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AN INTEGRAL TEST FOR THE RATE OF ESCAPE
OF d-DIMENSIONAL RANDOM WALK!

By PHILIP S. GRIFFIN

University of Washington

Let X, Xz, --- be a sequence of independent, identically distributed
random variables taking values in R? and S, = X; + -+ + X,. For a large
class of random variables, which includes all of those in the domain of
attraction of a type A stable law, an integral test is given which determines
whether

P{|S.|=vyni0}=0 or 1

for any increasing sequence {vy»}. This result generalizes the Dvoretzky-Erdos
test for simple random walk and the Takeuchi and Taylor test for stable
random walks.

1. Introduction. Let {X.} be a sequence of independent, identically distributed,
nondegenerate, d-dimensional random variables and S, = Y%-: X;. In this paper we will
show how the probability estimates derived in [7] can be used to obtain information about
the rate of growth of d-dimensional random walk. More precisely, we will obtain an integral
test which determines whether or not

nl

(1.1) lim inf, l =1 as.

Yn
for increasing sequences {y.}. Of course this problem is only of interest for transient
random walks, since (1.1) will hold for all increasing sequences {y,} if the random walk is
recurrent.

The corresponding problem for upper envelopes, i.e. that of obtaining an integral test
to determine when lim sup,—..| S.|/y» < 1 a.s. was, essentially, completely solved by Feller
in 1946, [3]. The test here is quite easy and involves only the tail of the distribution of | X |.

The first progress made on the lower envelope problem was the famous Dvoretzky-
Erdos test for simple random walk in d = 3 dimensions, [1]. This was generalized to
symmetric stable random walks of index y < d by Takeuchi [12] in 1964, who showed that

d- .
[S.] 0 i ay”  diverges
7= . accordingas ¥
a.n n  converges

Y

(1.2) lim inf,

for decreasing sequences {a,}. The Dvoretzky-Erdos test then corresponds to taking y =
21in (1.2). Taylor [13] in 1967 then showed that the same test holds for all type A (i.e. those
with non-vanishing density) stable random walks of index y < d. The techniques of
Takeuchi and Taylor involved the use of potential theory to calculate the delayed hitting
probabilities of balls centered at the origin. In 1970 Kesten [8], while investigating the set
of all limit points of {S./y.}, introduced an alternative approach which was used by
Erickson [2] to obtain partial information in the case where X is in the domain of attraction
of a type A stable law of index y < d.

We will also use Kesten’s approach to obtain an integral test analogous to Takeuchi’s
which will cover the cases left open by Erickson and which will also apply to many random
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variables not in the domain of attraction of any stable law. The method is based on the
probability estimates obtained in [7].

In the case that X is in the domain of attraction of the Cauchy distribution in one
dimension (y = d = 1) or the normal distribution in two dimensions (y = d = 2), the
situation is far more delicate and we have been unable to obtain an integral test although
some partial information is given in [6]. To illustrate some of the difficulties that may arise
in this case, and hence presumably in the general case, we will give a somewhat counter-
intuitive example. Define the lower index of a transient random walk to be the unique
8 = 0 such that

(1.3) lim inf,, .

[Sal _ [0 as. if a>8
n® |o as if a<é.

a

Then the lower index is not monotone in the tail of the distribution. More precisely, there
exist symmetric random variables X and Y, both in the domain of attraction of the one
dimensional Cauchy distribution, such that P{|X| > x} = P{| Y| > x} for all x = 0 but
8y > 8x where 8y is the lower index of the random walk corresponding to Y and 6x the
lower index corresponding to X.

