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SOME MORE RESULTS ON INCREMENTS
OF THE WIENER PROCESS

By D. L. HANsoN AND RaLPH P. Russo
S.U.N.Y.—Binghamton and S.U.N.Y.—Buffalo

Let W(T') for 0 = T < « be a standard Weiner process and suppose that
¢ and by, are fixed sequences of real numbers satisfying 0 < ¢x < b, < . Let
K(w) be the set of limit points (as T'— ) of

W(brw) — Wicrw)
(2(bx — cx)[log(br/ (b — cx)) + log log b:]}"7*
where w is a point in the probability space on which W(T') is defined. We give

necessary conditions on b and c¢: to have K(w) = [—1, 1] a.s. We also give
some related results and discuss sharpness.

1. Introduction Let W(T) for 0 = T' < » be a standard Wiener process. Csorg6 and
Révész, in [1], studied the behavior of increments of the form W(T) — W(T — ar). In
particular, they obtained conditions under which

W(t+ s) — W(t)
0=s=er 3arllog(T/ar) + log log T1)”

and they proved ((5) of Theorem 2 of [1]) that if
(12a) O0<ar=T,

(1.1) lim supr_..maxXy<;< g, <1 as.

(12b) ar is nondecreasing, and
(1.2¢) ar/T is nonincreasing,
then

W(T + ar) — W(T)

. i oo
(1.3) RSP T= To arlog(T/ar) + log log T1]

7 =1 as.

We have been interested in variants of (1.1) and (1.3) motivated by a particular problem
involving partial sums of independent random variables. In [2] we presented our theorems
giving results similar to (1.1). The main purpose of this paper is to present results giving
conclusions similar to (1.3).

Our results are stated and discussed in Section 2. They are proved in Section 3. We give
only a few references at the end of this paper. A more extensive list is in [2].

2. Our results. Throughout this paper #(A) will denote the number of elements in
the set A,

(2.1) log x = log(max{x, 1}) and log log x = log log(max{x, e})

so that log x = 0 and log log x = 0 for all x, and C will denote various positive constants
whose exact numerical values do not matter so that, for example, 1 + C = C might appear
in this notation. We will write A + B for A U B and ), A; for U A; when the sets involved
in the union are pairwise disjoint (if we wish to emphasize the disjointness), and we will let
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p denote Lebesgue measure restricted to the Borel measurable sets. We will write
Yer<Yd, (or T or=)

if ¢, = d for all sufficiently large k—so Y.d;. diverges if ) ¢, diverges.
Let w be any point in the probability space on which W(T) is defined. We use the
following notation:
(2.2a) L(w) is the set of limit points (as T'— ) of
W(T; w) — W(T — ar; w)
{2ar[log(T/ar) + log log T]}?

and, if e > 0and 0 =< ¢; < by <  for all &,

(2.2b) K (w) is the set of limit points (as £ — ) of
W(bi; w) — W(er; ) .
{2(br — cx)[log(br/(bx — cx)) + log log b; [}’
(2.2¢) ci=max{c, ebr};

(2.2d) S, =UZ-; (ck, be], and S; = S, N [e, ).

THEOREM 2.1. Suppose 0 <c,<bp<x fork=1,2, ... and that there is some ¢ in
(0, 1) such that one of the following holds:

(2.32)  lim infre.. T ([0, T]N S,) > 0,

dt
(2.3b) IS,Ft(Tgtj = + oo, Or

dt
) — = <1l
(2.3c) J’S; tlog )7 +ooforally<l1
Then P{K(w) D [-1, 1]} = 1. If, in addition, (by — c¢)(br)* — © as k — o for every a >
0, then P{K(w) =[-1,1]} = L

THEOREM 2.2. Suppose ar is measurable and that 0 < ar = T for all T > 0. Then
P{L(w) D[-1, 1]} = 1. If, in addition, arT* — © as T — » for all a > 0, then P{L(w)
=[-1,1]} =1

