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ON THE FIRST PASSAGE TIME DISTRIBUTION FOR A CLASS OF
MARKOV CHAINS

By MARK BROWN' AND NARASINGA R. CHAGANTY
City College, CUNY and Old Dominion University

Consider a stochastically monotone chain with monotone paths on a
partially ordered countable set S. Let C be an increasing subset of S with
finite complement. Then the first passage time from i € S to C is shown to be
IFRA (increasing failure rate on the average). Several applications are pre-
sented including coherent systems, shock models, and convolutions of IFRA
distributions.

1. Introduction. Let S be a countable set with a partial ordering denoted by <.
Consider a discrete time Markov chain {X,, n = 0} with state space S, and transition
matrix P. Define the Markov chain to have monotone paths if Pr(X,.; = X,,) = 1. Define
C C S to be an increasing set if { € C and j = i implies j € C. Define the Markov chain to
be stochastically monotone if i < j implies P(i, C) < P(j, C) for all increasing sets C.

For a state { and set C define T'(i, C) to be the first passage time from i to C, with
TG, C)=0ifi € C, and T(i, C) = » if Cis never reached. Our main result (Theorem 1) is
that for a stochastically monotone Markov chain with monotone paths on a partially
ordered countable set, T'(, C) is IFRA for all states i and all increasing sets C with finite
complement. (See Section 2 for a definition of IFRA).

Conversely, every discrete IFRA distribution is either a first passage time distribution
of the above described type or the limit of a sequence of such distributions (Corollary 1).

Several applications of Theorem 1 are presented in Section 5. These include coherent
systems, shock models, convolutions of IFRA distributions, multinomial distributions, and
sampling. In these applications S is a subset of R" and the partial ordering is defined by
x=yifandonlyif x; < y;,, i = 1, ..., n. The possibility exists for applications to a wider
class of partially ordered sets, for example those studied in combinatorial theory (Rota
[14]).

The question arises as to whether the conclusion of Theorem 1 can be strengthened
from IFRA to IFR. An example is given to show that even for a totally ordered set the first
passage time need not be IFR. However for a Markov chain on the positive integers with
TP, transition matrix the first passage time from 1to {i:i>n},n=1, 2, ... is IFR. This
is proved in Section 6.2.

Examples are given which demonstrate that even for a totally ordered set the IFRA
conclusion does not follow for a stochastically monotone chain without monotone paths
nor for a non-stochastically monotone chain with monotone paths.

By a uniformization and total positivity argument the result (Theorem 1) extends to
continuous time Markov chains with countable state space. An analogue of Theorem 1
undoubtedly holds for continuous state space. The restriction that the complement of C be
finite appears to be a limitation of our methodology rather than an essential condition.

2. Main result. A random variable Y taking valuesin {0, 1, - .., «} is defined to be
IFRA if either Pr(Y = 0) = 1, or Pr(Y = 0) = 0 and [Pr(Y > %)]"/* is decreasing in % = 1,
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2, +-.. Included as IFRA is the case Pr(Y = o) = 1. Note that if Y is IFRA and
Pr(Y < «) >0 then Pr(Y < ©) = 1.

Thus if T(i, C) is IFRA then either i € C (in which case T'(i, C) = 0), or starting in i it
is impossible to reach C (in which case T'(i, C) = «), or Pr(T(i, C) = 0) = Pr(T(i, C) = »)
= 0 and [Pr(T(, C) > k)]"* is decreasing.

A real-valued function f on a partially ordered set D is defined to be decreasing if
di=d; implies f(d]) = f(dz)

Lemma 1 below is a rather trivial result, but for lack of a reference we include a proof
in the appendix.

LEMMA 1. Let fbe a decreasing real-valued function on a finite partially ordered set
D. Then the points in D can be labeled in such a way that f(d:) < f(dz) --- < f(dn»), and
for i < j, d; £ d; (d; is not smaller than d; under the partial ordering).

THEOREM 1. Let {X,, n = 0} be a stochastically monotone Markov chain with
monotone paths on the partially ordered countable set S. Let C be an increasing set with
C (the complement of C in S) finite. Then T(i, C), the first passage time from state i to set
C, is IFRA.

ProoF. Define Fy(i, C) = Pr(T(i, C) > k). Our goal is to prove that [F.(, C)]/* is
decreasing, equivalently that:
(1) [Fr(G, OV = [Frn(G, O, k=1,2,---.

