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WEAK CONVERGENCE OF THE WEIGHTED EMPIRICAL
QUANTILE PROCESS IN L%*(0, 1)

By DAviD M. MASON

University of Delaware

Sufficient conditions are developed for various versions of the weighted
empirical quantile process to converge weakly in L%(0, 1) to a weighted
Brownian bridge. The results are directly applicable to the derivation of the
asymptotic distribution of goodness of fit tests based on the sample quantiles
that can be written as a functional defined on L2(0, 1) continuous in the norm
topology. In the process, tight bounds for the moments of transformed uniform
order statistics are derived that are likely to have applications elsewhere.

1. Introduction. Let X;, ..., X, be independent identically distributed
random  variables with common distribution function F, and X;, < -+ < X,
denote their order statistics. @ will denote the quantile function of F defined on
(0,1) (Q(u) = inf{x: F(x) = u} for u € (0, 1)). It will be assumed throughout this
paper that

(A) F has a continuous density quantile function f(Q(u)) defined on (0, 1).
(f denotes the density of F.) We will write h(u) = 1/f(Q(w)); h is sometimes
called the quantile density function. (See Parzen, 1979.)

Define the empirical quantile function on (0, 1) to be Q.(u) = X;, whenever
(i—1)/n = u<i/n for some 1 < i < n. We will consider the following three
versions of the “weighted empirical quantile process”: Let w be any measurable
real valued function defined on (0, 1). Set

I r%(w) = n**w(u)(Qn(u) — Q(u)) for u € (1/(n + 1), n/(n + 1)) and equal
to zero elsewhere; set :

(I1) g¥(w) = n"*w(([nu] + 1)/(n + D){Q. () — Q(([nu] + 1)/(n + 1))} foru €
(0, 1) ([x] denotes the greatest integer < x.); and whenever

(B) there exist positive integers k; and k; such that EX}, < o for every k; < i
< n + 1 — k; for all n sufficiently large, set

(ID) pr(u) = n"2w(([nu] + 1)/(n + 1))(Qn(u) — EQn(u)) for (ks —1)/n<u<
(n — kg + 1)/n and equal to zero elsewhere.

((B) holds if and only if E| X |® < « for some § > 0, see Mason (1982) and
Anderson (1982).)

Dn, qn, and r, will denote the processes with the particular choice w(u) =
f(Q(w)).

Recently there has been considerable interest in determining conditions on w
and h under which the process ry converges weakly to a continuous process whB
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defined on [0, 1], where B denotes a Brownian bridge on [0, 1], usually with w
specified to be f(Q(u)). Refer to Shorack (1972, 1982), Stute (1982), M. Csorgd
and Révész (1978), S. Csorgd (1982), and M. Csorgd, S. Csorgd, Horvath, and
Révész (1982). We will be concerned here with developing general conditions on
w and h that will insure that p¥, ¢¥, and r¥ converge weakly in L2(0, 1) to the
process whB, where w and h are now chosen so that whB € L%*0, 1) with
probability 1.

One approach is as follows: Let 2 denote the class of positive continuous
functions defined on (0, 1), symmetric about Y2, nondecreasing on (0, ¥2) and
nonincreasing on (Y2, 1) such that

limy,j0q(w)/¥(u) = o,
where Y(u) = (ulnln(1/u))2 Suppose f(Q(uw)) is such that for some q € 2
(K) sup{|r.(u) — B(u)|/q(w): 1/(n+ 1) =u=n/(n+ 1)} -, 0
for the Skorohod (1956) construction. If w is chosen so that

(L) J; w?(w)h*(w)q*(v) du < o,

an elementary argument shows that

J; (ri(u) — w(w)h(u)B(w))? du —p 0,

from which we immediately conclude that r% converges weakly to whB in
L?(0, 1). Shorack (1982) and M. Csoérgé et al. (1982) have developed conditions
on h in relation to given choices of ¢ that insure (K). (M. Csorgo et al. (1982)
actually consider the analogue of (K) based on the Komlos, Major, and Tusnady
(1975) construction.)