COROLLARY 2.1. If aris measurable and 0 < ar = T for all T > 0, then
W(T) - W(T - aT)
7 = 1 a.s.
{2ar[log(T/ar) + log log T}

(2.4) lim supr,«

COROLLARY 2.2. Suppose cr is measurable, 0 < cr < br for all T, br is continuous,
and by — o as T — «. Then
W(br) — W(er) =1 as
{2(br — cr)[log(br/(br — cr)) + log log br]}*% "

Now let v and N be positive integers and let K(w) be the set of limit points of the
sequence [W(N) — W(N — kn)]/{2kn[log(N/kx) + log log N]}V2.

(2.5) lim sup7_«

COROLLARY 2.3. Ifl=<kn=N for all N then
W(N) — W(N — k)
{2kn[log(N/En) + log log N1}

and, in fact, P{K(w) =[-1,1]} = L

=1 as.

(2.6) lim supy—w
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For notational convenience we define
2.7 d(¢, a) = {2a[log(¢/a) + log log t]}"2

In [2] we used the denominator §(7, a) = {2a[log(T/a) + log log a]}'/? instead of the
denominator d(7, a) which is used in this paper and by Cs6rgé and Révész in [1]. (Le., in
that paper we used the term log log a instead of log log T'.) Now &(T, a)/d(T, a) — 1 as
T — oo uniformly for 0 < a < T (for fixed v in (0, 1) consider separately the cases a < T
and T" = a) so that, since our results in this paper are asymptotic, we get the same results
with either denominator.

If we think of W(T + ar) — W(T) as being a “lead increment” (in the sense that the
interval (T, T + ar] leads T) and W(T) — W(T — ar) as being a “lag increment”, then
when ¢ = T — arin the various Csorgé and Révész theorems from [1] they get the weighted
lag increment [W(T') — W(T — ar)]/d(T, ar). This would have been the “natural” thing
for them to look at in their Theorem 2; in fact, if one looks at their proof starting with
“Step 2” on page 735, they actually deal with lag increments instead of with lead
increments. Their results are stated in terms of lead increments, apparently because they
want to compare their results with those of Lai in [3] and [4]. Note that, when dealing
with lag increments, it is possible to obtain a lower bound of one on lim supr_..[W(T) —
WA(T — ar)]/d(T, ar) without making any assumptions whatsoever on ar (except 0 < ar
= T). (See our Corollary 2.1. Also see Theorem 2.2.) The corresponding “Theorem” for
lead sums can be shown, by example, to be false without additional assumption(s) on ar.
If we let cr = T and by = T + ar then, if ar = 0 and ar is continuous, our Corollary 2.2
gives a generalization of the Csorgé-Révész result for lead sums. (Note that, as stated by
Csorgé and Révész in the middle of page 735 of [1], their conditions—ar nondecreasing
and ar/T nonincreasing—imply that ar is continuous.)

The proof of Theorem 2.2 involves looking at sequences [ W(T:) — W(T, — ar,)]/d(Ty,
ar,) for certain sequences T}. Our results in Lemma 3.2 and Theorem 2.1 came out of our
efforts to deal with the problem of this paper for sequences rather than for the continuous
case. If

(2.8a) bp—> wask— o,

(2.8b) br-1=c; forall k=2 and

(2.8¢c) there is an & > 0 such that eby = ¢, < (1 — ¢) by, for all &,

then condition (2.3c) is exactly what is needed to obtain

(2.9) Lim supe—e[ W(be) — W(ck)1/d(br, b — cz) =1 as.

Le., (2.3c) is necessary and sufficient for (2.9) in this case (as can be seen from our proofs).
However, we have an example showing that Theorem 2.1 is false if (2.3) is not assumed. In
particular, we have a sequence {(bz, cx)} for which (2.3c) is violated for every & in (0, 1)
and for which lim sups..[W(br) — W(ce)1/d(br, br — c1) < 1 a.s. We have another
example where (2.3c) is violated but where (2.9) holds anyway.

