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THE CONCAVE MAJORANT OF BROWNIAN MOTION!

By PIET GROENEBOOM

Mathematisch Centrum Amsterdam

Let S; be a version of the slope at time ¢ of the concave majorant of
Brownian motion on [0, «). It is shown that the process S = {1/S,:¢ > 0} is
the inverse of a pure jump process with independent nonstationary increments
and that Brownian motion can be generated by the latter process and
Brownian excursions between values of the process at successive jump times.
As an application the limiting distribution of the L.-norm of the slope of the
concave majorant of the empirical process is derived.

1. Introduction and summary of results. Let w denote Brownian motion defined
on [0, ») and starting at the origin. For a > 0, let o(a) be the last (and, with probability
one, the only) time that the maximum of w(¢) — at is attained, that is:

(1.1) o(a) = sup{t > 0:w(t) — at = sup=o(w(u) — au)}.

Let 7(a) = o(1/a), if a > 0, and let 7(0) = 0.

In Section 2 the distribution of the process {r(a) : a = 0} is derived and it is shown that
T is a pure jump process with independent nonstationary increments and increasing paths.
In addition, the representation of the process as an integral with respect to a Poisson
measure is determined and it is shown that the number of jumps of 7 in an interval (a, b),
0 < a < b < x, is Poisson distributed with mean log(b/a).

Let f denote the concave majorant of w (i.e. the smallest concave function = w), and let
S: = f’(t), whenever f’ is defined. Since fis concave, f’ is meaningful except at an at most
countable number of points. The process {1/S;:¢ > 0} is the inverse of the process 7, and
properties of the rather complicated (non-Markovian) process of slopes S, of the concave
majorant of w are derived from properties of the simpler process 7. For example, we derive
the distribution of S, for fixed points in time. We also give a decomposition of Brownian
motion in terms of jump times of the slope process and Brownian excursions in between.
All these results are given in Section 2.

In Section 3 we study a particular transformation of the process 7 into a pure jump
process with stationary independent increments. This transformation is used to derive the
distribution of the Ls-norm of the slope of the concave majorant of Brownian motion over
particular (random) intervals. These results in turn are used to establish the asymptotic
normality of the L;-norm of the slope of the concave majorant of the empirical process
(this result has first been proved by alternate methods in Groeneboom and Pyke, (1983)).

The derivation of the structure of the r-process is based on certain results on path
decomposition of downward drifting Brownian motion at its maximum (Williams, 1974,
Rogers and Pitman, 1981) and in particular on the fact that the pre-maximum and post:
maximum process are independent, given the value of the maximum M and the splitting
time { = sup{¢t = 0:w(t) = M} (a result which holds more generally, see e.g. Millar,
1978). This derivation was suggested to me by Robert Blumenthal, and it replaces the
more pedestrian approach in Groeneboom (1981).

The behavior of the slope of the concave majorant of the process {w(t) — f(¢) :t € R}
at zero for two-sided Brownian motion w and particular functions f is studied in Leurgans
(1982) and earlier results of this type are given in Chernoff (1964) and Prakasa Rao (1969).
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CONCAVE MAJORANT OF BROWNIAN MOTION 1017

For an application of these results in statistics (in particular the estimation of densities)
we refer to Barlow et al (1972).

2. Concave majorant of Brownian motion and Brownian excursions. The
properties of the process {r(a):7(a) = o(1/a), a > 0, 7(0) = 0}, where o(b) is defined by
(1.1), are summarized in the following theorem.

THEOREM 2.1. The process T is a pure jump process with independent nonstationary
increments and right-continuous increasing paths. The process has the following repre-
sentation

2.1) T(a) =j ([0, a] X dl), a=0,
0+

where 4 (da X dl) is a Poisson measure with mean n(da X dl) = (a® 7)o/ /a) da di,
fora>0,1>0, and ¢(x) = (27) %exp(—%x?), x € R.
The marginal density of v(a) has Laplace transform

2.2) E exp(—At(a)) =2/(1 + (2Aa®+ 1)V/%), a=0,A>0,
and 7(b) — 7(a) has Laplace transform
(2.3) E exp(—A(r(d) — 7(a)))
=1+ @ra®?+ DD /A+ A+ 1)), b>a=0,A > 0.