In this paper, we employ an alternate approach to weak convergence of versions
of the weighted empirical quantile process in L%(0, 1) independent of the special
constructions of the type stated in (K). In the process, we will arrive at a different
and perhaps more easily verifiable set of sufficient conditions for L? convergence
than the conditions derived by Shorack (1982) and M. Csorgo et al. (1982) for
(K).

2. Weak convergence of the processes p%, q¥ and r¥ to whB in
L2(0, 1). We will first consider the process p¥.

Let & denote the Hilbert space L%(0, 1), where the inner product <-, -> is
defined as usual to be

1
(f,g)=J; f(w) gu) du for f and g€ &

@ will denote the Borel sets generated by the norm topology on &, where the
norm is defined to be

IFl=«f N2 for fE &
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For any 0 < ¢ < 1, let i,(u) = 1 or 0 accordingly as u € [¢, 1 — ¢] or not, and
set i = 1 — i,. In particular, notice that (i, p%) equals the normalized linear
combination of order statistics

ik w(j/(n + DN Xjn—EX;n)/Vn.

Associated with a weight function w and a quantile density function h, we
define a kernel K™ as follows:

KM (u, v) = (u A v — w)h(w)h(®)ww)w() for (u, v) € (0, 1) X (0, 1).

(When h and w are understood, the superscripts will be deleted.)
Under assumption (A), and
(C) w is chosen so that

J{: u(l — wwi(u)h*(u) du < o,

K"¥ defines a symmetric, positive semidefinite linear operator on & with finite
trace, that is, for f and g € & )

1) Kf(w) = J; (u A v — w)h(wh)ww)w)f(w) dv for u € (0, 1).

(2) (Kf, 8) = (Kg, f),

(3) (Kf, f) = 0,

and

(4) Trace K = J; K(u, u) du < o,

Choose any orthonormal basis {e,,}m=1 for &. It is easy to show that
(5) Y _1 K(em, em) = Trace K.

u, will denote the probability measure induced by the process p% on (&, 4).
i, is completely determined by the characteristic functional defined for f € &
to be

in(f) = E exp(i (f, pr))-

(Refer to pages 339-340 of Gihman and Skorohod, 1974.)
The following theorem establishes that under very general conditions the

sequence of measures u, converges weakly to the probability measure u on
(& %) induced by the process whB.

THEOREM 1. In addition to assumptions (A), (B), and (C), assume that w = 0;

(D) w is continuous almost everywhere on (0, 1) and for every 0 < § < Y, w is
bounded on (6, 1 — 5);

(E) E||p¥?||2 — Trace K; and
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(F) E(io, p2)2 — (K™¥io, ig) <o .
Then u, converges weakly to the probability measure u (py = whB).

ProoF. We will first show that the sequence of measures {u,} is tight. It is
enough to establish that for any orthonormal basis {e,,}m=1 of &
(6) limj_wSUp,=1 X 5ok E(ej, p2)2 = 0.

(Refer, for instance, to page 154 of Parthasarathy, 1967.) We require the following
lemmas.

LEMMA 1. Let J and H be real valued measurable functions defined on [0, 1]
that satisfy (D). Also assume that (B) holds and Q has a quantile density function
h. Suppose that H = 0;

7 |J(w)| = Hu) foral ue€(0,1); and
8) E(io, pH)? — (KM, iy) < ®, then
9) E(io, p7)* = (K™’io, io) < », and
(10) (i0, P7) —a N(0, (K™7iy, io)).

The proof of this lemma follows almost directly from the techniques of the
proof for Theorem 2 of Mason (1984).

LEMMA 2. Under the assumptions of Theorem 1 for every f€ &
(11) E(f, pr)* — (K"“f, f) <, and
(12) (f, p¥) —a N(O, (K™"f, f)).

PROOF. Observe that whenever f € &, by Schwarz’s inequality and (C)
(Kf,f) < « . First assume that f is a polynomial defined on (0, 1). Let

f( )_ f(l/(n+1)) for (i—l)/n5u<i/n, i=1,-..’n
"= 0 elsewhere.

