+ E (Sr.0 — €74+ () (Srui) — 7+ (€) > ye, T4 () < )= 0.

ProoF. According to Theorem 4.5.4 on page 90 of Chung (19§§), (2.2) implies that
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{(S,¢c,) — enT+(en)) (74 (en) < ®)} is uniformly integrable for every {e.} such that e, \y 0.
Now (2.6) is immediate. [0

LEMMA 2.4. Our assumptions and definitions are the same as those of Lemmas 2.1
and 2.2 Let Yy, Yo, - -+ be iid. random variables, where Y. is distributed as S, ., —
T+ (€), given 7.(¢) < . Let Spe = Yi. + -+« + Y,.. Then for any y. — o as e > 0 there
exists 8. — 0% as e > 0" such that

(2-7) lime\0+Sup(n,y:n2(l+8,)y/ESn,}'Zy,)P(Sne = y) =0
and
(2.8) lirne\.O*inf(n,yzlsns(l—8,)y/ESn,yZy,)P(Snc =y)=1

Proor. Note that it suffices to prove these statements for arbitrary fixed § > 0. Since
Y,. is positive, P(S,. < y) is non-increasing in n. Therefore (2.7) and (2.8) are dependent for
their validity on the two values of n closest to (1 + 8) y/ES,, . Clearly, then, both (2.7) and
(2.8) are consequences of (and in fact equivalent to) the statement that for any n. — « as
£— 0,

(2.9) Snoe S.. in probability.

To prove (2.9), use the basic technique of the Weak Law of Large Numbers, noting that
since P(7+(g) < ) — 1, (2.2) and (2.6) imply that EY,.I(Y:. =vVn. ) - ES, and EY:.I(Y.
> vn)—0ase— 0".0

REMARK 2.5 Lemma 2.4 holds whenever
(i) EX=0,
(ii) E(X*)% < o0, and
(iii) lim, .o+ E (S, () — €7+ (e))I(7+(e) < 0) = ES, .
We conjecture that (iii) is always a consequence of (i) and (ii). O

The lemmas proved heretofore pave the way for our first result on asymptotic approx-
imation.

THEOREM 2.6. Let X;, X5, ... be ild. mean zero random variables with finite,
positive variance ¢°. Let M, = supn=1(S. — ne)*, where S, =X, + - .- + X,. Let y.— « as
e\ 0. Then

. P(M.<y) _
(2.10) lim, \ ¢* SUPy=y, T exp(—2e0™%) 1{=0.

REMARK 2.7. It is instructive to compare the result above with Brownian motion. Let
B(t) denote standard Brownian motion with mean zero and variance parameter 1. Then
for all positive y, € and o,

(2.11) P(supi=o{oB(t) — et} <y)=1-— exp(—2eys2).
Proor. Let p., L., Yi, Yo, --- be defined exactly as in the proof of Theorem 1.3.
Recall that
M. =53, Y;.
Hence
(2.12) PM.<y) =3X5-0 P(L:=n, ¥j-1 Y <y) = X5=0Pe(1 — p.)"P(Spe < ).

We intend to split this sum into three pieces. According to Lemma 2.4, there exists §.
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tending to zero as ¢ — 0 such that for all y = y.,
|P(Sne<y)—1|=<é. for 1=n=y(1-24.)/ES,
and
P(S..<y)=é. for n=y(1 +84.)/ES,,.

Let g.(y) =y(1 — 8.)/ES;, and h.(y) = y(1 + 8.)/ES.,. For any r > 1, the middle sum
is (defined as)

Y Eln r+11 (1 = De)"P(Sne < ¥) = Yain<n=hn () + Lhin<n=ran ()
= (he(y) = &(3)A = p)#Y + (r — 1) &.(y)(1 — p. Y5,
= 2r8.8.(y)(1 — p.)&? for &> 0 sufficiently small
= 2r6.(1 — (1 — p.)&) /p..
The initial sum is (defined as)
TG (1 = po)"P(Sne < ) ~ THEET (1 = po)™ ~ p* (1 = (1 = p)5Y)

as ¢ \y 0 uniformly in y = y.. 8. may be chosen to tend to zero so slowly that E (Y| Yi. <
y) = (1 - 4.)ES, for y = y.. Incorporating Lemma 2.9 (to follow) the third sum is (defined
as)

Sr=trg,+11 (1 = Pe)"P(Spe < y) < ¥ri-prg,in+n €(1 — pe)"exp{—(1 — e )ny 'ES,, (1 —8.)}
=e(g.y)*V(1 - q.,) ™
where
¢y = (1 — pJexp{—(1 — e™)y"'ES,, (1 = 8.)} = (1 — pJexp{—(1 — e7")/&.(¥)}.