2. Probability estimates. For convenience we will describe here the main probability
estimate in [7] and introduce some notation. Let F denote the distribution function of X;
and ¢ its characteristic function. X will be another random variable with the same
distribution as X;. For x > 0 define

1
G@) = P(|X|>x}, K@®)=_ |y1® dF(y)

ly|=x
2.1) Qx) = G(x) + K(x) = Ex"| X| A 1)%

From (2.1) one readily checks that @ is positive, continuous, decreasing, @(x) — 0 as x
— o and x2Q(x) increases. Further @ is strictly decreasing on (xo, ©) where xo = sup{x: P{0
< |X| = x} = 0}. Set yo = 1/Q(x0). Then there is an increasing function a, defined for y
= yo such that

1
2.2 =L
(2.2) Q(a) p

For convenience we define a, = a,, for y € (0, yo).

The following result can be found in [7], (Theorem 3.6), where a full discussion of the
hypotheses is given. The reader is advised to consult [7] for any definitions not given in
the present paper. In particular the direction condition is defined at the beginning of
Section 2 in [7].

THEOREM 2.1. Assume that X is genuinely d-dimensional and satisfies the direction
condition, lim inf._... K(x)/G(x) > 0 and |Img(¢)| = o(1 — Rep(¢)). Then there exist
positive constants ci, ¢z and Ao such that for all A = Xy and all n
d

A ¢ A
a a—/\l =P{S.€C(0,AN)} =c a—/\l
where C(0, \) is the cube of side length 2\ centered at the origin.

As mentioned in [7], the above result does not include all random variables in the
domain of attraction of a stable law. We will now give the analogous estimate in this case
since it will also be covered by our integral test. Observe that in our notation, X is in the
domain of attraction of a stable law means that there exists a centering sequence {b,}
such that (S, — b,)/a. converges weakly to a nondegenerate limit. Recall that a stable law
is of type A if its density is never zero.
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THEOREM 2.2. Assume that X is in the domain of attraction of a genuinely d-
dimensional type A stable law. Then there exist positive constants ci, c; and Ao such that
forallA =M\ and all n

A ¢ A ¢
cl<a— A 1) < P(S,— b, € C(O,\)} = c2<a— A 1) .

This result can be found in [6] (Theorem 4.21) or can be derived from Theorem 1 in
[11].

We will complete this section by giving a slight variant of a result due to Kesten [8].
Since the proof is similar it will not be given here. Full details can be found in [6].

THEOREM 2.3. Let {y.} be any increasing sequence such that lim sup,—. yz2n/y» = €1
< o, Then for every K > 0, (i) = (ii) = (iii) where
(i) P{S./y. € C(0,K/2)i0} =1
P{S, € C0, Ky.)} _
Yi=6 P{Sk € C(0, vx)}

(i) Xn=1

(iii) P{S./v» € C(0, 2¢K) i.0.} = 1 for all ¢ > ¢;.

3. Integral tests. We will now show how Theorems 2.1, 2.2 and 2.3 can be used to
obtain an integral test. In the theory of random walks it is often encountered that the
behaviour in dimensions d = 1 and d = 2 differs from the behaviour in higher dimensions.
For example, all genuinely d-dimensional random walks are transient in d = 3 dimensions,
but it is possible for them to be recurrent in dimensions one and two. This dichotomy is
also apparent in our problem. In order to prove the integral test in one and two dimensions
we need to add one further hypothesis which can be thought of as ensuring that the
random walk is transient.

We begin with a simple lemma which gives some idea as to the order of magnitude of
the sequences {v,} that we should be considering.

LEMMA 3.1. Assume that there exist positive constants ci, Ao and no such that for all
A=XNandalln=n,

d
(3.1) P{S,.€ C(O,\)} = cl<£— A 1> .

Then for all sequences {y,} such that lim sup, e y»/an >0,
|Sn |

n

(3.2) lim inf, =0 a.s.