Notice that by Schwarz’s inequality

(13) E(f, pR) = {fa P = | f = fI’E N PRI

Since f has a bounded first derivative, it is easy to see using (E) that the right
side of (13) converges to zero. Observe that

| f(Ww(w)| = Mw(w),

where M = sup{|f(u)|: u € (0, 1)} < . Hence Lemma 1 in combination with
(F) implies (11) and (12).

Now choose any f € & and any sequence of polynomials {g,} such that
| f — &m || = O (the polynomials are dense in L2(0, 1)). For each m

E((f,p%) — (&m, PW))* =< | f — & I’E | pX |I*.
Elementary arguments complete the proof. [0



WEIGHTED EMPIRICAL QUANTILE PROCESSES 247

We are now in a position to establish (6). Observe that for each integer k& = 2,
we have by Parseval’s identity that

Sia E(e;, p2)? = Ellp2 12 — Skt Eej, p2)>.
Choose any ¢ > 0 and integer k, = 2 such that for all & = &,
(14) Trace K — Y5 (Kej, ¢j) <e.
Lemma 2, (E) and (14) imply that there exists an no such that
Ellprl* — 2} E(ej, pR)? <e

for all n = ny and k = k.
Now choose k = ky such that

Elpyl? = Y E(ej, pi)? <e

foralll=n<ny—1.

This completes the proof of (6).

To complete the proof of Theorem 1 we must show that j,(f) — p(f ) for each
f € & (See Lemma 2.1 on page 153 of Parthasarathy, 1967.)

By Lemma 2, for each f € &

ﬁn(f) - eXp("(Kf, f)/Z);
but since for each f € &
(f, whB) ~4N(0, (Kf, f))

the proof of Theorem 1 is complete. O

The following corollary will be useful later on.

COROLLARY 1. If assumption (F) in Theorem 1 is replaced by
(G) lim, jplimsup,.E || Z.p¥ [|> = 0,
then the conclusion of Theorem 1 holds.

PrOOF. Choose any sequence {6,}m=1 such that foreachm = 1,0 < §,, < %,
both é,, and 1 — 6, are continuity points of w, and 6,, | 0. By Theorem 5 of
Stigler (1974) foreach m =1,

E (i, peyt— (Kis,, 15,) -
It is simple to show by applying Schwarz’s inequality that
E(is,, pr)® < E| is,p% |12
Since by the monotone convergence theorem
(Ki.s,,,, i.s,,, ) = (Ko, 1),
a routine argument shows that (G) implies (F). O
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For the special case of Uniform (0, 1) random variables, we have:

COROLLARY 2. Let X, ---, X, be iid. Uniform (0, 1) random variables.
Assume w = 0, (C) and (D). If in addition for each 0 < ¢ <
P w?(i/(n+1))(i/(n+1)(1 — i/(n+1)))/n
(15) 1-e
—>f w(w)u(l — u) du,
then py = wB with ky = ky_1.

PROOF. Foreach0O=<e<
EliprlI? = Do wii@/(n + D)E/(n + 1A = i/(n + 1)))/(n +2). O
In many practical situations, the following corollary is applicable.
COROLLARY 3. Assume (A), (D) and w = 0. In addition, assume that
(i) for some —0 <y, ve<0and 0 <M <

h(u) = Mu(1 — u)? forall ue (0,1); and

(ii) there exists a nonnegative function g that is monotone on (0, %] and [, 1)
such that w(u) < g(u) for all u € (0, 1) and

1
f gz(u)u2"1+1(1 - u)2"2+1 du < 0}
0
then p¥ = whB with ky > —2v; — 2 and ky > —2v; — 2.

PROOF. Let f,(v) = wi(([nu] + 1)/(n + 1)) E(Vn(Q.(u) — EQ.(uv)))? for
(ki — 1)/n <u<1-— (k; — 1)/n and equal to zero elsewhere. The choice of &;
and k, insures that f, is finite for all n sufficiently large, that is, (B) holds. (See
Proposition 2 of Section 3.)