3. Proofs.

LeMMA 3.1. For each fixed a >0, d(t, a) is an increasing function of t for t = a. For
each fixed t = exp{e®}, d(¢, a) is an increasing function of a for 0 < a < ¢.

The proof of this lemma is straightforward and omitted.
We now prove the following simplified version of Theorem 2.1 as a lemma.

LEMMA 3.2. Suppose0=cr<br<xfork=12, ...;that0<e<1;that c, = eb, for
all k; that by — © as k — ; and that (2.3a) or (2.3b) or (2.3c) holds. Then P{K(w) D
[-1,1]} = 1.



1012 D. L. HANSON AND R. P. RUSSO

Proor oF LEMMA 3.2. Obviously (2.3b) implies (2.3c). It is also true that (2.3a) implies
(2.3b). Thus it suffices to prove this lemma under the assumption that (2.3c) is true.

Let Z, = [W(br) — W(cr)]/d(br, br — ci). To prove that P{K(w) D [-1,1]} =1 it
suffices to prove that for every pair (d, d’) with0 <d <d’'<1lor —1<d < d’ <0 there
is a set K (possibly depending on (d, d’)) such that P{Z, € [d, d’] for infinitely many £’s
in K} = 1. The argument for the case —1 < d < d’ < 0 is like the argument for the case 0
< d < d’ <1 and will be omitted.

Fix 0 < d < d’ < 1. Note that ¢, =c}, for all k. Choose A > 1/¢ and note that
3.1) by = A" implies ¢, > A*"", and c; < A" implies b, < A™*.,

For £ = 1let I, = (A*’, A*] N S.. Let y = (d’)? and define the measure ¢ on the Borel
subsets by

1
(3.2) O’(A) = Lml[e,m)(t) dt.

Fix n. Let S,1 = {(ck, be]| L. N (ck, br] # ¢}. Because cx = by, > bx/\ we have
3.3) AN2< cpand by <A™ for all (cz, br] € S,

Because b, — o (and hence ¢; — ®) as k — «, %, is a finite collection. Let .%, 2 =
{J, ++-, Jn} be a minimal subcollection of .#,; which has the property that
Uses,,J = Uses, J. (Le, if #* is any proper subcollection of %, then Ujec,+dJ #
Uses,,J.) Suppose oJ; = (cx, be,] and that the indices are chosen so that bp, = oo = by,
Then because of the minimality of .7, »

(3.4a) br, < by, for i=1,.--,m—1,and

i+1

(3.4b) by, =cp,, for i=1...,m—2
Thus if we define % = {J; € S, 2: i is odd} and £ = {J; € S, .: [ is even}
(3.5) 4% and £ are both collections of pairwise disjoints intervals.
Let .#, be either % or .%, the choice being made so that
(3.6) e o) = % o(Usesad) = % 06(Uses,d).

Now let Ko = {&|(cz, br] € S, for some odd n} and let K. = {&|(ck, bx] € £, for some
even n} except that if several indices give the same interval (c, ], at most one of those
indices is in K, and at most one of those indices is in K,. Then

{(cr, Br]| R € Ko} = {(cr, br]|(ck, br] € S, for some odd n} and {(c:, & ]| kE K.}
and both pairwise disjoint collections of sets. Define
So = Yreko (Cr, br] = Ynodd Yuecsm J
and
Se = Yrek. (Cky br] = Yneven Dues, J.
Then by (3.6), the fact that Yes,, J D I, and (2.3c), we have
0(So) + 0(Se) = X5-1 6(Tsemd) = % Yia-1 06(Use.,,J)
= % Ya-10(I,) = % js; t(%gttydt = +oo,

Thus either o(Sp) = +, or 6(S.) = +x, or both.
If 6(So) = +o let K = Ky and S = Sp; otherwise let K = K, and S = S.. In either case

a7 dt _
@ flognyr
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Since {(cz, dr]: B € K} is a collection of pairwise disjoint sets, {Z;: £ € K} is an
independent collection of random variables. Hence, to prove that
P{Z, € [d, d’'] for infinitely many k’sin K} = 1
we need only prove that
Yrexk P{Zr € [d, d']} = +c.