The number of jumps of T in an interval (a, b), 0 < a < b < =, has a Poisson
distribution with mean log(b/a).

ProOF. Let BM°(u) denote Brownian motion with drift u, starting at the origin and
defined on [0, »). Let B denote a BM°(—1/a) process, where @ > 0. For 0 < ¢ < o, let M,
= SUPo=s<:Bs and let p = sup{t = 0: B, = M.}. According to Corollary 2, page 580 in Rogers
and Pitman (1981), the post-maximum process {M., — B,.,: u =0} is a Bes’(3, 1/a) process
(radial part of 3-dimensional Brownian motion with drift of magnitude 1/a started at the
origin), independent of {B,, 0 < ¢ < p}. Moreover, M., is exponentially distributed with rate
2/a.

It is seen from the definition of o (a), that {o(a), a > 0} has decreasing left-continuous
paths, and hence 7 has increasing right-continuous paths.

Let &, = inf{t = 0: B, = y}. An easy first-passage argument shows that E {exp(—A&)| &,
< o} = exp{— y((1 + 2Aa?)*? - 1)/a}, A > 0, y > 0. Thus,

E exp(— Ar(a)) = E exp(— A§y )
=a’! j exp{— y((2Aa® + 1) — 1))2 exp(— 2y/a) dy
0

=2/(1 + (1+ 2\a?"?).
Moreover, since 7(a) is independent of 7(b) — 7(a),
E exp{— A(7(b) — 7(a))}E exp(— A7(a)) = E exp(— A7(b))
=2/(1 + (2Ab% + 1)V3),
Hence E exp{— A(7(d) — 7(a))} = {1 + (2Aa® + 1)"%}/{1 + (2Ab® + 1)'/?}. This proves

(2.2) and (2.3).
Next we note that for 6> a =0,

=) b
E exp{— A(7(d) — 7(a))} = eXp{— f 1- e‘“)l“/2< f t72%p (IT12/8) dt) dl},
0 a
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and (2.1) follows (see e.g. It6 and McKean (1974), page 146). This representation shows
that 7 is a pure jump process, and that the number of jumps in an interval (a, b), 0 < a <
b < w, is distributed according to a Poisson distribution with mean

f z-l/2< f 26 (17/1) dt) di=log(b/a). O
0 a

The next corollary gives the density of 7(a) and the distribution function (df) of the
increment 7(b) — 7(a), which are obtained from Theorem 2.1 by inverting the Laplace
transforms. Here and in the sequel we use the notation

(2.4) X+ =X, if x=0
0, otherwise.

COROLLARY 2.1. The density of 7(a) at t > 0 is given by
(2.5) f(t) = (2/a*)E(aX/Vt - 1),

where X is a standard normal random variable.
Let F be the df degenerate at zero (i.e. F = ljo)) and let, for b > a > 0, the df G, be
defined by the density

(2.6)  Zas(t) = E{(Y/JZ — b)Y (a ! = Y/ VY2 - Z/ﬁ}il(b-.'a_.)(y/ﬁ), t>0,

®-a)

where Y and Z are independent standard normal random variables. Then the random
variable 7(b) — 1(a) has the df

(2.7) H.p = (a/b)F + (1 — a/b)Ga,5.

We now relate the process of slopes S; of the concave majorant of Brownian motion
starting at the origin to the process 7. Since the concave majorant is a concave function,
the slopes S; are decreasing as ¢ increases. At points where the slope of the concave
majorant changes, we define S; by S; = lim,;S.. The concave majorant of a sample path
consists almost surely of countably many straight pieces and the sample path of {S,:¢ >
0} jumps at distinct values of 7. Conversely, the set of slopes of the concave majorant is
the same as the set of jump times of 7.

By the laws of the iterated logarithm for Brownian motion (It6 and McKean (1974),
pages 33 and 34) we have almost surely

lim;;oS; = © and lim,..S; = 0.

Finally we have the equivalence
(2.8) 1/Si=sas 1) =t
These observations become immediately clear by drawing a picture and using the prop-
erties of the process 7. Relation (2.8) yields the following corollary.