The following proposition due to Anderson (1982) along with (D) implies that

(16) fo(u) = wi(uw)h?(w)u(l —u) ae. on (0, 1).

PROPOSITION 1. Assume (A). Then for each u € (0, 1) and positive integer r
E(\fﬁ(Qn(u) — Q(u)))" — EN', where N is a normal random variable with mean
zero and variance h?(u)u(l — u) if and only if E | X |* < o for some 6 > 0.

Proposition 2 and (ii) imply that for some constant 0 < K < o
an @ = K] + D/(n + 1)

(([nu] + 1)/(n + 1))**1(1 = ([nu] + 1)/(n + 1))>"!
for all u € (0, 1) and all n sufficiently large. Also, by the conditions given on g



WEIGHTED EMPIRICAL QUANTILE PROCESSES 249

foreach0 =e< ¥
mded g2(i/(n + 1)G/(n + 1)) (1 = i/(n + 1))**/n

(18) 1—¢
_>f gZ(u)u2v1+l(1 - u)2u2+l du.

(17) and (18) show that the sequence of functions {f,} is uniformly integrable.
Hence by (16), we conclude (E) and (G). ((C) holds by assumption (ii).) O

Relatively straightforward arguments based on Propositions 1 and 2 show that
under the assumptions of Corollary 3 that

(19) g% — p¥l*?—,0 and,
(20) I ry — g%ll* —p 0.

(The details are omitted.) (19) and (20) along with Theorem 4.2 of Billingsley
(1968) give the following sufficient conditions for the weak convergence of g%
and r¥ in L%(0, 1): )

THEOREM 2. Under the conditions of Corollary 3, g% = whB.
THEOREM 3. Under the conditions of Corollary 3, r¥ = whB.

REMARK 1. The above theorems and corollaries remain true without the
assumption that w = 0, if in the statements of assumptions (F), and (ii) of
Corollary 3 w is replaced by |w|.

These results are immediately applicable to the derivation of the asymptotic
distribution of goodness of fit tests based on sample quantiles that can be written
as a continuous functional defined on L2(0, 1). For example, consider the weighted
Cramér-von Mises type statistic

Tn = Xk w?(i/(n + D)(Xin — Q(i/(n + 1)))* = gi |2
Under the conditions of Theorem 3,

T, ""’J; B (uw)w?(u)h?(u) du.

For some other applications of these results, the reader is referred to LaRiccia
and Mason (1983) for a study of the weak convergence in L2(0, 1) of the estimated
weighted empirical quantile process.

Some remarks must be made concerning the relationship between the condi-
tions of Theorem 3 and the sufficient conditions obtainable by the approach
discussed in the introduction for the conclusion of Theorem 3 to hold. A sufficient
condition for (K) due to Shorack (1982) is the following: Assume that f(Q(u)) is
strictly positive and continuous on (0, 1), increasing near 0, decreasing near 1,
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and satisfies the following “uniform tail condition”: For a given g € 2
(8) limy,yo(g(w)h(w))/(Y(w)h(bu))
= lim,jo(q(w)h(1 — u))/(Y(W)h(1 — bu)) = »

for all b > 0 sufficiently close to zero then (K) holds. (M. Csorgé et al. (1982)
have refined this condition.)

The exact connection between condition (S) and (i) and (ii) above is not clear
to us. The following examples are instructive.

EXAMPLE 1. Let h(u) = u™ sin®(1/u) + u™ "2cos%(1/u) with » > 0. Set b,
= 27™ for any positive integer m = 1. h is not decreasing near zero, and for
each m = 1 it is easy to show that there exists a sequence {un}n-1 with u, | 0
such that

M B (Un)/ (Y (n) B (Unbm)) < lim SUPpseh(Un)/(wr/* A(Unbp)) < o0,
so that (S) does not hold. Yet there exists an 0 < M < o such that
h(u) = Mu™*? and f(Q(u)) < Mu’
for all u € (0, 1). Hence conditions (i) and (ii) are satisfied and by Theorem 3, r,
= B.
EXAMPLE 2. Let h(u) = u™ with v > 0. Condition (S) is satisfied for any
g € Q and (i) holds trivially. Consider the weight function