Fix 0 < § << 1. We can choose r > 1 sufficiently large, depending only on &, so that for all
sufficiently small e > 0 and all y = y,,

(2.13) €(gey)*V(1 = q.y) ' = 8(1 = (1 = p)%”) /p..
Letting
R(e,y) = Tr-o (1 = p.)"P(Sne <¥)pc (1 — (1 — p. )57,
the preceding arguments show that
1 < lim inf.\o(inf(y=y,) R (e, ¥)) < im sup.o (Suppy=y) R (e, y)) < 1 + 8.

Since & > 0 is arbitrary, the limit exists and equals 1. We now examine 1 — (1 — p.)¥.
Due to (2.4), p.g.(y) ~ 2e067%. Hence 1 — (1 — p.)&*® ~ 1 — exp(—2e07%y) as ¢ = 0
uniformly in y = y.. This concludes the proof modulo Lemma 2.9. 0

REMARK 2.8. By similar reasoning one may also show that as e \y 0%
(214)  p. Y70 (1 —p)"P(Sr, < y)(1 — exp(—2ey0~?)) "' — 1 uniformly in y = y,,

where"So =0=Toandforn=1,T,=1%% S, > Sr,_,. (Note: S, = X; + «-- + X3.)
Introduce a geometric random variable L., independent of X;, X, - - - such that P(L, = 0)
= 2e0’ES,, = p. ~ p. = P(M. = 0). It follows that as e \\, 0%,

(2.15) P(M, <y)/P(ST,;e <y)— 1 uniformlyin y=y..

Being in fact a consequence of Lemma 2.4, (2.15) holds whenever s.(e) = E(S; ) —
er+(e))I(14:(e) < ©) — ES; < oo, provided we take P(L.,=0) ~P(M.=0) ase > 0",
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Moreover, Theorem 2.6 then becomes

(2.16) lim, \ o*supy=y,| 1 = P(M. < y)/(1 — exp{—yP (M. = 0)/ES.. })| = 0.

LEMMA 2.9. Let Y, Yz, - -- beiid. non-negative random variables. Then

217) P(Y1+ -+ Y,<y)<exp(l—nP(Yi=y)— (1—e My 'E(Y1| Y1 <y)).

Proor. Suppose first that P(Y; <y) = 1. Then for any ¢ > 0,
P(Yi+ .-+ Y.<y)=Plexplty—tY~1 Y;)>1) <Eexplty —tY}-:1 Y;)
= (exp ty)(E exp(—tY1))” < exp{ty + n E (exp(—tY1) — 1)}

-1 M1 e¥-1
Sexp{ty+n(e & )EtYl}(sincee Y se &y )

For simplicity we put ¢ = 1/y. This gives (2.17). In the general case we have
P(Yi+ - + Ya<y) = PO{Y; <y )Pt (Y] Yy <) <)
=exp(-nP(Yz=y)+1+n(e'-1D)E{(Y1/y)|Y1<y}). O

Our next task is to approximate the distribution function of M, over bounded or slowly
growing intervals. This necessitates a temporary digression into renewal theory.

3. A little renewal theory.

THEOREM 3.1. Let U, Uy, U,, --- be iid. non-negative random variables with 0 <
EU=w. Lett,=1"n: Y31 U= y. Then
y(1+PU<y))

(3.1) Q+PU<y)Vv (y/E(UNY) s Et, = EUAY)
. I yYP(U=zy) _

Moreover, if hmy_,m———E Try) 0 or 1, then

(3.2) lim, ,.Et, E(UANy)/y =1.

Note. From (3.1) we have 1 < Et,E (U A y)/y < 2. Observe that (3.2) generalizes the
standard result Et,/y —> 1/EU.

Proor. From our vantage point, the key idea is the observation that

(3.3) =1y (UAy)=y.

The main feature of this reformulation is that to treat possibly infinite-mean variables
we create suitably bounded ones. In so doing we obtain a bound on the overshoot
(E Y21 (Ui Ay)) — y. By Wald’s equation,

(3.4) E3Y, (UAy) =ELE(UAY).
Approximating E 3%, (U; \y), .