COROLLARY 2.2. The density of the slope S; of the concave majorant at time t > 0 of
Brownian motion starting at the origin is given by
(2.9) gi(a) = 4{Vtd(a Vt) — atd(a Vt)}, a>0,
where ¢ is the standard normal density and ® = 1 — ®, ®(x) = [*., ¢(t) dt.

Proor. By (2.5) and (2.8) we have

P{S,=1/a} = P{r(a) = t} = (2/a?) f E{aX/vu - 1}. du,
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where X is a standard normal random variable. Hence,
P{S,=a} = 2aJ duf (x/Vu — a)p (x) dx
¢ avu
and

gla) = =2 f du f (x/Vu — 2a)p (x) dx
¢ ava

© 2/q?
=-2 J o (x) dx f (x/Vu — 2a) du
avit t

=4 f (xVt — at)p (x) dx
avt

=4 Vt{¢(aVt) — a VEB(av?)}. O
We note that g,(a) can be written
(2.10) gi(a) = 4 Vt B(av) {4 (avt) /B (aVE) — avt),

where ¢(a\/2) /<I_>(a«/2) denotes the “failure rate” of the standard normal distribution and
avt denotes the asymptotic failure rate (as avt — ).

We now consider the decomposition of Brownian motion into the process t and
Brownian excursions between values of 7 at successive jump times. A Brownian excursion
on [0, 1] with origin (0, 0) and endpoint (1, 0) (where the first coordinate denotes time and
the second coordinate position) is a nonhomogeneous Markov process {z(¢) : ¢t € [0, 1]}
with marginal densities

(2.11) few (x) = 2x%exp(— x%/(2t(1 — 1))}/ {27 £(1 — £)>}"/*
and transition densities
Feorz@ (¥ | %) = (e-s(y — %) — ne—s(y + x))
(2.12) - (1= 5)*%y exp{— y*/(2(1 — 1))}
{1 = 9*2x exp{— x*/(2(1 - 8))}} 7,
where
(2.13) nu(x) = u™% (x/u),

and ¢ is the standard normal density (see e.g. It6 and McKean (1976), page 76). More
generally, we can consider excursions Z on an interval [a, b], which are obtained from the
preceding ones by putting Z(¢) = vb — a z((t — a)/(b — a)). We will show that, between
successive jump times 7 and 7.1 of the slope process, the vertical distance of a Brownian
motion sample path to the concave majorant behaves as such an excursion on the interval
[T:, Tiv1].

We enumerate the jump times of the slope process in the following way. Let ao = ao(w)
= inf{a > 0:7(a) = 1}, where w denotes a Brownian motion sample path. Next, number
the jump times of a sample path of the process t recursively by taking a,+; = jump time
following a;, i = 0, and a;_; = jump time preceding a;, i = 0. This enumeration is possible
on a set of probability one, since almost surely 0 and o are the only cluster points of the
set of jump times of a sample path of 7. The jump times of the slope process are now given
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by T: = 7(a:)), where i runs through the set of integers. In the sequel we restrict our
attention to the set of probability one where the enumeration can be carried out, without
further mentioning.

LEmMA 2.1. (i) Let Ny = sup{T;:T: <t} and N{ = inf {T;:: T: = t} be the jump times
of the slope process preceding and following t, respectively, and let {w(t):t = 0} be
standard Brownian motion on [0, ») starting at the origin. Then the conditional density
of the vertical distance y(t) of w(t) to the concave majorant, given N; = t;, Ni = to,
O<th<t<ty<omo,is

(2.14) Fromr v (v |8, &) = 2¢y3i0(y/0),
wherec =02 = {(t — t))(t — t)/(t2 — t:)} >/~
(ii) P{T;edt;,i=—n, ---,n, zi{ts) € dya,i=—-n+1,.---n k=1 ... n}
= {Il=n+1 fun o (Piz 5 oo Yim) }
E{2(Xa/ o)X/ Ve = Xonsa/N0-pr1)
Vohet [[Fnrz 7+ Lo (Ximt/ Voics — Xi/ V0)}
cdtp ++ dtn dy—n+11 +++ AYnm,

wherevi=t;—ti_i,i=—-n+1..- , ;0<t_, <. <t <1=t<: - <ty 0<un<
e <up<lyi=-n+1,...,n;X_,, ---,X, are independent standard normal random
variables, and f,, . ... .. (Yi1, -+ , Yim) is the joint density of (2(ui1), - -+ 2(uim)) at (yi, ++ -,
Yim), With z the excursion process defined by (2.11) and (2.12).