The proof is by induction. We first show that (1) holds for %2 = 1. It is trivially true for
i € C. For i € C by the monotone path assumption:

(2) Fu(i, C) = Tp=ipei PG, b)P(b, ©).
By stochastic monotonicity b = i implies P(i, C) = P(b, C), thus from (2):
(3) F2(l’ C) = P(i, 6) Ebai,beﬁp(i, b) = (F‘I(la é))z-

Assume now that (1) holds for 2 = 1, - - -, [, for all increasing sets with finite complement.
Define P, to be the & step transition matrix for the Markov chain. Now:

(4) (Fra i, ©))*? = Fru1(G, O)[Toet PiCG, b)P(b, O)T.

By stochastic monotonicity P(b, C) is decreasing in b. Since C is finite, it follows from
Lemma 1 that we can label the finitely many points in € by by, - - -, b. in such a way that
P(b;, C) <= P(by, C) < .- . < P(bn, C) and for i < j, b;  b; (b; is not smaller than b, under
the partial ordering). It follows that the sets Dy = Coand Dj=C — (by, -+, b}, j =1,
..., m — 1, are finite sets which are complements of increasing sets. The induction
hypothesis is thus applicable to these sets. Define a; = P(b;, ) and a; = P(b;, &) -
P(b;_,, 0), j =2, -++, m, and note that the b’s have been labeled so that:

(5) a;j=0, j=1,.--,m.

Next:

(6) FriG, C) = Y Pu(i, by) Yje1 aj = Y71 aiPi(i, Dyj—1).
By the induction hypothesis:

)] Py(i, Dj—y) = [Pi1(Q, D-1) 17D, j=1, ..., m.

Note that in (7) if i & D,_1, then both sides equal zero, and (7) is valid.
By (4), (5), (6) and (7):

®) [Fui(G, 012 = [(Fui(G, )Y T7s ap(Praa (i, Dj—1)) 0T
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But, € D Dj_;; by this fact and the monotone path assumption:
) F11(G, C) = Pu1(i, €) = Pra(G, Djmy), j=1, -+, m.
The result now follows from (6) (applied to [ + 1), (8) and (9).0

3. Continuous time. Consider a stochastically monotone Markov chain with mon-
otone paths and countable state space. Suppose that changes of state occur according to
a Poisson process with rate A. Define T*(i, C) to be the first passage time (in continuous
time) from state i to C, an increasing set with finite complement. Now:

k_—At
Pr(T*G, C) > t) = 2;‘;09%,"’—— Pr(TG, C) > k).

By Theorem 1 and Theorem 3.6, page 93 of Barlow and Proschan [1], T*(i, C) is IFRA.

Next, consider a continuous time Markov chain with infinitesimal matrix A taking
values in a partially ordered countable set. Assume that the Markov chain has monotone
paths, equivalently that A(Z, j) # 0 implies i < j. Assume that the process is uniformizable,
i.e. that sup(—A(i, i)) < . Finally, assume that A(i, C) = Yec A(Z, 1) = A(j, C) for all
increasing sets C, and i < j with both i and j in C.

By Cinlar [4] page 260, the Markov process is representable as a Markov chain with
transition matrix P = I + A/ for which transitions occur according to a Poisson process
of rate A. The Markov chain with transition matrix P inherits monotone paths. In view of
monotone paths, the condition A(i, C) = Y.ec A(i, I) = A(j, C) for all increasing sets C and
i < j with both ¢ and j in € insures that the Markov chain is stochastically monotone. It
follows from Theorem 1 and the remarks at the beginning of this section that if C is an
increasing set with finite complement then the first passage time to C for the continuous
time process is IFRA. To summarize:

CoROLLARY 1. (i) Consider a Markov chain of the type described in Theorem 1.
Suppose that transitions occur according to a Poisson process. Then the first passage
time in continuous time from i & C to C, an increasing set with finite complement, is
IFRA.

(ii) Consider a Markov chain in continuous time with countable partially ordered
state space and infinitesimal matrix A. Assume that:

(1) sup(—A(, i) <
(i) A(Z, j) # 0 impliesi=<j
(iii) A(i, C) = A(J, C) for all increasing sets C with finite complement, and pairs of states
(i, j) with i < j and i, j both in C.