YSEYYL (UAy)<E(yI(t,=1) + 2yI(t, > 1))
=yE(1+I(t,>1))=y(1+ P(U<y)).

Combine these bounds with (3.4) to obtain all of (3.1) except half of the L.H.S. To deduce
the remainder, note that

Et,=zE(I(t,=1) +2I(t,=2)=EQ1+ I(t,>1)) =1+ P(U< y).
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Turning to the asymptotic situation, suppose yP(U = y)/E(U A y) — 1 as y — . Let t
= 1st n: U, = y. Then ¢, < ¢, so that, using (3.1),

1<=Et,EUNy/y<ELEUANy)/y=EUAy)/yP(U=y)—>1 as y— .

This proves (3.2) in one case.
Now assume lim,. yP(U = y)/E(U A y) = 0. Then for every ¢ > 0,

limy .o (yP(U = &y)/EU A y) < e ' limy.(eyP(U = ey) /JEU A gy) = 0.
Hence there exists a, — o such that
a,/y — 0 and lim,.. yP(U = a,)/E(U A y) = 0.
Let t=y =1*n:U, = a,. Then
It <) 251 (UAN/YS1+afy
and I(¢, = t=y) Y2 (UiAy/y=23}, I(U; = a,). Employing these inequalities,

=1

1=<ELEWUAy)/y (by (3.1))
=EQr (UA /I <t)+It=4) (by Wald)
=1+ ay/y + 2E Y91 (U; = a,)

=1+ a,/y +2Et,P(U = a,) (by Wald)
=1+a)/y+4y/E(UN y))P(U= a) (by (3.1))
—1 as y— x, proving (3.2).

REMARK 3.2. The upper-bound in (3.1) can be somewhat improved. Using Lorden’s
(1970) result on excess over the boundary, E ;11 (UiAy)=y+ EWUNy?EUA y).
Hence we have the additional bound

(3.5) Et, < (y/E(UA y))(1 + E(UA y)*/yE(U A y)).

REMARK 3.3. The bounds in (3.1) are optimal as y \y 0 whenever P(U > 0) = 1. When
y — o the bounds are also best possible. Specifically, there exist distributions for which

(3.6) = lim inf, o Et, E(U A\ y)/y < lim sup,—..Et, E(U A\ y)/y = 2.

Furthermore, one can show that whenever the R.H.S. of (3.6) obtains, so does the L.H.S.
As an example, let y, = e™, P(U=y,) = 1/en!,and z, = y, + \/y_,. Typically t,, is the first
k:U, = y» and t,_is the second k:U, = y,. With this in mind it is easily seen that

Et,, ~ 1/P(U = y») ~ yo/E(U N y)

and
Etz,, ~2/P(U =yn) ~ 2y/E(UN ya) ~ 2zn/E(U/\ 2n). 8]

4. Upper and lower asymptotic bounds for P(M. < y) for “small” y as ¢ \\ 0*.

THEOREM 4.1. Let X1, X,, --- be iid. mean zero random variables such that 0 <
E(XT)? < . Let M, = supn=1(S. — ne)*, where S, = X1 + -+ + X,. Let 7. = 1*n:S, > 0.
Then there exists y. — ® as e —> 0" such that
PM. < y)E(S,, N\ y)

yP(M. = 0)

. PM. < y)E(S., N\
=< lim sup..o* Supo<y=,, ( yP(;)l i 0) %) =2

1= hm il’lf,a_,o*'il’lfo<ys_y¢
(4.1)
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Proor. Let 0 < y < o be a continuity point of the n-fold convolution of S,, (with
itself) for every n = 1. We need to determine the order of magnitude of Yy-o (1 — p.)"P(Sh.
<y)=PM.< y)/P(M,.=0) as ¢ — 0*, where S,. = Y1i. + --- + Y, and Y}, and p, are
defined as usual (see the proof of Theorem 1.3). Let

(4.2) Tye = 1% n:8,. = y.
Equivalently,
4.3) Tye =131 (Y A y) = y.
We also have
(4.4) Tye = Yoo I(Spe < 7).
Invoking Wald’s equation,
(4.5) Er.E(Y..Ny)=E 2;21 (Y. A\ y) (which holds even for ¢ = 0)

Clearly, Yi. A y —as. S‘r,, N Y, Tye —>as Tyo and 27" (Y. A\ y) _)a.s.z;;"l (Yo A\ y), where Yo,

=1
Ya, -+ areiid., Yio =35, , and 10 = 1* n: %1 (Yjo A ) = y. By the bounded convergence
theorem,

lim,o-E(Y. A ) = E(S,, A y) and
limeo B 32, (Vi Ay) = EXm (Yo Ay) (<2).

