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THE CLASS OF LIMIT LAWS FOR STOCHASTICALLY
COMPACT NORMED SUMS

By WiLrLiam E. PruItT!

University of Minnesota

Khintchine showed that every infinitely divisible law can be obtained as
the limit of a subsequence of normed sums of independent, identically distrib-
uted random variables. Here we restrict the summands to be in a class which
makes the normed sums stochastically compact, i.e. so that every subsequence
has a further subsequence which converges to a nondegenerate limit. A nice
analytic condition for stochastic compactness was obtained by Feller. Our
result is an analogous characterization of the class of limit laws of subsequences
of stochastically compact normed sums. One consequence is that they have
C* densities.

1. Introduction. Let X;, X;, - - - be independent, identically distributed nondegener-
ate random variables taking values in R' and S, = X; + --- + X,. Let X be a random
variable with the same distribution as X;, F its distribution function, and for x > 0 define

G(x) = P{|X|>x}, K(x)= x‘zj y* dF(y),

|yl=x
Qx)=Gx)+Kx) =E@x'|X| A1

We introduce a class of distributions

. G(x)
T = . _
F {F.hm SUPx—co e < 00}.
For X in the domain of attraction of a stable law of index a,
i G(x) _2-a
nlx—wo K(x) - «

so that % is much larger than the class of laws attracted to some stable law. Feller [1]
showed that F' € #is necessary and sufficient for there to exist sequences {v.}, {8} such
that the sequence {(S. — 8,)/v»} is stochastically compact, i.e. that every subsequence has
a further subsequence which converges weakly to a nondegenerate limit. Of course these
limit laws are necessarily infinitely divisible and with no restrictions on F, Khintchine
proved that every infinitely divisible law is a possible limit [2, page 184]. But in [3], in the
course of obtaining a lower bound for the distribution of S,, we noticed that for ¥ € &#
these limit laws for subsequences necessarily have C* densities. This then raised the
question: what is the class of all possible limit laws for these subsequences? It is the
purpose of this paper to answer this question.

The defining property of the class will be given in terms of the Lévy measure of the
infinitely divisible law that is a candidate for inclusion in the class. An infinitely divisible
law has characteristic function ¢ (1) = exp{y/(z)} where

iux
1+ x2

Y(u) = iua — % ou® + J (e"‘" -1- ) dv(x)

Received October 1982.

! Research supported by NSF MCS 78-01168.

AMS 1980 subject classification: 60F05.

Key words and phrases: Infinitely divisible laws, weak convergence, class %,

962

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability. BINORY

WWW.jstor.oFg



LIMIT LAWS FOR NORMED SUMS 963

where » is a (possibly infinite) measure on R'\ {0} satisfying

x2
J T 52 dr(x) < oo,

For convenience we will write v instead of (v, 6% a). For x > 0, define

G'(x) =v{y:|y| > x}, K*(x) = x‘2<02 +f

|yl=x

yidy (y))

Q'(x) = G*(x) + K’(x).

Then we may state our result:

THEOREM. Let
#={H:3F € 7 {&:}, {va}, and {m} D (Sy, — &,)/yn,= H}.
Then if H has Lévy measure v, H € 3#if and only if there exists a C > 0 such that
1) G’(x) = CK*(x) for all x € (0, ).

REMARK 1. If one requires that the {8,}, {y»} that make the sequence {(S, — 8,)/vx}
stochastically compact are to be used in the definition of £ the class remains the same
except that the degenerate laws are excluded.

REMARK 2. Since G”(x)} and x’K”(x)], the condition (1) is equivalent to the two
conditions
G’ (x)
K*(x)

provided that we exclude the degenerate laws so that the ratio G*/K” is well defined. Since
Ji=1 x% dv(x) < o implies that lim,_ox*G*(x) = 0, the first condition in (2) is always
satisfied when ¢® > 0. Thus, for example, while the Poisson distribution is not in #, the
convolution of the Poisson and the normal is in 5

Finally, it seems natural to ask how the class s# compares with the class # which
consists of all limit laws of normed sums of independent but not necessarily identically
distributed random variables. # is a “much larger” class than % but % is not contained in
H.