Note that, because ¢ < ¢ by,

(38 bi—a (" dt  _ aloge) [* dt (" at
8) br(log br)Y . br(log b)Y — br(log b)Y s t(log t)7~8 o0 t(log t)*’

Let Z denote a unit normal random variable and let
Dy, = [d{2 log[(brlog bx)/(bx — cx)1}'%, d’{ 2 log[(brlog br)/(bx — cx)]}*].
We have for fixed0<d < d’'<1
Yrex P{Zr € (d,d’)} = Yrex P{Z € D}

1/2
b
=CYrex [log <M)] exp{—(d’)zlog <%)}

bk — Cp k
bk — Ck @ bk — Ck
= C laer (bklog bk) = C2rex g llog by

by,
dt dt
= C Zrex L tlog 0 CLt(log D

This completes the proof of Lemma 3.2.

Proor oF THEOREM 2.1. As was the case with Lemma 3.2, it suffices to prove this
theorem under the assumption that (2.3c) holds.

We will argue that it suffices to consider {(cx, bz)} such that b, — « as 2 — . That will
enable us to use Lemma 3.2 in our proof. Fix A > 1. Let I; = [0, A] and for n > 1 let I, =
(A1, A*]. For y < 1 define, for Borel sets A,

1
a,(A) = Lml[e,m)(t) dt.

For each positive integer n there exists a finite subset S, of the positive integers such that
k € S, implies (¢}, b:] N I, # ¢ and such that

(3.9) 6121, N (S — Ures, (ck, br])] <27

Define S* =U3-; S, and R = (Unes+(¢cx, bn]) NS.. Then 01/2(S. — R) < 1s0 ¢,(S: — R)
< 1for all yin [1/2, 1). Thus [z (d¢/t(log ¢)) = + for all y in [1/2, 1) and hence for all
v in (0, 1). In addition, b, < A" for only finitely many k’s in S* (it is possible only for & €
U=l Sr) 80 limy—w,kese b = . To prove that P{K(w) D [—1, 1]} it suffices to prove the
same result for some subsequence. We shall do so for the k’s in S* but, in order to reduce
notational problems, will simply assume that b, — « in the original theorem statement
instead. Call the original ¢ of the theorem &. For each ¢ in (0, &] we write

(3.10) [W(br) — W(ce)l/d(br, br — &) = Ui R; + V3 S;
where

(3.10a) Uk = [W(be) — W(ck))/d(be, br — ci),

(3.10b) R = d(be, bx — ci)/d(br, b — c1),

(3.10c) Vi=[W(ct) — W(c))/d(ck, max{1, ¢ — c:}), and
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._J]0 if cp = ci
(3.10d) Si = {d(cz, max(l, ¢§ — ca})/d(be, be — cz) otherwise.

Now if (2.3c) is satisfied for some epsilon, in particular for &, it is satisfied for every
smaller epsilon. Thus the conditions for Lemma 3.2 are satisfied and

(3.11) the set of limit points (as 2 — ) of {U;} contains[—1, 1].
Using Lemma 3.1 we see that for all b, large enough
1=d(bx, br — c&)/d(br, br — cz) = Ri = d(be, by (1 —€))/d(br, b — 0)
= {(1 - ¢) [log(1/(1 — ¢)) + log log b:)/log log b, }'/*
so that
(3.12) lim infs.R% = (1 —¢)"? and lim sups_.R} =< 1.
Since ci. = eb, — o, it follows immediately from (3.9b) of Theorem 3.1 of [2] that
(3.13) lim sups—«| Vi| =1 as.