Then the first passage time from i & C to C, an increasing set with finite complement,

is IFRA.

4. Converse. We will reinterpret a result of Birnbaum, Esary, and Marshall [2]
(described in Barlow and Proschan [1], Theorem 2.13, page 88) in terms of Markov chains.
The analogue of their result in the discrete case provides a converse to Theorem 1.

The result is that every IFRA distribution in continuous time is either the system life
for a coherent system of independent exponential components, or is the limit distribution
of a sequence of such system lives. But a coherent system of n independent exponential
components is a continuous time Markov process on the set of the 2" n-tuples of 0’s and 1’s
with partial ordering x < y if and only if x; < y;, i = 1, --., n. Moreover the process is
stochastically monotone with monotone paths and the system lifetime is the first passage
time to an increasing set. Thus every IFRA distribution in continuous time is either a first
passage time distribution of the above described type or the limit of a sequence of such
first passage time distributions.

Replacing continuous time by discrete time and exponential distributions by geometric
distributions, we can imitate their proof and obtain the following result.
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LEMMA 2. Every IFRA distribution in discrete time is either the first passage time
distribution to an increasing set for a stochastically monotone Markov chain with
monotone paths on a partially ordered finite set, or the limit of a sequence of such
distributions.

5. Applications.

5.1 Coherent systems. Consider a coherent system of n independent components
(Barlow and Proschan [1], Chapter 1, Section 2). Assume that the survival function for
component i is given by (F(¢)), i = 1, . - ., n where F is continuous. This is known as the
proportional hazard assumption. Each component starts off in state 0, remains in 0 until
failure, at which time it switches to state 1 and stays there forever. The system fails as
soon as the state vector visits B, an increasing set. In this case S is the set of 2" n-tuples of
0’s and 1’s with partial orderx <y e x; < y,i=1, .-, n.

Consider the embedded discrete time process, starting in state (0, - - -, 0), and changing
state each time a component fails. Under the proportional hazard assumption this process
is a Markov chain. If the set of working components at a given instant is A, then given that
a change of state occurs, the probability that component i € A failed is given by Ai/Ya A;.
The Markov chain is easily seen to be stochastically monotone with monotone paths.
Therefore by Theorem 1 the number of component failures until system failure is IFRA.
This generalizes a result of Ross, Shashahani, and Weiss [13], who proved the IFRA
property in the case of i.i.d. components with continuous distribution (A; = A).

By Corollary 1, if the component lifetimes are exponential then the time to first failure
for the continuous time process is IFRA. This is a special case of the IFRA closure theorem
(Barlow and Proschan [1] page 85).

5.2. Shock models. Assume that Y;, Y5, .- - are iid. vectors of dimension %2 and of
arithmetic type. The set & consists of vectors of the form (Ajw;, - --, Arw:) where w =
(w1, ---, wy) is a fixed vector of positive numbers and the A’s are non-negative integer
valued. Define S, = ¥t Y;, n =1, 2, ---. Then {S,, n = 1} is a stochastically monotone
Markov chain with monotone paths, and Theorem 1 is applicable. Let g be a function, R%
— R, = [0, ), which is increasing in each argument and which goes to % as x; — « with
(%1, *++, Xio1, Xit1, *++, Xz) held fixed, for i = 1, - .., k. Then the first n such that g(S.)
exceeds a given constant y is IFRA. This is true because the set {x: g(x) > y} is an
increasing set with finite complement.

Interpreting Y; as the joint damage to £ components due to the ith shock, g as the rule
for converting component damage into system damage, and y as the damage threshold
beyond which the system fails, it follows that the number of shocks required for system
failure is IFRA.

More generally the damage caused by a shock may depend on the previously accumu-
lated damage. As long as damage is non-negative and the Markov chain remains stochast-
ically monotone, the IFRA conclusion will hold.

If shocks occur in time according to a Poisson process then by Corollary 1 the waiting
time (in continuous time) until system failure is IFRA.

Finally if the damages are not of arithmetic type, i.e. concentrated on a set & as
described above, but are still componentwise non-negative, then by passage to the limit
through approximating vectors of arithmetic type it follows that the time to system failure
is IFRA. This is true for the discrete time process and for the continuous time process
when shocks occur according to a Poisson process.

