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ON THE INFLUENCE OF EXTREMES ON THE RATE OF
CONVERGENCE IN THE CENTRAL LIMIT THEOREM

By PETER HALL

Australian National University

Let X be the mean of a random sample from a distribution which is
symmetric about its unknown mean p. and has known variance o The classical
method of constructing a hypothesis test or confidence interval for p is to use
the normal approximation to n'/%(X — u)/e. In order to make this procedure
more robust, we might lightly trim the mean by removing extremes from the
sample. It is shown that this procedure can greatly improve the rate of
convergence in the central limit theorem, but only if the new mean is rescaled
in a rather complicated way. From a practical point of view, the removal of
extreme values does not make the test or confidence interval more robust.

1. Introduction Let X;, X, ..., X, be independent observations from a
symmetric distribution with unknown centre p and known variance o”. If we wish
to test a hypothesis about g, or construct a confidence interval for y, then classical
statistical theory suggests that we base our procedure on the normal approxi-
mation to the sample mean, X = n™' ¥ X;. However, to allow for the possibility
that the underlying distribution has rather large tails, we might modify the
sample mean to make it more robust against departures from a normal model.
One very simple modification is to delete k& extremes from the sample, and replace
X by the mean of the remaining n — % observations. Provided k/n — 0 as n —
oo, the new mean, X (k) say, will have the same asymptotic variance as X.

Huber (1981, page 5) has described a robust procedure as one whose perform-
ance is “close to the nominal value calculated at the model”. Thus, if the
significance level of a robust test is equal to a under a normal model, the level
should be close to a in the case of a longer-tailed distribution. Suppose our test
can be made more robust by deleting extremes from the sample. Then the
removal of outliers must improve the rate of convergence to the normal limit.

Our aim in the present paper is to investigate the effects of extremes on rates
of convergence. Hatori, Maejima and Mori (1979) considered a related problem
in the case of the law of large numbers. They showed there that the rate of
convergence can be improved by deleting a number of extremes, even if the
number is fixed as n — . See also Mori (1976, 1977).

Our main conclusions may be summarized by two points.

(i) From a theoretical viewpoint, the removal of extremes can substantially
improve the rate of convergence in the central limit theorem. Provided the
trimmed mean X (%) is scaled in the right way, the rate of convergence can be
made arbitrarily close to O(n™") for a suitably chosen sequence k(n) satisfying

Received October 1982; revised May 1983.

AMS 1980 subject classifications. Primary, 60F05, 62G30; secondary, 60G50.

Key words and phrases. Central limit theorem, extremes, order statistics, rate of convergence,
sums of independent random variables.

154

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability. STOR ®

e

S 22

2

WWW.jstor.org



INFLUENCE OF EXTREMES ON CLT 155

k(n)/n— 0 as n — o, even if the underlying distribution does not have any finite
moments higher than the second.

(i) The improvements described in part (i) cannot be achieved using a simple
scale factor. Indeed, if p = 0, if

AY = SUp_acacal P{(n — B) 2R () < 02) — D(2) |

denotes the rate of convergence after k extremes have been removed from the
sample, and if

AP = SUP—wcz<o| P(n2X < 02) — ®(2) |
denotes the rate based on the entire sample, then the ratio
(AP +n7)/(AP + n7)
does not converge to zero as n — . Therefore the rate of convergence of
(n— k)X (k)/o

to the standard normal law is at least as slow as that of n'/2X/o, up to terms of
order n7'; see Theorem 4. (In the definitions of A" and A, ® denotes the
standard normal distribution function.)

The scale factor needed to achieve the improved rate of convergence described
in (i) may be chosen as a function of the last-removed extreme. Sometimes it
may be taken equal to the expectation of this function; see Proposition 3.
However, the optimal scale factor is of a rather involved nature, and is most
unlikely to be known in practice. Since the simple, commonly used scale factor of
(n — k)?67" does not improve the rate of convergence, the overall conclusion of
our study is a rather pessimistic one. There appears to be no practical way of
improving the rate of convergence of n'/2X/s to normality, and so of constructing
a robust test or confidence interval, simply by trimming the mean. It may be
possible to improve the rate of convergence by studentizing X (%) in a suitable
manner, but there are considerable technical problems in describing the fine
asymptotic behaviour of such a scheme.