Again using Lemma 3.1 we get

1/2
0=S;< d(ebg, ebr) _ € log log b:
d(be, (1 —€)br) 1 —¢/\log(1/(1 —¢)) + log log b
so that

(3.14) 0=<S; forall 2 and lim sup:..Si=< (¢/(1 —¢))"2

Putting (3.10) through (3.14) together we see that, with probability one, if -1 = x < 1
then there is a limit point of {[ W(bs) — W(c)]/d(br, br — cz)} within a distance of
|x](1 — V1 —¢) + Ve/(1 — €) from x. Since ¢ > 0 was arbitrary (as long as ¢ < g, this
proves that P{K(w) D[-1,1]} = 1.

That P{K(w) = [—1, 1]} = 1 under our additional assumptions follows immediately
from Theorem 3.1 of [2].

Proor oF THEOREM 2.2. To prove that P{L(w) D [—1, 1]} =1 it suffices to prove that
P{K(w) D[-1, 1]} = 1 for some appropriate sequence (by, cz) = (¢, tr — as,).

Fix ¢ in (0, 1) and let C(¢) = max{¢ — a., e¢}. For each positive integer n let %, ; =
{(C(¢), t]: t € [n, n + 1]}. Each interval I in .%, ; can be expressed in the form (a — b, a
+ b] for some @ and b. Then 5,s = {(@a — b, a + 3b/2): (a — b, a + b] € 5,1} is an open
cover of [n, n + 1] so has some finite subcover .#, 5. Suppose %, 3 has &, elements. If we
define a,, = Y71 k. and properly index the J’s we can then write %, 3 = { Ji: ano1 < b <
an}. Let (cx, t] with ¢, = max{#, — a.,, et} be the member of .4, ; corresponding to Jx.
Setting by = t, the sequence {(cx, bx)} satisfiles 0 <c, < by <oofork=1,2, ... and cs
= &by, for all k. “Without loss of generality” we assume that {Jy, ---, J; } is a minimal
open cover of [1, N] ordered so that the right endpoint of ¢J; is less than the right endpoint
of Ji if i < k. As in the proof of Lemma 3.2, if % = {(k: 1 =k < an, k£ 0dd} and % = {k: 1
=k = as, k even}, then { J,: £ € %} and { J;: k € £} are pairwise disjoint collections of
open sets. Let # = % if u([1, N] NUres Jr) > n/2. Otherwise let .# = .%. Then, since
Zke.f (er, ] C (0, n + 1],

p([0,n+ 11N 8S) = p{[0,n + 11N Yre.s (ck, & ]}
Zp{[0,n+ 1] N Uresdr} — respml(Jr — (ck, :])

=% = Thes k= 0)/5 22— (n+ 1)/5 = [3(n +1) - 5)/10.
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It follows that lim infr_,. T~ 'u([0, T] N S.) = 3/10. An application of Theorem 2.1 shows
that P{K(w) D [-1, 1]} = 1 so that P{L(w) D [-1, 1]} = 1. As before, it follows
immediately from Theorem 3.1 of [2] that P{L(w) = [-1, 1]} = 1 under our additional
assumptions.

PrOOF OF COROLLARY 2.1. This is an immediate consequence of the first part of
Theorem 2.2.

PrOOF OF COROLLARY 2.2. Suppose £, = max{¢: b, = b} and S = {#;: b = bo}. Define
a} = b — a;,. Then from Corollary 2.1

lim sup;—o[ W(b:) — W(a:)]/d(b:, b — a:)
= lim sup;—w,tes[ W(b:) — W(a,)1/d (b, b: — a.)
= lim sups_[ W(b) — W(b — a})]/d(b, ai) = 1 as.

Proor oF COROLLARY 2.3. This is an immediate consequence of Theorem 2.1.
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