Thus the classic shock model results of Esary, Marshall, and Proschan [7] are derivable
from Theorem 1 and Corollary 1. Moreover the current results are more general in that
they allow for vector valued component damages and general system damage function g.

5.3. Multinomial distribution. Suppose that Z, Zs, --- are i.i.d. with Pr(Z = j) = p;,
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j=1, .-+, k Yt p;=1. Define

Yy = {é :f g#j Sw=31Ys and Su=(Su, ---,Sw).
The random variable S,; is the number of times that j appears among Z;, ---, Z,, and S,
is thus multinomially distributed. The Markov chain {S,, n = 1} is of the type considered
in Section (5.2), the partial sums of i.i.d. random vectors with arithmetic distribution.

It follows that the number of observations required until at least r categories each
appear at least m times is IFRA. The famous birthday problem (Feller [8] page 31) is an
application with » = 1 and m = 2. For any distribution of births over the days of the year,
the number of people sampled until two have the same birthday is IFRA.

5.4. Sampling with or without replacement. Sampling with replacement is covered
by 5.3 above. For sampling without replacement, suppose that an urn contains m; balls of
color i, i =1, ..., k. Then the following random variables are IFRA. The number of balls
sampled until all balls of at least one color are depleted; until at least one ball of each color
is sampled; until at least r; balls of type i, i = 1, - - -, k are sampled; until at least [ of the
events Ay, .-, A, occur, where A; = {at least r; balls of type i are sampled}. The last case
includes the first three.

5.5. Convolutions. The closure of IFRA distributions under convolutions was proved
by Block and Savits [3]. We now present a different proof of this result.

Consider, first, IFRA distributions in continuous time. By the result of Birnbaum, Esary
and Marshall [2], discussed in Section 4, it suffices to show that the convolution of two
IFRA distributions, each of which is the system life for a coherent system of independent
exponential components, is IFRA.

Let T1(T:) be the system life for a coherent system of n(m) independent exponential
components with failure rates A;, -« -, Ax(p1, + -+, tn). For each system define the state at
time ¢ to be the set of failed components at time ¢. The state space for system 1(2) is
(%), the set of all subsets of {1, --., n}({1, ---, m}). Define the partial ordering by «
=< B if a is a subset of B. Define C:(C:) to consist of all states for process 1(2) which
correspond to system failure. Since the systems are coherent C; and C. are increasing.
Define A;(A2) to be the infinitesimal generator for process 1(2). Then:

A o' =a+i,i€a
Ao, a’) =9 -YzNi; o' =a
0; elsewhere

with A, similarly defined.
Define a new Markov process with state space & X % by the infinitesimal generator:

i o' =a+i,i€EqB =8 .

s o =a,a€C, B =p+j,JER
(100  A((e, B), (@', B")) =% —2a\i; a'=a p =8a€ C

Sz +Y5u); a'=a, B =B,a€ C

0; elsewhere

The Markov process with generator A can be described by {(X:1(¢), X2(¢)), ¢ = 0} where
X evolves according to A; while X, remains fixed at X;(0) until X; enters C;. At that point
X and X; independently evolve governed by A; and A, respectively. The first passage time
to C; X C; is thus the sum of T and T> where T and T are independent. The Markov
chain governed by A under product partial ordering has monotone paths and its state
space is a finite partially ordered set. Moreover, C; X C: is increasing. It follows from
Corollary 1 that if the Markov chain is also stochastically monotone then T + T (the first
passage time to C; X C;) is IFRA. By Corollary 1 it thus suffices to show that for C
increasing and (a, 8) < (a’, B8’) with both (a, 8) and (a’, 8’) in € that:

(11) A((a, B), C) = A((’, B'), O).
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Towards this end define B; = {i:(a + i, 8) € C}, B = {j:(a, 8 + j) € C}, B} =
{i:(@’+1i,B8)€C},and Bi= {j: (o, B’ + j) € C}. Since C'is increasing it follows that B,
C Bi and B, C B3, and thus Y5 A < Y5, A; and Y5, gy < Y, ;. Define

1 lf a'E C1
Ha - {0 lf a e 61
and similarly define H, . Since a < a’ and C, is increasing it follows that H, < H, . Thus
for (o, B') € C, A((e, B), C) = 3, \i + (¥, ) Ho < Ty \i + (T, ) Hor = A((e/, B'), C),
so (11) is proved and T, + T, is IFRA.