_Jw(In In(1/w) P(In(1/u))™* for u € (0, e7?)
w(u) = {O elsewhere,

where —2 < 8 < —1. Notice that for any q € 2,

1
J; w?(u)h*(u)q*(u) du

1
EJ; wi(u)h*(u)Y*(u) du

[ o) (o) -+

Hence the “g-metric technique” does not work in this case, condition (L) above
does not hold, yet

1 2 '
J; wi(u)u 2% du = f v }(In In(1/w))?(In(1/u))™ du < «,
0
so that (ii) holds and ry = whB.

EXAMPLE 3. Let h(u) = u™" for 0 <u < e ?and equal 4 fore?<u <
1. h satisfies conditions (S) and (L) for the choice q(u) = (u(1 — u))"* and w(u)
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= f(Q(w)). Thus by the “g-metric” technique r, = B, whereas condition (i) does
not hold.

3. Bounds for moments of transformed uniform order statistics. Let
U, ---, U, be independent Uniform (0, 1) random variables and denote by U, ,
< ... = U,, their order statistics. In this section, we establish the bounds for
transformed uniform order statistics that were used in several of the proofs of
the foregoing results. The following material is likely to have applications
elsewhere.

PROPOSITION 2. Suppose there exist —» < py;, v, < © and 0 < M < ® such
that
(21) h(u) < Mu™(1 — u)? for u€ (0,1),

where h is a nonnegative measurable function defined on (0, 1), then for every r =
1 there exists a finite positive constant L such that

Ui,n
f h(u) du
i/(n+1)

< L(i/(n + D)y = if(n + 1)"/n""

forall ky =i <= n+ 1 — ks, and all n sufficiently large where k; and k; are fixed
positive integers such that k, > —rv, —rand k> —rvs — r.

r

An(i,r)=E

(22)

REMARK 2. If —rv; —r=1andi= —rv; — r then A, (i, r) may be infinite for
all n = i. The analogous statement holds for A,(n + 1 — i, r).

ProOOF. The proof will follow from several lemmas.
LEMMA a. For every real 38 there exists a finite positive constant Kz such that

(23) EU!, < Kg(i/(n + 1))?

for every i > — 3 and all n = i. (The proof is elementary, thus the details are
omitted.)

LEMMA b. Under the conditions of Proposition 2 there exists a finite positive
constant L such that statement (22) is true forallk, <i<n+1—kyand all n
sufficiently large where k, and k, are fixed positive integers such that k;, > —ry,
and ky > — rv,. '

ProoOF. Chooseany ki <i<n+1-— k..

CASE I. v, and v, are the same sign. In this case, forall0<a<u<b<1
(24) u™(l — u)? < a"(1 —b)? + b (1 — a)=
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Hence, by (21), (24) and the ¢, inequality, A,(i, r) is less than or equal to
K\ E{U2(1 —t/(n + 1))2|U;, — i/(n + 1) |}
+ K E{(i/(n + 1))"(1 = Uin)?| Ui — i/(n + 1)|}" = Ain + By,

for some constant K; independent of n and i.
Choose any § > 0 such that both k; > —rv;(1 + §) and k, > —rve(1 + 6). By
Holder’s inequality, we have

Ai,n < Kl{EU;"},';(l”)}1/(1+5){E(Ui,n —- L/(n + 1))r(1+6)/6}6/1+6(1 —- l/(n + 1))rv2’
which by Lemma a and Lemma 2 of Wellner (1977) is
< K5(i/(n + 1))™*72(1 — i/(n + 1))™+2p /2

for some constant K, independent of n and i. B; , is bounded in the same way.

CASE II. v, and »; are of different signs. In this case forall0 <a<u<b<
1 .