PROOF. There exists a constant ¢ > 0 and a subsequence n, — % such y,, = c¢ a,, for all
k. Thus for every ¢ >0

P(S,, € C(0, eyx,) i.0.} = P{S,, € C(0, ec a,,) i.0.} = lim supr. P{Sy, € C(0, ec a,,)} >0
by (3.1). Hence by the Hewitt-Savage 0-1 Law, for every ¢ > 0
P(S,, € C(0, eyn,) i0.} =1

and so (3.2) holds.
As a notational convenience and for ease of reading, in the remainder of this and in the
final section, we will often write

(3.3) Yiack
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where a and b are not integers. By this we will mean
Eke[a,b]nz* Cr

where Z* denotes the nonnegative integers. Typically a and b will be indexed by n, and we
will be interested in the asymptotic behaviour of (3.3) as n — . One further piece of
notation that will prove useful is that a, = 8, will mean there exists M > 1 such that M~"
=< an/Br < M for large n.

THEOREM 3.2. Assume thatd = 3 and
(i) X is genuinely d-dimensional
(ii) lim inf, ... K(x)/G(x) >0
(iii) | Img(¢)| = o(1 — Reg(¢)) as ¢t — 0
(iv) direction condition holds.
Then for any sequence {y.} such that v, 1 © and lim sup,.«yz./y» < ®,
| Sx | _0

Yn

diverges
converges .

lim inf, according as Z( ) Q(y»)

PRrROOF. Let Ao be as in Theorem 2.1. Since y, — o« there is no loss of generality in
assuming that v, = Ao for all n and further, by increasing yo if necessary, that (2.2) holds if
ay = Ao. Set

An = ;el;(} P{Sk € C(O’ Yn)}'

Then by Theorem 2.1
d d
Y= ( A 1) = Yy 1+ o (ﬁ) .
ay,

Now ax = v, iff (1/k) = Q(ax) = Q(y») since @ is decreasing. Thus if vy, < an,—
1 — _
A, = o0 + v il /qam @k’

Now

—1 —d —1 —(d+1)
YR1/Qum GE° = TES1/Q(rm) Dm=ay M

~ — —(d+1) \"1/Q(m) —(d+1)
R Y=y, m 2w L+ Tna, , m Yizi/aom 1

=I+1I
Next observe that

C1

QAp—1 1
I= X T Gm) = 77a0m

since x2Q(x) 1, while
c2(n—1) c
ag—l - 'YsQ(Yn)

II=

again because x?Q(x) 1. Thus if vy, < @,—; then

1
A=
Q(Yn
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Clearly if v, = a,—: then A, = n and so we conclude that
1
Q(Yn A an) )

Now fix K > 0. Then Ky, = A, for n sufficiently large. Thus by Theorem 2.1, there is an n,
such that for all n = n,

A=

Ky,, ¢
P(S, € C(0, Ky.)} = /\ 1

Hence

Y A7'P{S, € C(0, Ky)} convergesiff ¥, ( LN 1) Q(y» N\ a,) converges

1

d
. Yn
iff ¥, (a,. A K> Q(y» N\ @) converges.

With this we are ready to complete the proof. Assume ¥ (y,/ a,)?Q(y») diverges.
CASE 1. vy, = o(a,). Then for every K > 0 if n is sufficiently large ((y,./a,,) A (1/K))¢
= (Yn/@n)? and y, A @, = a,, thus
2 AZ'P{S, € C(0, Ky»)}
diverges for every K > 0. Hence by Theorem 2.3
| Sn |

n

lim inf, .. =0 as.
CASE 2. y, # o(a,). Then by Lemma 3.1

lim inf, ., |5n] =0 as.

Yr

Now assume that ¥, (y»/@.)?@(y.) converges. Then for each K > 0, if Yo = a,/K
(an/K)*Q(an/K) < ¥ Q(yn)
since x2Q(x) 1. Hence
K™Q(a,/K) = (Yn /) Q(vn).
Now assume K = 1; then if vy, = a, /K

d
(Z )Q(Yn/\an)< - Q(an/K) < (Z) Q(y»)

v 1)° AW
(a—" A E) Q. N\ an) = (a_n> Qyn).
Thus we see that for all K =1
Y AL'P(S, € C(0, Kya))

converges and so by Theorem 2.3

while if v, < a,./K

|Sn
Yn

lim inf,, .