ProoF. ad(i): Fix A; > 0 and h; > 0, where t; + h; < ¢, let xo > x; > 0, and let
M;i(h:) = max, <<+ (W(2) —w(t)), i=1,2.
Then we have the following equivalence:

N¢ € (t1, t1 + hy) and N7 € (¢, &2 + ko), given w(t:) = x; and w(t;) = x if and only
if w(u) — bu = x1 + Mi(hy) — bo; for u < t; and w(u) — bu < x; + M3(hy) — bo, for
u€E (t1+ hi, t:) and u >tz + ho,

where b = (x2 + Ma(h2) — x1 — M;(h:1))/ (62 — 01) and o; is the location of the maximum
M;(h;). Note that b is the slope of the concave majorant of the Brownian motion sample
path on the interval (o1, o02).

We now condition on the values and locations of the maxima M; (h;), the value of Y;(h;)
=w(t; + h;) — w(t), i = 1, 2 and the values w(t;) = x;, w(tz) = x2 and w(¢) = x. Denote this
condition by C. Then we have

P{w(z) —bz=x; — bo, + Ml(hl) for z<t ' C}
=1— exp{— 2(Mi(h1) + b(t: — 01))+ (1 + My (k1) — bo1)+/01}.

Here we use some well-known inequalities for Brownian bridges and Brownian motion.
For example we have

P{w(z) >az+ b forsome z€E (4, )| w(t) = x, wt) =y}
= exp{— 2(at; + b — x).(ats + b — y)./(& — t)},

where 0 < # < £, < « (see e.g. Hajek and Siddk (1967), page 183). The equality (2.16) also
holds if x = t; = 0. We also have

P{w(z) >az+ b forsome z>t|w(t)=x}

(2.15)

(2.16)

(2.17)
= exp{— 2a.(at + b — x).+}

(see e.g. Doob, 1949).
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Using relations (2.16) and (2.17), we get the following equalities, similar to (2.15):
P{w(z) — bz < x1 + Myi(h)) — boy for z€ (& + hy, t)|C}

(2.18) =1 —exp{— 2(b(t, + h1) + Mi(h1) — bor — Yi(h1))+
(bt + x1 + Mi(h1) — bor — x)+/(t — 1 — h1)},
P{w(x) — bz < x2 + My(hy) — bo, for t<z<t|C}
(2.19) =1 — exp{— 2(bt + x2 + M>(h2) — bo> — x)+
(bty + Mz(h2) — bo2)+/(t — &)},
and finally
P{w(z) — bz < x3 + Ms(hs) — bo; for z>t + he|C}
=1 — exp{— 2b.(btz + x2 + M2(hs) — bos — x2 — Ya(hs))+}).

Multiplying the right-hand sides of (2.15), (2.18), (2.19) and (2.20) and taking the expec-
tation with respect to M;(h;) and Y;(h;), i = 1, 2, yields as the conditional probability that
N7 € (t1, t1 + h1) and N{ € (&, £ + hy), given w(t;) = x;, i = 1, 2, and w(¢) = x:

16{t:(t — t1)(t; — 1)} "alx: — at1)+ {a(t — t1) — (x — x1)}+ {2z — x — C;(tz —0)}+
« E{Mi(h) (My(h1) — Y1(h1)) Mz (he) (Ma(he) — Ya(he))}
+o(mhy), as h; [ 0,i=1,2

where a = (x2 — x1)/(¢2 — t1). The method we used to determine this conditional probability
is an extension of a method used in Chernoff (1964).
By straightforward calculation it i; seen that

E{M,(t)(M;(t) — Yi(t))} = Y%t

(2.20)

Furthermore, the distribution of w(t), given w(t;) = x;, { = 1, 2, is normal with mean u =
(t2 — t) ' {(t2 — t)x1 + (¢ — t1)x2} and variance o2 = (£, — £)(t — ¢1)/(t, — t1). Thus,

P{N; € dt;, N} € dt;, w(t) € dx|w(t) = x1, w(k) = 1)
= P{N; € dti, N} € dtz|w(t) = x, w(t) = %, i =1, 2).
(2.21) 0716 ((x — p) /o) dx
=4{t(t — t) (& — 1)} 'l — ati)+(p — %)%
<0679 ((x — u) /o) dx dty dtz,

where ¢ is the standard normal density.