(25) uw(l —u)? < a"(1 —a)”+ b(1 - b)~.
Hence by (21), (25), and the c-inequality A,(i, r) is less than or equal to
K:E(Un(1 = Uin)™®| Uin — i/(n + 1))
+ KE(| Ui, — i/(n + 1))@/ (n + D)1 = i/(n + 1))

The proof now proceeds much as in Case I, applying the generalized Hoélder
inequality, Lemma a, and Lemma 2 of Wellner (1977). 0O

LEMMA ¢. Under the conditions of Proposition 2 for any r = 1, and any choice
of fixed positive integers my = ky > — rv, — r and mg = ke > — rv, — r there exists
a constant 0 < K < o such that

(26) for all ky = i = m, and all n sufficiently large
AL, r) = K@i/(n + 1))™*; and
(27) for all ke = i < my, and all n sufficiently large
An+1—-1,r) < K(@G/(n + 1)),
ProOF. First consider (26). It can be shown by the same techniques as used

in the proof of Lemma 1.1 of Bjerve (1977) that there exists a constant ¢ > 0
such that

(28) PUpn,>%) <e™

for all k; < i < m, and n sufficiently large.
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Ui,n
+ M’E(I(Ui,n > é) f w1l — u)2du

/(n+1)
1 r
=< M1E<I<Ui,,, = —) )

Now for any k; =i < m,, we have by (21) that

Ui,n
f w1l — u)2du

/(n+1

1

AL, r) < MrE<I<Ui,n = E)

r)
f Ui,n

u”t du
2 i/(n+1)

Ui,n
f (1—-u)2du
i/(n+1)

for some constants M; and M, independent of n and i.
Consider C; . First assume », # —1. By the c,-inequality and integration

Cin = MGE(U; )™ + My(i/(n + 1))™*"
for some constants M3 and M, independent of n and i, which by Lemma a is
= Ki(i/(n + 1))™*r

for some constant K; independent of &, < i < m, for all n sufficiently large.
Now assume »; = —1. In this case

Cin = MiE|In U;, — In(i/(n + 1))|".

Since —In U;, =4 En+1-in, the (n + 1 — i)th order statistic of n independent
exponential random variables with mean 1, E,, - - -, E,, and since

In((n + 1)/i) = E(Ep1-in) = In((n + 1)/i) — Y- k7

is bounded by a universal constant for k; < i < m,; and all n = m,, it is easy to
see by the c,-inequality that to complete the proof in this case it is sufficient to
show that

+ M2E<I<Ui,n > %)

»
) = Ci,n + Di,m

E I En+1—i,n - E(En+l—i,n) I ’

is uniformly bounded for k; < i < m, and all n sufficiently large. It is well known
that

Enviin — E(Eni1-in) =a 2 =1 (Ej — 1)/].
Let s = [r] + 1. By Liaponov’s inequality
E| X7 (B = 1/j |" = (E(Tja (B — 1)/j)*)7.
Notice that by the c.-inequality
E|X} (Bj = 1)/j|1* = C(S)E(Z}a (7 — BIE; — 1))*
+ C(s)BPE(Z ] (E; — 1)%,
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with
Bi=(n+1-0)"3kj™h

which by application of the Marcinkiewicz-Zygmund inequality and the inequality
given in Lemma 2.1 of Mason (1981) is

< B(s)(Zji™)E | Ey — 1]™.

for some constant B(s) dependent only on s. Hence there exists a constant K
such that

C.<K, forall 1=i=n.

Now consider D; ,. By Schwarz’s inequality

1 1/2 Uin 2r\ 1/2
Di,n =< Mz(EI(Ui,,. = —>> (E( f (1 —_ u)vz du> )
2 i/(n+1)

which by Lemma b and (28) is
< M5e—nc/2(1 — L/(n + 1))rv2+r/2/nr/2

for some constant M independent of k; < i < m; and all n sufficiently large. It
is easy to show that this last expression is

< Ko(i/(n + 1))V

for some constant K, independent of k; < i < m, for all n sufficiently large. This
completes the proof of (26). (27) follows from (26) by symmetry.