= a..

If d = 1 or d = 2, then we must add one further hypothesis to ensure that the preceding
test works.
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THEOREM 3.3. Assume that d < 2 and that in addition to (i) — (iv) of Theorem 3.2
holding we have

(v) there exist e > 0 and xo = 0 such that x**Q(x) increases for x = x,.
Then for any sequence {v,} such that vy, T © and lim sup,_.. Yon/Yn < 0,

[S.]_0
Yo

it 52— 0 ccoring a3 (1) ey e

ProoF. The proof goes through exactly as before except that we use (v) instead of
x’Q(x) 1 to show that for sufficiently large n

c

n—1 —d
Zk=1/Q( yQr =—Fg——
" Y2Q(vn

and

KQ(a,/K) = (v2/0:)Q(y»)

if v, = a./K.

Under conditions (i)-(iv) condition (v) ensures that the random walk is transient. If we
only assume that x?@Q(x) increases then the random walk may be recurrent as can be seen
by considering the Cauchy distribution in one dimension and the normal dlstrlbutlon in
two dimensions.

Before giving the corresponding test for domains of attraction, we state a well known
result concerning the centering terms b,; see [4] page 580.

LEMMA 34. Assume that X is in the domain of attraction of a stable law of in-
dex vy.

(i) If y < 1 then we may take b, = 0

(ii) If y > 1 then we may take b, = nEX.

If y = 1 the centering term may well be non-linear and we are unable to use Theorem
2.3. Also, in the case y > 1, if EX # 0 then the Strong Law of Large Numbers gives the

asymptotic growth of S, and so in this case it is natural to assume EX = 0 or equivalently
investigate the growth of S, — nEX. Bearing these two facts in mind we have:

THEOREM 3.5. Assume that X is in the domain of attraction of a genuinely d-
dimensional type A stable law of index y < d. Let {y,} be any sequence that y, 1 ® and
lim supswy2e /e < .

@ Ify<lorify=1andb,=0, then

o 1S, 0 diverges
lim inf, .. o according as 2 Q( ") converges ,
(ii) If y > 1 then
d
o |S. — nEX| _ . Yn diverges
lim mf,,_,m——T— = according as Y P Qy») converges.

Proor. In[4] page 577, it is shown that if X is in the domain of attraction of a stable
law of index y then

(3.4) lim, ..,

Gx) 2-7v°

If d = 2, then since y < d, (3.4) together with Lemma 2.4 of [9] show that there exist
& > 0 and xo = 0 such that x?*Q(x) increases for x = x,.
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With this the proof proceeds exactly as in Theorems 3.2 and 3.3 by using the estimate
from Theorem 2.2.

In the case that X itself is a genuinely d-dimensional type A stable law of index y < d,
Theorem 3.5 can easily be seen to reduce to Takeuchi and Taylor’s result mentioned in
the introduction. This is because in that case @(x) ~ ¢/x".

One can also easily check that since xQ(x) is slowly varying, the index of the attracting
law essentially determines the behaviour of S, with respect to powers of n. More specifi-
cally, for every X in the domain of attraction of a type A stable law of index y < d the
lower index 8, defined by (1.3), is given by y~'. This behaviour was previously noted by
Erickson [2].

4. An example. In[5]it was shown that if Y is symmetric with distribution satisfying
P{| Y| > x) ~ x"'H(x) where

exp{y(Lx)(l3x)}
y(lx)" (L)

then 8y = exp(—y™'). We are using here the abbreviation Ix for log x, l,x for loglog x etc.
We will now show that if X is symmetric with distribution satisfying P{|X| > x} ~
x'L(x) where

L(x) = exp{(Lx)(lsx)(y + sin(lx))} for y€ (V2, »)
then 8x = exp{—(y — v2)™}.