Now note that u — x is the vertical distance of x to the line connecting (¢:, x;) and
(2, x2). Hence, if y(¢) is the vertical distance of w(¢) to the concave majorant at time ¢, we
have

22 P{N; € dt;, N} € dt;, y(t) € dy|w(t) = x1, w(t) = %}

= 4{t:(t — &) (&2 — )} "a(x — at))+y20 ¢ (y/0) dy dt, dt:.
By integrating with respect to the density of (w(¢1), w(t:)) we obtain
P{N; € dt;, N} € dt;, y(t) € dy}
(2.23) =4{t-t)(&— 8} o' (y/0)
-E{(Z:/Vt — 0)yL(X/Vt ~ Z/Vt — 8).) dty dt, dy,

where X and Z are independent standard normal random variables. This shows that the
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conditional density of y(¢), given Ny = ; and N} = #;, has the form
f:y(t”N,—,N,*(yI tl’ t2) = C(t’ tl, t2)y‘2*’¢ (y/a),

where c(t, t1, t2) is a constant depending on ¢, £; and ¢,. Integrating over y yields c(t, ¢, t2)
=202 =2{(t — t)(t2 — t) /(s — t)} 2
Part (ii) of the Lemma is proved in a completely analogous way. 0

REMARK. From (2.23) it is clear that the joint density of N; and N7 is given by
(2.24) ety &) = 2(6 — 6) " 2E{Z. X/t — Z/Vt: — t1).}.

We will need this density in Section 3.
Lemma 2.1 immediately leads to the following result.

THEOREM 2.2. Standard Brownian motion on [0, ©) can be decomposed into the
process T and independent Brownian excursions. More precisely, conditional on the
values of the jump times of the concave majorant, the vertical distance of Brownian
motion to the concave majorant is a succession of independent Brownian excursions,
where the excursion between two successive values T; and Ti.1 of the process t (i.e.
successive jump times of the slope process), is distributed as z,(t) = Vu z2((t — T)/u),
where u = Ty — T; and z is a standard Brownian excursion as defined by (2.11) and
(2.12). The process {1/S;: t > 0, S, the slope of the concave majorant at time t} is the
inverse of the process .

REMARK. We proved Theorem 2.2 by a method which was used in Groeneboom (1981).
The method has the advantage of giving explicit formulas for certain densities such as the
joint density of the jump times N; and N;'. Different proofs of Theorem 2.2 are given in
Pitman (1982) and Bass (1983). Pitman’s proof is based on time reversal arguments
together with the path decomposition results in Williams (1974). Bass’s proof relies on
conditioning by means of Doob’s A-path transforms and certain results on the decompo-
sition of Markov processes at splitting times in Meyer, Smythe and Walsh (1972).

CoROLLARY 2.3. With probability one, a Brownian motion sample path has a local
maximum at an epoch where the slope of the concave majorant changes.

Proor. By the construction of Theorem 2.2, the statement is equivalent with the
statement P{z(t) > at, t | 0} = 1, for any a > 0, if {z(¢): t € [0, 1]} is a Brownian excursion.
But the latter statement follows from a result of Dvoretsky and Erdos (1951), see e.g. It
and McKean (1974), page 80, relation 6. 0

3. L.-norm over finite intervals of the slope of the concave majorant of
Brownian motion, Brownian bridge and the empirical process. Let L(a, b) be
defined by

L(a, b) = j ¢ 2dr(c), 0<a<b.
(a,b]

It is easily seen that the squared L.-norm of the slope S; of the concave majorant of
Brownian motion over the random interval (r(a), 7(b)) is just L(a, b), i.e.