We discuss now our definition of an “extreme”. In practice, an extreme is often
determined according to a mixture of several criteria: its apparent distance from
the “centre” of the distribution, a test for extremality, a plot of the data, and
perhaps some knowledge of the circumstances under which the data were re-
corded. The following model seems to be a reasonable approximation to the
rather ad-hoc procedure which is carried out in reality. We assume that the
underlying distribution is symmetric about u = 0, and delete those % observations
which are largest in absolute value. Denote the sum of the remaining n — %
observations by #'S,. Then the trimmed mean is given by X (k) = (n — k) ' ®8,.
We do not assume that the outliers come from a contaminant distribution, but
rather that they represent extremes from the underlying distribution.

We conclude this section by describing the notation used in the remainder of
the paper. Let X, Xi, X, --. be independent and identically distributed obser-
vations with zero mean, unit variance and distribution function F, and let X,
X2, *++, Xun denote the sample values Xi, X, --., X, arranged in decreasing
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order of magnitude: | X,1| = | Xp2| = -+ = | Xun|. Then ¥, = S, — ¥4, X,,;,
where S, = }7-1 Xj. Set G(x) = P(|X| = x), let & = k(n) denote a sequence of
positive integers satisfying 2/n — 0 as n — o, and let G, denote the distribution
function of | X,z |. To avoid trivialities we assume that G (x) < 1 for all x.

2. Rates of convergence. We begin with a limit theorem for the case of a
general summand distribution. Define

px) = {Gx)}™ u dF (u)

|u|=x

whenever G (x) > 0, and set u(x) = 0 if G(x) = 0. Let Y have the distribution of
X given that | X | < x, and define

pn(x) = EQ(Y =) I(| Y — p| = n"?)
and
a%(x) =E{(Y - ,U,)ZI(I Y - ‘u| < n1/2)},

where p = u(x) and I(E) denotes the indicator function of an event E. Both
pn(x) and o0.(x) are defined to be zero if G(x)= 0. Let %, denote the o-field
generated by |X.:|, and define the random variables A, and B, by A, =
m'%6, (| Xuz|) and B, = m {u(| Xur|) + pn(| Xur|)}, where m = n — k. An extension
of the argument used to prove Theorem 3 below may be used to show that in a
certain sense, the norming functions A, and B, are optimal in the class of %,;-
measurable functions. The rate of convergence using these functions is described
by

A, = Sup—oo<z<oo| P((k)Sn =A,z+ Bn) - q)(z) I’

and is closely approximated by the more tractable sequence,

o Y— 4
an=nf E[min{l, (—nl—ﬂ") }] dGu (x)
0

+n12 J’ {on(x)} 3 dGnk(x)f WdP(Y-p=<u)|.
0 |ul=n'?

THEOREM 1. Suppose E(X) = 0 and E(X?) = 1, and that k/n — 0 as n —
. Then the ratio (A, + n~"%)/(8, + n~"?) is bounded away from zero and
infinity as n — .

The interpretation of this result is greatly simplified if we suppose that the
underlying distribution, F, is symmetric. This assumption entails u(x) = p,(x)
=0,B,=0,

on(x) = {Gx)}™ u® dG(u)

u=<min(x,n)"?
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and

{1+0(1)}8,=n"" f . WP(| Xur| = u) dG(u) .
(2.1) Osusn'”

+nf .P(lX"kl =u)dG@u) +0n™)

for all A > 0. (See below for a proof.) The hypothesis of symmetry is imposed
throughout almost all statistical work on trimming and robust estimation; see for
example Andrews et al (1972) and Huber (1981). It ensures that the first order
term in a Chebyshev-Edgeworth-Cramér expansion of the distribution of S,
vanishes. Thus, if the summand distribution is sufficiently smooth and has
sufficiently many finite moments, the order of approximation in the central hmlt
theorem is O(n ") rather than O(n‘l/ 9.
To prove (2.1), note that in the case of symmetry and for each A > 0,

00 X 4
Su=n f (G(®)} ™ dGu (x) min{l, (n%) }dG(u)
0 0

={1+o0(1)}J+O0®n™),

where
00 X u 4
J= nf dGnr(x) min{l, (W) } dG(u) = J1 + s,
0 0

nl/2

nl/2 x 0
Ji=n"! f dGri(x) f u*dGu) +n™! f dGur(x) f u* dG(u)
0 nl/2 o

0

/2
=pn"! f u'P(| Xox| = u) dG(u),
0

J2=nf dGur(x) dG(u)=nJ P(| Xor| = u) dG(u).

nl/2 nl/2 nl/2
As our smoothness constraint we shall impose Cramér’s continuity condition,
(&) lim sups,. | E(e®®) | < 1.