Since both limits are positive as well as finite, (4.5) shows that lim, .o+ E,. exists, is finite,
and equals E7,. Using representation (4.4) of 7, for ¢ = 0 and Fatou’s lemma,

Ety0 = Y=o P(Sno < y) = Y=o lim inf. ¢+(1 — p.)"P(Ss < y)
< lim infe_,o*‘ 2:=o 1- ]),,)"P(Sn,3 <y = lim sup,_,o* Ez=o P(Sne <y

= lim sup._.o+ ETye = ETy0.

- Hence

. PM.<y _
(4.6) 111’!],_.,0+WE=—())E'T}0— .

Let g(y) = y/E(S:, A y) = 1/E{(S,,/y) A1} and R.(y) = P(M.< y)/P(M. = 0)g(y). Note
that lim, o+ Re(y) = lim,0+1/g(y) = P(S;, > 0) = 1. Hence set R.(0) = 1. Using (3.1) in
conjunction with (4.6),

(4.7) 1 = lim inf, ¢+ R.(y) < lim sup..o+ R.(y) < 2

for a dense set of y = 0. Since P(M, < y) is non-decreasing and g(y) is continuous (4.7)
holds for all y = 0. Furthermore, a theorem of Dini shows that the convergence of
h(y) = (1 — R(y))* + (R(y) — 2)" to zero as ¢ = 0" occurs uniformly on compact
intervals [0, y]. By a simple argument it follows that there exist y. — o such that

Hm._0+ SUPo<y<yhe(y) = 0.0

REMARK 4.2. Inequality (4.1) remains valid for any y. = y. such that &y, — 0. To see
this note that by (2.4) and (2.10),

. PM.< y)E(S,, \ y)

hnls\o SUpPy <y<y, y P(M, = 0) 1
o . i P(Ms<y)_1 — i . i PM.<y) —0
= lim, o SUpy <y=<y, _372:-:—0:2— = lIM,\ 0*SUPy <y<y, 1—exp {—2ea‘2y} =u.

Note also that both (4.1) and (2.10) continue to hold if P(M, =< y) is substituted for
PM. < y).
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5. Approximation of certain expectations. We require the following lemma. Its
proof involves fairly standard use of compactness and will be omitted.

LemMMA 5.1. Let {f.(-):e = 0} be a collection of non-decreasing functions such that
lim, o+ £.(0+) = fo(0+) > 0 and lim.\o f.(v) = fo(w) for almost all u > 0. Then there exists
ye — o such that

Y

f(u) du
(5.1) lim.o*SuPo<ysy, | —Z———= 1| =0.
f fo(u) du
0
THEOREM 5.2. Let X, X1, Xz, - -+ be iid. mean zero random variables with finite

variance 62> 0. Let S, = X1 + -+ + X,.. Let To = S, = 0 and for integersn = 1 let T,, =
1 k:S, > Sr,_,. Let 7w = 1" n:Sr, = m for real m = 0. Let M. = sup,=1(S, — ne)*. Fix a
> 1. IfE(X7)*"! < o then

- e X~
limeno 20X =" Z M o ro-ESyE J' (X~ — m)*"Er,, dm

€ o

(5.2)
=20ESr, Yoo E(X™ — S1,)")* < o0,

IfE(X")*"! = w0 and E(X™)* <  then

E((X—¢ - M)") _ 1
E(X™-Y)) ’

(5~3) lim¢\0+

where Y, is independent of X and P(Y, < y) = 1 — exp{—2ey0?}.
To approximate the limit in (5.2) one may use the simple inequalities m/E(St, A\ m)
< Er, =<2m/E(Sr, A\ m) (see Theorem 3.1).