Proposition 2 is now seen to follow from Lemmas b and ¢. 0

In particular, Proposition 2 says that if X, ---, X, are iid. F such that its
quantile function @ has a quantile density function h that satisfies (21) then
there exists a constant 0 < L < o« such that for all n sufficiently large

|EXin — Q(/(n + 1))| = L(i/(n + 1))""2(1 — i/(n + 1))=*/%/n'?
for every —v; — 1 <i<n+ 2+ vp; and
Var X < L(i/(n + 1))**(1 = i/(n + 1))**/n

forevery =2y, — 2 <i<n+ 3 + 2.

For some closely related work on bounds for transformed uniform order
statistics refer to Chernoff and Savage (1958) and Albers, Bickel and van Zwet
(1976).

Acknowledgements. The author thanks F. Lombard for a careful reading
of the manuscript and for several useful suggestions. Also comments by the
associate editor were helpful in improving the presentation.



WEIGHTED EMPIRICAL QUANTILE PROCESSES 255

REFERENCES

ALBERS, W., BICKEL, P. J., and VAN ZWET, W. R. (1976). Asymptotic expansions for the power of
distribution free tests in the one-sample problem. Ann. Statist. 4 108-156.

ANDERSON, K. (1982). Moment expansions for robust statistics. Stanford Univ. Dept. of Statistics
Tech. Report No. 7, March 12, 1982.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

BJERVE, S. (1977). Error bounds for linear combinations of order statistics. Ann. Statist. 5 357-367.

CHERNOFF, H. and SAVAGE, I. R. (1958). Asymptotic normality and efficiency of certain nonpara-
metric test statistics. Ann. Math. Statist. 29 972-994.

CsORGO, M. and REVESz, P. (1978). Strong approximations of the quantile processes. Ann. Statist.
6 882-894.

CsORrGO, M., CSORGO, S., HORVATH, L. and REvESz, P. (1982). On weak and strong approximations
of the quantile process. To appear in Proceedings of the Seventh Conference on Probability
Theory (Brasnov, Aug. 29-Sept. 4, 1982).

CSORGO, S. (1982). On general quantile processes in weighted sup-norm metrics. Stochastic Process.
Appl. 12 215-220.

GIHMAN, 1. I. and SKOROHOD, A. V. (1974). The Theory of Stochastic Processes I. Springer-Verlag,
New York.

KoMLOs, J., MAJOR, P., and TUSNADY, G. (1975). An approximation of partial sums of independent
R.V.’s and the sample D. F. 1. Z. Wahrsch. verw. Gebiete 32 111-131.

LARIccIA, V. and MASON, D. M. (1983). Weak convergence in L*(0, 1) of the estimated weighted
empirical quantile process with application to Cramér-von Mises type statistics based on
the sample quantile function. Unpublished manuscript.

MasoN, D. M. (1981). On the use of a statistic based on sequential ranks to prove limit theorems for
simple linear rank statistics. Ann. Statist. 9 424-436.

MASON, D. M. (1984). A unified approach to the asymptotic distribution of linear statistics. To
appear in Coll. Math. Soc. J. Bolyai 36. Limit Theorems in Probability and Statistics,
Veszprém, Hungary 1982.

PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic, New York.

PARZEN, E. (1979). Nonparametric statistical data modeling. J. Amer. Statist. Assoc. 74 105-131.

SHORACK, G. R. (1972). Convergence of quantile and spacings processes with applications. Ann.
Math. Statist. 43 1400-1411.

SHORACK, G. R. (1982). Weak convergence of the general quantile process in || /q ||-metrics. I.M.S.
Bulletin Abstract 82t-2.

SKOROHOD, A. V. (1956). Limit theorems for stochastic processes. Theor. Probab. Appl. 1 261-290.

STIGLER, S. M. (1974). Linear functions of order statistics with a smooth weight function. Ann.
Statist. 2 676-693.

STUTE, W. (1982). The oscillation behavior of empirical processes. Ann. Probab. 10 86-107.

WELLNER, J. A. (1977). A law of the iterated logarithm for functions of order statistics. Ann. Statist.
5 481-494.

DEPARTMENT OF MATHEMATICAL SCIENCES
501 EWING HALL

UNIVERSITY OF DELAWARE

NEWARK, DELAWARE 19716