The proof of the theorem is in the next section. Incidentally, it turns out that we can
prove Khintchine’s result mentioned above with no extra work and then verify at the end
that (1) implies that the F constructed is in % The final section consists of the comparison
of # and %, the proof that members of 5# have C* densities, the observation that there
are no universal laws in % i.e., there is no law in .%# which is in the domain of partial
attraction of every law in 5, and the observation that # C # if the degenerate laws are
excluded. Note that this is true in spite of the fact that % is not closed under weak limits.
In proving this, we also show that @(x) and @”(x) are comparable for large x for any
infinitely divisible X.

2) lim sup:x—.o z; <o and lim sup;.. <

G
K"

2. The proof. First we will show that if H € 5 then (1) is satisfied. If F' has finite
second moment we will assume the mean is zero; this can be accomplished by incorporating
the mean with §,. We define for x > 0

M(x) = x‘lf y dF (y).
|yl==
Then, by the central convergence criterion [2, page 116] we have

@) limy.n2 G (xyn,) = G*(x),
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for all x that are continuity points of G*(x) and

(4) lim,_,olim sup(inf)s_, .46 %(K (yn,) — M*(eyn,)) = o>
We will show that these imply that

®) limg—,n K (xyn,) = K*(x)

for all x that are continuity points of G*(x). First we have M %(x) = o(K (x)) as x — o (see
[5, page 11]; this is where the assumption that EX = 0 if EX? < o is used) so that the M?
term in (4) may be dropped. By Lemma 2.1 of [5] we have

x

(6) 2*Q(x) = f 2yG(y) dy
0

so that for ¢ € (0, x), e a continuity point of G*(x),

Y2 (2*Q (xys,) — £2Q (eyn,) = f ' 2yG(y) dy = v, j 2uG (uy,,) du.

Synk
Now we multiply by nzy,> and let 2 — . Since by (3)
1. G (uyn,) = niG(eyn,) — G’ (e)

the integral will converge by bounded convergence. Thus

Hm Supz_,wnrx’Q (Xyn,) = lim sups_.«n.e2Q (eYn,) + J 2uG’(u) du

= lim sups_,«nze?K (eYn,) + €2G*(e) + f 2uG’ (u) du.

Now we let ¢ — 0 and use (4);

x

(7) lim Sups—nrx’Q (xys,) = 0% + j 2uG*(u) du
(4

since the convergence of [|x<1 x° dv(x) implies the convergence of [} uG"(u) du and that
£2G”(¢) - 0. The same argument works for lim inf;_,.. so we have convergence in (7). Now
by (6) applied to » (the same proof applies even though » may be an infinite measure since
Jim=1 x* dr(x) < )

o+ j 2uG*(u) du = 0% + j ¥ dv(y) + 2°G*(x) = x’K*(x) + x°G"(x) = x°Q"(x).
0 |yl=x

In conjunction with (7) this yields
limg 272 @ (Xyn,) = @”(x)

and using (3) once more gives (5). Finally (3) and (5) imply (1) since F € # implies that we
have an x, and a C such that

G(x) = CK(x) forall x= x,
so that for % large enough that xy,, = x, we have
n: G (xyn,) = Crix K (xys,).

This gives (1) for all continuity points of G*(x) but this is enough since both G* and K" are
right continuous.
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Now suppose that we have an infinitely divisible law H. We will assume that it is
nondegenerate since degenerate laws are clearly in 5 This implies that @*(x) > 0 for all
x> 0. It is also no loss to assume that G* # 0 since normal laws are in /%, We will use the
notation

Gi(x) =P{X>2x}, G(x)=P{X<-—1x}, x>0,

with similar conventions for G% (x) and G” (x). We need to construct a distribution F and
sequences {pz}, {nz} such that for all x > 0

(8) limy—, w12 G+ (xp2) = G% (%),

9 limg_, one G-(xp2) = G*(x),

and

(10) lim,,olim sup (inf)s—«nre’(K (e0x) — M*(eps)) = o>

Then the central convergence criterion guarantees that
Pk (Sn, — 8n,) = H

for some centering sequence. This will prove Khintchine’s Theorem. Then we will show
that if (1) holds, then F € % We start the construction by choosing sequences ax | 0 and
Br 1 o which satisfy