A similar argument proves the closure of IFRA distributions in discrete time. If P;, P,
are transition matrices for stochastically monotone Markov chains with monotone paths
on partially ordered finite sets then a product space Markov chain is defined analogously
as in (10) by:

Pi(a, '); B=p,ac
P((a, B)y (a,) ﬁ,)) = Pl (ay a,)P2(B’ :3,); aE Cl
0; elsewhere.

The Markov chain with transition matrix P is of desired type and thus by Theorem 1
the first passage time to C; X C; (which is the sum of two independent IFRA distributions)
is IFRA. Lemma 2 is then invoked and the result follows.

6. Comments and additions.

6.1. The following example shows that under the conditions of Theorem 1, the conclu-
sion cannot be strengthened from IFRA to IFR even when the state space is totally
ordered. Let {Y;, i = 1} be i.i.d. with Pr(Y = 9) = Pr(Y = 2) = %. Define S, = MY,n=
1; S, is a Markov process on the integers. It is stochastically monotone and has monotone
paths. Consider, 7, the first passage time to {10, 11, 12, --.}. Now Pr(T = 2 | T=2)=%
while Pr(T' = 3| T = 3) = %; the distribution is not IFR. (A random variable T is defined
to be IFR if A, = Pr(T = k)/Pr(T = k) is increasing.)

6.2. Consider a Markov chain on [1, 2, - - .]. Assume that the transition matrix is TP,
ie. that P(i, j))P(i’, j') = P(i, j')P(i’, j) for all i < i’, j < j’. Lemma 3 below shows that the
first passage time from state 1 to C, = {i: i > n} is IFR (increasing failure rate) for n = 1,
2, ...

LEmMMA 3. In a Markov chain with state space {1, 2, - - -}, and TP; transition matrix
P, the first passage time T(1, Cy), from state 1 to C, = {i:i>n} isIFR forn=1,2, ---.

ProOF. Define Pi(1, i) = Pr(T(1, Ca) > kb, X =i|Xo=1),i =1, - -+, n. Then Ay, the
failure rate for 7(1, C,) at k is given by:

= Zil Pk—l(l) l)P(i) Cn)

12
(12) M Y Pl i)

k=1,2,...

Now, from (12):

Aess — Ao = lej<isn [P(ly Cn) - P(j, Cn)][Pk—l(]-y J)Pk (1’ l) - Pk—l (1’ l)Pk(l’ J)]
Pr1(1, C)Pi(1, C,)

It follows from Theorem 2.2 of Karlin [10] that:
(14) Py_i(1, )Pr(1, %) — Pr1(1, D) Pi(1, j) =0, for j<i.

(13)

Since TP2 implies stochastic monotonicity (Keilson and Kester [12], Remark 1.1):
(15) P(i, C,) = P(j,C,) for i=]j.
Thus from (13), (14) and (15), A is increasing and 7'(1, C,) is thus IFR. [
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The above proof also shows that if for some &, P(i, j) = O for all i = &, j < i, for the
Markov chain defined in Lemma 3, then T'(&%, C,) is IFR for n = i. In particular if the
Markov chain has monotone paths then the above holds for all 7.

6.3. Consider a birth and death process with birthrates A;, i = 0 and death rates o = 0,
and p;, ¢ = 1. Using different methods Keilson [11] and Derman, Ross and Schechner [6]
proved that the first passage time from 0 to n is IFR. Below is another proof based on
Lemma 3.

For convenience, set A, = 0 and consider the state space to be {0, ..., n},
this modification having no bearing on the first passage time from 0 to n. Choose ¢ =
2 maxi=i<n (A\; + ;) and consider a Markov chain on {0, - - -, n} with transition matrix:

Ai/e, i=0,--.,n—1,j=i+1
P, = ”‘i/c’ li=1)""n",:=lg_1
" 1-[(\+w)/el, i=0,--e,n,j=1
0 elsewhere.