ProOF. We begin by showing that (X — ¢)” may be replaced by X~. We may assume
EX )" <oo,

E((X—¢ —M)" ) - E(X~ —M)")

€

lime\.0+
E(X—e —M)')I0<X<e¢)
. &

E{((e+X —M)") — (X - M) )HX =0)

€

= lim,\ o+

+ lim,\ o+

=<0 + lim, o+ Ea((e + X~ — M,)*)* '[(X~ = 0)
=0 since M.—>»oas. and E(X ) <o,

Conditioning on X~ and integrating by parts twice we find that

X~ m

X~ —m)<? J PM. < u) du dm.

0

E((X~ —M.)")* = ala — I)EJ

0

In view of (4.6), we may apply Lemma 5.1, obtaining the existence of y.— © ase— 0* such
that
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f PM,. < u) du
1im, «.0*SUPo<msy, | —— - -1|=0.
PM, = 0) f Er, du
0

Recalling that P(M, = 0) ~ 2641_“’ESTl and that for any random variable V, [§ P(V < u) du
= [¢ P(V<u) du, '
E((X —¢~ — M.)™

P(M. = 0)

lim, o+

E(X™ = M)")

(5.4) =1-i1ne\.o+ PO, = 0)

X~ mAy,
= lim,\ o+ a(a — I)Ef (X~ - m)"‘“"’f Er, du) dm
0

(]

x ™ P(M, < u)
- _ «—2 €
X~ —m) f POL=0) du dm.

mA%

+ limra(a — 1)E J

0

We focus on the second quantity first (unless X~ is bounded, whence only the first term
counts). According to Theorem 2.6,

X m
E J’ X - m)"‘_2f PM, < u) du dm
0 mA
(5.5) lim,\ o+ pm — - =1.
E f X~ — m)*2 J (1 — exp{—2ea~%u}) du dm

0 mA

e

Now if E(X™)**! < o then

X~ m
1- —2e0 2%
Ej (X‘—m)“‘ZJ' e"p{e eou) dudmsEf
0 0

X~

(X~ — m)*? J 20 ~2u du dm
0

0

-
= EJ X —m)**m2c 2 dm
0

a—1

X~ - a—1
= 2K J .Q(___Ln)__mo_z dm
0

(integrating by parts)
X~ - o
=2F J’ X -me o 2dm
A (a—1a

(integrating by parts again)

(X—)a+la—2

=2E (a— 1a(a + 1) <

Hence by dominated convergence,
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X m —
_ 1 — exp(—2e6%u)
im, o+ - — m)*? =0.
lim,\ o+ E J; X m) J;Ay POL=0) du dm

2
Since Er, < EsT—u/\J it also follows that

X m
lim,\o+E J X~ = m)? J Er,dudm=0

0 mA, Y,

whenever E(X™)*"! < o,
Thus E(X™)**! < o implies

O B(X—e =M
lim, o+ POL=0) =ala — 1)E J; X m) J:) Er, du dm

-
= aEJ (X~ = m)*'Er,, dm,
o

from which half of (5.2) follows. To obtain the other half note that
Yoo E(X™ = 81,)%)" = E 30 E{(X~ = S1,)*)*| X"}

.
=E Yr-o J' a(X™ —m)*'P(Sy, = m) dm
0

(integrating by parts)
-
=E zz_oj a(X~ — m)*'P(Sr, < m) dm

0

x-
=aoF f (X~ = m)*'E(¥r-0 I(Sr, < m)) dm
o

-
= aEJ' (X~ — m)*'Er, dm.
o

Henceforth assume E(X™)*! = . Take x. = ® such that ex. — 0 as ¢ \y o*. We may
assume y, tends to infinity so slowly that (y.)? = o(E(X™)**'I(X~ < x.)). Then a bit of
adding and subtracting plus use of (5.4) and (5.5) gives

E((X™ - M)*)" 1

lim, 0+ = —~
ala — 1)E f X - m)“_zj (1 — exp(—2e6 %)) du dm

o o
X~ mAy,

PM.=0)E f (X~ = m)~? j Er,dudm
[

0

=< lim, o+ s —
E f X - m)“_zj (1 — exp(—2e0%u)) du dm
0 0
X~ mAy,
E X —m)*? -f (1 — exp(—2¢0~%u)) du dm
0

0

+ lim, o+ pr

EJ' (X - m)“_zj (1 — exp(—2¢0~%u)) du dm
o

0
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Since
m/\y! Ye Ye 2u
~ 2
J; Er, dusJ; Er, dusJ; FGr A w du ~ (y.)*/ESr,
and

mAy, Ve
J (1 — exp(—2e0~2%u)) du < J 2e0%u du < e67%(y,)?,
0

o

we find that the sum of the first two limits above is at most

_ X)!
2 2
3eo (ys) E —a_:l—

lime\o* X~ m
E(f X - m)""zj (1 — exp(—2e0~%w)) du dm)I(X_ < x)
0 0
3y EX ) /(a— 1) = limp g, S la + DEETY

x EX )X = x,
EJ X =m)* midm IX <ux,) R %)
(1]

0.