(11) Gilo) >0, G (a) >0

(if either G% or G~ is identically zero, then we will only assume (11) for the remaining one)
and

j y2dv(y) > 0.
Iy1=81

Next we let p; = a7’, A\; = 1/Q"*(a1), and for £ > 1

_ Bi - Bra A= K*(B1) -+« K*(Br-1)
o a w T Qe - Q@)

Now we may define F. Let I, = [—Brpr, — arpr) U (azpz, Brpx] and define
(12) F(B) = cAw(pi'B), BC I;

we will see that it will be possible to choose ¢ so that the total mass is one. Since axpr =
Br-1pz-1, F is defined on {x:|x| > 1}. There will be no mass in the unit interval. Next we
list a few facts for later reference. If G (x) # 0,

MenGhlans) _ K'(B)Gilenn) _ K'(B)
NeGilow) @ aw)Gilow)  Gilew)

since K’(x) — 0 as x — co. An analogous statement holds with G’ replaced by G*. We let

(13) -0

= fyz dr(y)

with the understanding that ¢ may be infinite. Then

f ¥ dv(y) f yzdv(y)—f ¥ dv(y)
(14) ar<lyl=pr _ A= [ Aok - _£

K*(B:)B2 o+ f ¥ dv(y) o+ ¢
|71=Br
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with the convention that the limit is one when ¢ = «. Next

Ak+105+1 f y2dr(y) K"(Br)B3 f ¥ dy(y)
ar+1<|y|=Br+1 - ak+1<| Y| =Br+1
Aepk f ¥y dv(y) f Y2 dv(y) Q" (ar+1)aFr1
(1 5) ar<|yl=Br ar<|y|=Br
o’+¢ ¢ £
&t 2 e

by using (14) since x°@"(x) — o7 as x — 0; of course, £/0? is to be interpreted as o if either
=  or ¢> = 0. Now we are ready to estimate G and K and complete the proof. Recalling
(12) we see that if G (x) = 0, then G (x) = 0 as well. Otherwise, for ax = x < s

G+ (xpr) = cAr(G4(x) — G5(BL)) + X F=r+1 A (Gii(ay) — G%(B)))
so that by (13) there is a C; such that
(16) cAr(GL(x) — G5(Br) = G+(xpr) = cArGi(x) + CiA 1G4 (or+1).

Incidentally this and the analogous argument for G- show that ¢ may be chosen to make
the total mass one. Now using (16) and (13) we see that for fixed x

1
limg e C_M Gi(xpr) = G4 (x).

This proves (8) for n, = [1/cA:]. The same proof applies for (9). We will also need a
uniform bound for G(x) in order to prove that F € % For this we use (16) and (13) once
more to obtain

(17)  G(xpz) = cArG*(x) + CiARK"(Br) = cArQ"(x) + C1AQ"(Br) = (¢ + C)AL Q" (x).

Now we must estimate K. For a; < x < s, by (15)

*°p3K (xpr) = 421 chjo? j

2 dv(y) + chwpi f ¥y dv(y)
o<|y=p

oar<|y|l=x

02
- (1+5)ornaot ram et [
ar—1<|Y|=Br-1 ar<|y|=x

2 v 2
oun((1+2) & [ iy [ )
CAkPk(( + g) KV(Bk—I)BIZl—l Iylspk_ly dV(y) + ah<|y|5xy d"(y)

~ cAkp;%(oz + f y? dv(y)).
ap<|yl=x

Thus, for fixed e > 0,

(18)

. 1
limy e — €K (epz) = 02 + y2dr(y)
c}\k |yi=e

and this will approach ¢% when ¢ — 0. This is enough to prove (10) (and thus Khintchine’s
Theorem) with n; = [1/cA:] since M*(x) = o(K(x)) as x — o as mentioned above as EX?>
cannot be finite for this would imply a normal limit. (EX? = « can also be deduced
from (18) since Arp} — .) Finally, we need a lower bound for K to complete the proof
that F € # We have by (14) that there is a ¢; € (0, 1) such that
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x%p% K (xpr) = cAr-1pi-1 f

ar—1<|Y|=Br-1

yidv(y) + c}\kpij y2dv(y)

ar<|y|=x

v 2
- cx,,p,%<M’;— f Y dv(y) + f »” dv(y))
K (Bk_l)ﬁk_l ar—1<| }=Br-1 a<|f=x

= c}\kpi<le"(ak)ai + J

ap<|yl=x

= ccl}\kp%<02 + f yidv(y) + f ¥ dv (y))
|yl=ar ar<|y|=x

= cciArpx2K*(x)

y? dv(y))

or
K (xpz) = caiA: K’ (x).