T(b)
L(a, b) = J’ S? dt.

(a)
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Now consider the process {f(a): @ = ao} where f(a) = L(e™, e*). This is a process with
stationary independent increments. More precisely, we have the following result.

THEOREM 3.1. Let {f(a): a = ao} be the process obtained from the process t by
putting f(a) = L(e®, e®), ao € R. Then {f(a): a = ao} is a pure jump process with
independent stationary increments and right-continuous paths. Furthermore, f(a) is
distributed as the random sum of N independent x3 random variables, where N has a
Poisson distribution with parameter a — a,.

Proor. Theresultis animmediate consequence of Theorem 2.1 and the representation
(2.1) of the process T as an integral with respect to a Poisson measure. For the Poisson
measure of the process {f(x): x = ao} is obtained from the Poisson measure of the process
7 by making the change of variables (x, ¥) = (log a, //a?), giving a Poisson measure with
mean n(dx X dy) = y /2 $(\y), dx dy for x > ao and y > 0. The last statement of
the theorem now follows, and the other statements follow immediately from the structure
of the process 7. 0

CoroLLARY 3.1. L(a, b) is distributed as the sum of N independent x} random
variables, where N has a Poisson distribution with parameter log(b/a), 0 <a<b<ow

We now apply Corollary 3.1 in computing the asymptotic distribution of (standardized)
squared Le-norms of slopes of the concave majorants of Brownian motion over intervals
(t1, t2) such that ¢;/t; — . These results will also give the asymptotic distribution of the
squared Ly-norm of the slope of the concave majorant of the empirical process { U, (¢):
tef0,1]) = {(Vn(F.(t) —t): t € [0, 1]}, where F,, is the empirical distribution function of
a sample of n uniform random variables on the interval [0, 1] (see Theorem 3.2). A different
approach to this last result is given in Groeneboom and Pyke (1983), where also applications
to statistical tests are discussed.

The next lemma shows that the asymptotic distribution of [ SZ du is the same as the

asymptotic distribution of [7{{}) S’ du, as v/t — o.

LeMMA 3.1. Let S, be a version of the slope of the concave majorant of Brownian
motion at u. Then,

“szau—Liog(2)] /1 /(3 v L

where Z is a standard normal random variable.

Proor. By Corollary 3.1, L(a, b) has the characteristic function y¥(¢) = (a/ b)exp(1
— (1 - 2i)7*}, 0 < a < b < ®. This implies

(3.2) {L(a, b) — log<§> }/\ /3 log (2) —qZ, as §—> 00,

where Z has the same meaning as in (3.1). Let M > 0. By Corollary 2.1 and formula (2.5),
we have

©

(3.3)  P{r(a) > Ma?) = J’

Ma?

(2/a)E(X/Vt — 1/a), dt = J 2E(X/Vt — 1), dt.

M
Fix £ > 0. Then, by (3.3), we can choose M > 0, independent of a, such that
(3.4) P{r(a) > Ma®} + P{r(a) < a*/ M} <.
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Thus, for £ > 0, we have by Markov’s inequality,

1] v Mv Mt
P{ J’ Sﬁdu—JS?dt >k}<{f +j S?dt>k}+a
(3.5) ~(1¢) t /M M
Mv Mt
<k! E{J +f S? dt} +¢.
v/M t/M

Using (2.9), we find that E [ S? dt = % log (v/u), implying that the right-hand side of (3.5)
equals (2/k)log M + &. Thus, for sufficiently large £ > 0, the right-hand side of (3.5) is
smaller than 2, uniformly in ¢ and v. Since [7\?) S2 du = [z F1¢”2 dr(c), we now obtain
the result from (3.2). 0

The next lemma gives the corresponding result for Brownian bridge.

LeEmMA 3.2. Let S, be a version of the slope of the concave majorant of Brownian
bridge on [0, 1] at time u € (0, 1). Then the df of

(J’ S du —%log{v(l — &)/t — v))})/((3/2)10g{v(1 = 8)/(#(1 = v))})"”*

tends to a standard normal df, as v(1 — t)/(¢(1 — v)) — .