= lim,\ o+

Now (5.3) follows easily upon integrating twice by parts in the reverse direction. [

REMARK 5.3. Conclusion (5.3) can be maintained with
(5.6) P(Y.=< y)=1-— exp{—yP(M. = 0)/ESr}

whenever a > 1, E(X*)?> < o, E(X™)* < o0, E(X™)**' = o, and (using previous notation)
lim,\o+s+(e) = ESr, (see (2.16) and Remark 2.5).

The limiting value in (5.2) can be identified explicitly whenever Sr, is constant a.s. We
compute this limit for the case a = 2, since it is easy, and also germane to approximating
EM..

COROLLARY 5.4. Given the conditions of Theorem 5.2, suppose X assumes integer
values less than or equal to one. Assume also that E(X™)® < ». Then

E(X—¢) —M)")’ EX (X +1)2X +1)
NO = .

5.7) lim, € 3EX?

Proor. Clearly Sr, = n a.s. Hence
Yo E((X™ — S1,)*)? = Yo Yhoo (& — n)?P(X™ = k) = Siuo Theo n?P(X~ = k)

(X +1 T+1
=Ei°=ok(k+12(2k+l)P(X_=k) =.EX X +6)(2X + ).

Now apply Theorem 5.2. [

When E(X™)**' = o, the asymptotic growth rate of E(((X — &)~ — M.)*)* can (in
principle) be computed explicitly by means of (5.3). The result assumes a particularly
simple form, however, for the distributions considered below.

COROLLARY 5.5. Given the conditions of Theorem 5.2, suppose E(X™)*"'[(X~ < y) is
a slowly varying function increasing to infinity. Then

E((X—¢ —M)")

— -1
N 260 ZEX )X = 1/e) (o + 1)

(5.8) lim,



504 MICHAEL J. KLASS

ProoF. To begin with, we assert that

. YEX)»IX™ >y)
(5.9) limy EXIX- =) =0.

Fix 0 < ¢ — 1 < 1. There exists y, such that for y = y,,
EX™ )X =2y) =cEX )" I(X™ =< y).
For such y,
YEXT)IX™ > y)
=Y o EyX ) I(2'y < X~ = 2"'y) = Ym0 E27" (X7 )2y < X~ = 2™y)
=027 — DEX )X = 2"%) =< Yoo (¢/2)"(c — DEX )I(X™ < y)
=@2(c—-1/Q2-)EX ) "IX =y).

Send y to infinity and ¢ — 1 to obtain (5.9).
Proceeding, let Y. be as in Theorem 5.2. Observe that (5.8) will follow immediately from
Theorem 5.2 provided we prove that E((X~ — Y.)*)* ~ b, as ¢ \s 0%, where

be= (2ea7%/(a+ D)EX ) I(eX =1).
Take 8. — 0 such that
EX )" I(eX <8.)/EX )" [(eX =<1)—>1 as &\ 0"
We approximate E((X~ — Y.)*)* on three intervals. First,

X~ I(eX-s8c)
E(X - Y)")I(eX =6.) = Ef (X~ — y)*2e0 %xp {—2e0 %y} dy

)
X I(eX-=<5,)

~E j (X~ — )20 2 dy
o

= (2e07%/(a + 1)) EX™ ) (eX™ < &)
~b, as &\ 0",

Second,

-
E(X -Y)")I6.<eX =1) = E(j

(X~ — )20 2dy I(6. <eX =< 1))
o
= (20 /(@ + 1)EX )6, <eX =<1)
= o(b.).
Third,
E(X —=Y))I(eX >1)=EX ) I(eX >1)
=0(EEX )" I(eX < 1)) by (5.9)
=o0(b) as &\ 0"

Indeed, E(X~™ — Y.)*)*/b. > lase \ 0*.0
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