H(x) = for y € (0, )

Proor. It is easy to check that L is slowly varying and so X is in the domain of
attraction of the Cauchy distribution. Since lim...K(x)/G(x) = 1 we see that @(x) ~
2x"'L(x) and a simple computation then shows that a, ~ 2nL(n). Thus by Theorem 2.2,
there exists Ao such that for all A = A,

A
4. P{S,.|=A}=—AL
“ (IS:1=N) = 7
For a € (0, 1) set
A, = Y75 P{|Sk| = n}.

Then by (4.1) for sufficiently large n.

o n*

n n«
Skzne/Line) <kL(k) /\1> —An—L( ) + Y RhesLine (m/\ 1)-

Since L(n*) ~ L(n®/L(n*)) we see that

et n* et n*
ne/L(ne) | ———— VAN ~ e/ L(ne) ——.
Dk=ne/L( )(kl(k) 1) Ykne/L )k[(k)

Let 0 < B < a < B2 < 1. Since y > Vo, Lis increasing for large x and since L is slowly
varying, n®' < n®/L(n*) < n® for large n. Thus there exist positive constants c; and ¢
(depending on B; and B:) such that

a

cin‘logn — nt__ conlog n
Lok = 2o/ By = " L(nP)

and since (L(n%)/L(n*))log n — « we have that

cenlog n
L(n*)

cin®log n

4.2) TR

IA

A=

Next using the Mean Value Theorem one can easily show that for g € (0, 1)

(4.3) L(n) =~ exp{(l3n)(l %)[y + sin(3n) + cos(lgn)]}.

L(n?)
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Now let a < exp{—(y — v2)™*} and pick 8 € (a, exp{—(y — v2)™'}). Then by (4.1), (4.2)
and (4.3) for any K > 0 there exists a positive constant ¢ such that

c

A'P{|S.| = Kn*} < 1 .
n(ln)exp{(lan)(lﬁ)[y + sin(hn) + COS(lgﬂ)]}

and this gives rise to a convergent series. Thus by Theorem 2.3
lim inf, ,on ™| S,| = as.

Now let @ € (exp{—(y — v2)™'}, 1) and pick 8 € (exp{—(y —v2)™"}, «). Then by (4.1),
(4.2) and (4.3) for any K > 0 there exists a positive constant ¢ such that

c

A'P{|S.| = Kn%) = - .
n(ln)exp{(l;;n)(lE)[y + sin(l3n) + cos(lsn)]}

Since B > exp{—(y — v2)™'} there is an ¢ > 0 such that
(l %)[y + sin(lzn) + cos(bn)] =1
if Isn € [nr — ¢, ni + €] where n, = bn/4 + 2kwfor k=0, 1,2, .. .. Hence

1
Zk 28

1 o l3n=n, ‘e ~
Yn ATP{|S.| < Kn®} = Y Yincmte 7(in) ()

which diverges and so by Theorem 2.3
(4.4) lim inf, ,.n™|S.| =0 as.

Clearly if « = 1 then (4.4) follows immediately from the case just considered and the proof
is completed.

If we now take X as in this example with y = yo and Y as in the example from [5] with
Y E (yo — V2, Yo — 1), then we see that P{| X| > x} = P{| Y| > «x} for large x, but §y >
0x. Further, by putting appropriate amounts of mass at the origin, we could ensure that
P{|X|>x}=P{|Y|>x)} forall x = 0.

Shepp [10] showed that a similar phenomenon occurs when considering transience and
recurrence of random walks. He exhibited symmetric random variables X and Y such that
P{|X|>x} = P{|Y|> x)} for all x =0 and yet X gives rise to a recurrent random walk
while Y gives rise to a transient one. He went on to show that if the distribution of X is
convex at infinity, see [10], then this could not happen. However this notion does not seem
to be relevant in this problem since both of the distributions in the above example are
convex at infinity.
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