Proor. Let {B(t): t € [0, 1]} be a Brownian bridge on [0, 1], then {(1 + ) B(¢/(1 +
t)): t = 0} represents Brownian motion on [0, ) (Doob’s transformation). Hence, there is
a 1 — 1 mapping of concave majorants of sample paths ¢t — B(t), t € [0, 1], of Brownian
bridge to concave majorants of Brownian motion paths ¢t — (1 + ¢) B(¢/(1 + ¢)), t = 0. For
0 <p < g <1, the integral [¢ SZ du is almost surely a sum of the form

(1 — p)(B(u1) — B(wo))?/ (w1 — wo)® + T57 (Blui1) — B(w:))?/ (ti1 — w;i)
+ (@ — tn) (B(ttns1) — B(Un))?/ (tns1 — un)?,

where the u’s are jump times of the slope process and where up=p=w <wu < ... <u,
=< @ =< Up+1. Letting u; = £;/(1 + ¢;) and w(t) = (1 + ¢t)B(t/(1 + ¢)), we have,

(B(uir1) — B())?/ (uis1 — wi) = (W(tir1) — w(t))?/ (tisr — 8) + (1 + &) 'w?(t)
(3.6)
- (1 + t;+1)_lw2(ti+1)~

Summing over i, 1 =i <n — 1, gives

Uy, tn
3.7 j SZdu= j SZdt + (1 + &) wi(t) — (1 + &) ‘w2,
u t

1 1

where S is the slope of the concave majorant of ¢t - w(t), t = 0. Fix ¢ > 0. As in Lemma
2.1, let N~(¢) and N*(¢) be the jump times of the slope process which precede and follow
t, respectively. Then, using (2.24) we find, for M < 1,

1 00
(3.8) P{N*(t) — N~ (t) = Mt} = f dt, J’ 2u™*EZ (X/Vt — Z/Vu), du
0 M
and
/M o
(3.9) P{(N~(t)st/M} = J’ dt, f 2u™2EZ. (X/Vt, — Z/Vu). du.
0 1-¢

Since the right-hand sides of (3.8) and (3.9) do not depend on ¢, we can choose M =1,
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independent of ¢, such that
P{N*(t) — N (t) =Mt} <e/2and P{N(t) = t/M} <e/2.
This implies that, if »r = p/(1 — p) and s = q/(1 — q),

ty tny1 Mr Ms
P{f S?dt+J’ S?dtzk}<(1/k)E{ +f s?dt}+2e
¢, t, r/M s/M

= (2/k)log M + 2¢ < 3¢,
for % sufficiently large. Since we also have
P {sup,m=u=me®()/(1 + u) = k1) <,

where £ is a suitably chosen constant, not depending on ¢, we can conclude from (3.6) and
(3.7) that

q s
jgﬁdu—J’ SZdt=0,(1), as s/r— oo.
D

r

The result now follows from Lemma 3.1. 0

REMARK 3.1. We can define a r process for Brownian bridge and derive the distribution
of the slopes of the concave majorant of Brownian bridge from the properties of this
process. The process has a more complicated structure than the corresponding process for
Brownian motion, however; for example, the process is no longer an independent incre-
ments process. We only give here the marginal densities of this process and of the slope
process, which can be derived by methods similar to those used in Section 2. The density
of sup{¢: B(t) — at = max,eo,1;(B (1) — au)} is given by

(3.10) fu®) =2E(X — a(t/(1 — £))?)+(X + a((1 — 8)/t)/?)., a € (—ox, )
and the density of the slope S; at time ¢ is given by (see Corollary 2.2 for notation)

4{(t(1 — t)’p(a(t/(1 — £))"?) — at®(a(t/(1 — £)))}, a=0
38.11) g:(a)= {4{(t(1 — )% (al(1 — t)/t)7?)
—la|(1 = )®(|a|(1 - ¢t)/t)"?)}, a<O.