Our choice of ¢ insures that P;,P, ;-1 = P;,_1P;_1,, from which it follows that the
transition matrix is 7P2. By Lemma 3, the first passage time from 0 to n for this discrete
time chain is IFR. Next, have transitions in this Markov chain occur according to a Poisson
process of rate c. The resulting continuous time process is the birth and death process
under consideration. Since the discrete time first passage time is IFR it follows from the
argument of Corollary 1 part (i) and exercise 7 page 98 of Barlow and Proschan [2], that
the first passage time from 0 to n for the continuous time process is IFR.

6.4. If the Markov chain is stochastically monotone but without monotone paths then
the IFRA conclusion need not hold. For example in the following chain the first passage
time from state 2 to state 3 is DFR (decreasing failure rate).

B 0 %
P={% 0 %
0 0 1

One might attribute the above example to the fact that starting in state 2 it is possible
to go to state 1 which has smaller failure rate than state 2 (i.e. P(1, 3) < P(2, 3)). This
might be eliminated if we require the chain to start in its smallest state. In the following
example however the first passage time from state 1 to state 3 is not IFRA.

1 9 0
P={1 0 9
0 0 1

Here Pr(T > 2) = .19 and Pr(T > 3) = .109, thus Pr*(T > 3) > Pr¥(T > 2) and
consequently T is not IFRA.

6.5. In the following example the Markov chain has monotone paths but is not
stochastically monotone. The first passage time from state 1 to state 3 is DFR.

0 % %
P={0 % Y
0 0 1

6.6. Consider a stochastically monotone Markov chain whose state space is a partially
ordered Polish space E, i.e. a complete separable metric space E endowed with a closed
partial ordering and with o-algebra generated by the open sets. Assume also that there
exists a point @ € E with a < x for all x € E. Let C be an increasing measurable set in E.
Then T(a, C), the first passage time from a to C is shown below to be NBU. A random
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variable on {0, 1, 2, - - .} is defined to be NBU if Pr(T = r + s) < Pr(T = r)Pr(T = s) for
r,s=1,2, -... The NBU property is weaker than IFRA.

To prove that T'(a, C) is NBU we first show that T'(x, C) is stochastically decreasing in
x. This follows since given x =< y, by Theorem 1 of Kamae, Krengel and O’Brien [9] we can
construct two Markov chains {X,,, n = 0} and {Y,, n = 0} on the same probability space,
both governed by the transition law of the given Markov chain, with X, = x, Yo = y and
X, = Y, as. for all n. Thus T(x, C) < n implies T(y, C) = n and T(x, C) is thus
stochastically larger than T'(y, C).

It follows that T'(a, C) is stochastically larger than T'(x, C) for all x € E. Thus T(a, C)
is stochastically larger than T(X*, C) where X is an E valued random variable whose
distribution is the conditional distribution of X, given that X, = a and T(a, C) = r. Thus
Pr(T(a, C) = r + s) = Pr(T(a, C) = r)Pr(T(X,, C) = s|T(a, C) = r) = Pr(T(a, C) =
rPr(T(X}, C) =s) = Pr(T(a, C) = r)Pr(T(a, C) = s), and T(a, C) is thus NBU.

6.7. The definition of IFRA for discrete distributions followed here (Section 2) is the
same as in Barlow-Proschan [1], page 94, and Block and Savits [4]. Ross, Shashahani and
Weiss [13] use the term SSLSF (star-shaped log survival function) for what we call IFRA,
and reserve the term IFRA for the weaker property, (1/k) Y%, Pr(T = i| T = i) increasing.

APPENDIX

ProOF OF LEMMA 1. Suppose first that f is constant over D. Define a point x to be
maximal in a partially ordered set A if x € A and for all y € A distinct from x, y Zx (y is
not bigger than x under the partial ordering). Clearly every finite partially ordered set has
at least one maximal point. Take a maximal point of D and label it d;; then take a maximal
point of D — d; and label it d;. Continue this process until one point remains and label it
dn. For i < j, since d; is maximal in a set containing dj, it follows that d, £ d;.

Next, consider a general decreasing function f over D. Let a; < a2 < - - - < ay denote the
distinct values of f(x) as x ranges over D. Define A; = {x:f(x) = a:}, set n; equal to the
number of elements in A;, m; =0 and m; = Y n;, i =2, - - -, k. Using the above result for
constant f label the points in A; as dn+1, + -+, dn,,, in such a way that m; + 1 =r<s=
mi implies d, £ d;.

This provides a labeling of the points in D which clearly has the desired properties.
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