In conjunction with (17) this proves that F € #since by (1)
Q'(x) = (1+ C)K’(x).

3. Final remarks. Lévy proved [2, page 149] that a distribution is in .# if and only
if both G%(x) and G”(x) have both right and left derivatives for every x > 0 and that
—xG¥(x) and —xG (x) are nonincreasing. The class .# is smaller than # in some sense
but is not contained in #. First, the condition for # puts separate conditions on the
behavior of » on the two half lines while (1) lumps this behavior together. Thus, for any »
satisfying (1) except the normal and degenerate laws it would be easy to redistribute the
mass between the two half lines to violate Lévy’s condition without changing G* and K”.
Also the convolution of the normal and Poisson and other examples of this type are in #
but not in %. An example of a distribution in . but not in # is obtained by using » with
density

1
-, O0<x=1,
x

A+l L

Then Lévy’s condition is satisfied but as x—x

1
T~ ogw K " Tl

so that (1) is violated. If, however, one asks a little more, namely that —x*G*'(x) | for some
a > 1, then the distribution must be in # To see this,

G'(x) = f - G"(y) dy = —x°G” (x) f yedy=— pr xG” (x),
while
K'(x)=x* j 2 dv(y) = —x'zf ¥*G” (y) dy
Iyi=x o

. * 1 .
= —x"2xG" (x) f ydy= —3 xG” (x).
0
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We conclude with a couple of observations. Doeblin showed that there are universal
laws that are in the domain of partial attraction of every infinitely divisible law. There can
be no such universal laws in & that are in the domain of partial attraction of every law
in #, To see this, we note that if F' € %, then the proof of (1) shows that it holds with
C = lim sup,_,»G(x)/K (x). This then restricts the class of laws in 5# to which F can be
partially attracted. We can also show easily that the laws in # have C® densities as
claimed. Under (1), we have for u > 0

Re y(u) = — —;— ou® + J (cosux — 1) dv(x) = —cK”(%) = —le”<%)
and (1) also implies (see Lemma 2.4 of [5]) that x“@"(x) | for some a > 0 so that for
v=1 Q" u™) = @"(1)u* and thus™~.
Rey(u) = —co|ul, |u|=1.

This estimate allows the use of the inversion formula for the density and also shows that
it may be repeatedly differentiated.

Finally we will show that #C & if the degenerate laws are excluded. We need a lemma
which may have independent interest. The notation f(x) = g(x) will mean that there exist
positive ér}e;, and xo such that ¢; < f(x)/g(x) < c; for x = xo.

LemMA. For any infinitely divisible X, @ (x) = @"(x).

PRrROOF. Let @, F; denote the @ function and distribution function for the random
variable X; — X,, the symmetrization of X. Then

.[)

On the other hand
1— |¢(u)|2 =1-— e\p(u)+\p(—u) =1- e—a2u2—2j(l—cos uy)dv(y)

-1

(1-]e@)? du= xf f (1 — cos uy) dF.(y) du
0

_ _sinxTly ~
_j (1 p )dFs(y) = Qs(x).

~02u2+2f(1—cosuy) dv(y) asu— 0.

Thus as x — © we have

-1

xf 1- @) du ~ xj (o%u® + 2] (1 — cos uy) dv(y)) du= Q*(x)
(1] 0

as above. Thus we have @’(x) = Q,(x) and @s(x) = @ (x) is proved in Lemma 2.7 of [4].
Now we can conclude the proof that # C % Define an increasing sequence {a,} for
large n by @(a,) = n™' (Q is continuous and strictly decreasing for large x). It is shown in
Lemma 1 of [3] that if X is not in & then there exist sequences m; < n, tending to infinity
such that
ik -1, Oy — 00,

m; A,

But if the distribution of X is in # we know there is an a > 0 such that x*@"(x)|. This
leads to a contradiction: for large j,

an\* _Qan) _ Qan) _ 1
(E;f) =) =°Q@,) °m ¢
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