The densities g;, 0 < ¢ < 1, form a rather curious fam_ily. For each ¢, they have a cusp-like
maximum at zero, and the first moment (which is ES;) is given by

(8.12) ES,=4(1 - 2t)/{3V2rt(1 —¢)}, 0<t<l1.
Note that, for ¢ near zero, ES, is approximately %¢~'/2.
To facilitate the comparison of the L,-norms of the slopes of concave majorants of

Brownian bridge and the empirical process, we relate this L.-norm to another functional.
This functional is given by

(3.13) A(t,v) = supJe,,J’ B(u) dJ(u), 0<t<v<l,
(¢v)

where the class of functions .# is as in the following definition.

DEFINITION 3.1. ./ is the set of real-valued nondecreasing and right-continuous step-
functions o/, defined on (0, 1), such that [ J(z) du = 0 and [ J (u) du = 1.

This class of functions is also considered in Behnen (1975), Scholz (1983) and Groene-
boom and Pyke (1983). We now show that {f;~* S du}'/? behaves asymptotically as
A(t,1—t),ast 0.
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LEMMA 3.3. We have

1-¢ 1/2
(3.14) A(t,t—1) — {f Sz du} =0,(1), ast|O.

ProoF. Let, for 0 < ¢ <1, C(¢) denote the value of the concave majorant of Brownian
bridge at time ¢. Fix ¢ > 0 and let ¢ € (0, ). By (3.11) and Markov’s inequality, we have
t
Pr{C(¢) = Mt'/*} = M‘lt'l/zj E|S.|du
0

(3.15)
= M~t72(4/3) j {1 — w)*?/V2mu + u¥?/V2r(1 — u} du <e,
0

for M sufficiently large, where M can be chosen independently from ¢. This also can be
deduced from (2.9), by comparing slopes of concave majorants of Brownian motion and
Brownian bridge and using Doob’s transformation (as in the proof of Lemma 3.2). Similarly,
we have for M sufficiently large,

(3.16) Pr{C(1 — t) = Mt'/?} <e,

uniformly in ¢ € (0, 4). Define, for ¢ € (0, %4), the truncated functions B; = B.1;1-,; and C;
= C.1j,1-¢1, where 1p, 1, is the indicator of the interval [¢, 1 — ¢], B denotes a Brownian
bridge sample path and C the corresponding concave majorant. The Le-norms on [0, 1] of
the slopes of the concave majorants of the “clipped pieces” B; and C, are given by
supse.« fo,1) Be dJ and supse.« [, C: dJJ, respectively (for details on this representation,
see Groeneboom and Pyke, 1983). The concave majorant of the function C, is the same as
the concave majorant of the function
C(u), u=tandu=1-—4¢

Di(u) = {Bt(u), elsewhere.

Thus supgse.« [©0,1 C: dJ = supse .« f0,1) D: dJ, implying (since —¢t'*> < J(¢t) < (1 — t)™*?)

SupJeJ{j CidJ —A(t, 1 — t)'
©,1)

SupJe.« f D, dJ — supJMJ’ B, dJ '
0,1)

©,1)
= 2t7max{|B(t) — C(t)|, | B(1 — t) — C(1 — t)}.

By (3.15) and (3.16), the last expression is bounded in probability. The result now follows
from Lemma 3.2, since

1—¢ 1/2
supJej,J C.dJ = { tTICHt) + tTICPA — ) + j Sz du} . 0
©,1) t

Using the preceding lemmas, we can now derive the limiting distribution of the L;-norm
of the slope of the concave majorant of the empirical process.

THEOREM 3.2. Let {U,(t): t € [0, 1]} be the empirical process{\/;z (Fn(t) —t): tE
[0, 11}, where F, is the empirical df of a sample of n uniform random variables on

[0, 1], and let S,.(t) be the slope of the concave majorant of U, at time t. Then

1
(3.17) {J’ SZ(t) dt — log n}/\/3 logn—4Z, as n— o,
0

where Z is a standard normal random variable.
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Proor. By Lemmas 3.2 and 3.3 we only have to prove
1 1-1/n
f S2(t) dt — J’ S2(t) dt =0,(Vlog n), as n—
0

1/n
where the S, are slopes of concave majorants of Brownian bridges such that
sup:e 1| Un(t) = Bn(8)| = O,((log n)/Vn),
as n — . But this is proved in Groeneboom and Pyke (1983), pages 341 and 342. O
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