Our next theorem permits us to improve the boundary of the approximations in
Theorem 1 from n~"?ton".

THOEREM 2. Suppose E(X) =0, E(X?® =1, k/n — 0 as n — «, and the
distribution of X satisfies condition (C). Then the ratio (A, + n™Y)/(8, + n™%) is
bounded away from zero and infinity as n — .
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There is obviously a very wide latitude of choice for norming constants which
depend on | X, |. Our next result shows that the choice of A, is optimal in a
certain sense. Here and in the remainder of this section we assume the underlying
distribution is symmetric, which makes the estimates considerably easier to
interpret.

THEOREM 3. Assume the conditions of Theorem 2, and that the underlying
distribution is symmetric. Let D,, n = 1, be random variables such that D, is
F.p-measurable, D, > 0 almost surely and

P(D,=n"%|| Xu| > x0) =1
for some € > 0, xo > 0 and all large n. Then
liln infn—-am {Sup—w<z<oo| P((k)Sn S Dnz) - Q(z)l + n—l}/(sn + n—l) > O-

Between them, Theorems 2 and 3 provide a benchmark for assessing rates of
convergence using either constant or random norming sequences. We shall
interpret both theorems by referring to a special “test distribution” G., given by
G.(x) =1—x"forx=1and 2 < a < 4. If G = G, then the underlying
distribution F has variance a/(a — 2), and is easily standardised.

ProPOSITION 1. Suppose G(x) = Gu(x) for large x. Then
8= {1+ o0()}ec(k)4/a— 1)~ k/n) "

as n — « and k/n — 0, where c(k) = k**'T'(k — 4/a + 1)/T' (k) denotes a
sequence of positive constants depending only on k and satisfying c(k) — 1 as
k — . In particular,

2.2) 8, ~ const. n*/*72
if k is fixed.

Results similar to Proposition 1 may be obtained for distributions G satisfying
G(x) = 1 — x~°L(x), where L is a slowly varying function. Two consequences of
Proposition 1 should be noted.

(i) Suppose X is symmetric and P(|X| > x) = G.(x) for large x. Then the
fastest rate of convergence in the central limit theorem for S,, using optimal
norming constants, is given by

info50,0 {SUP—w<z<w| P(Sn < cz + d) — ®(2) |} = const. n'~*/?

for large n, whenever 2 < a < 4; see for example Theorem 1 of Hall (1980). Since
4/a — 2 <1 — a/2 whenever 2 < a < 4, then even by taking % equal to 1 we may
improve the rate of convergence.

(ii) The rate of convergence for fixed £ = 1 does not depend on the value of k.
However, the constant in (2.2) is a strictly decreasing function of k. If we desire
A, to converge at a rate of O(n™"), where 2 — 4/a < y < 1, we must choose % to
be at least of order n'~*~7/#/*=1 If o4 < 4, there does not exist a sequence % (n)
diverging to infinity more slowly than n, and such that 4, = omn™.
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The test distribution G, provides an informative guide to the behaviour of
other distributions when extremes are removed from the sample. However, it
excludes the interesting case where the variance is only just finite—i.e. where
P(|X| > x) = x7°L(x), for a slowly varying function L. In this situation, the
fastest rate of convergence in the central limit theorem for S, is achieved with
nonstandard norming constants; see Theorems 1 and 2 of Hall (1980). Our next
result shows that when the variance is only just finite, choosing & larger than 1
(but still bounded) can improve on the rate of convergence. We shall confine our
attention to the distribution given by Hp(x) = 1 — x%(log x) * for large x, where
B > 1. Similar results may be obtained when 1 — G(x) = x 2L (x) for a slowly
varying function L, but they involve intricate conditions on the function L.

PRrOPOSITION 2. Suppose G(x) = Hg(x) for large x. Then

o285 ~ B(log n)"*#log log n if k=1
" l(k=1)""(logn —log k) if k=2

asn— « and k/n — 0.

We shall consider two consequences of Proposition 2.

(i) Suppose X is symmetric and P(| X| > x) = Hg(x) for large x. Then (using
Theorem 1 of Hall (1980)),

infe0,4{SUP—ww<z<e | P(Sn < ¢z + d) — ®(2)|} = const. (log n)*

for large n, whenever 8 > 1. Therefore even by choosing & as small as 1 we may
improve on the rate of convergence.

(ii) By taking % = 2 we achieve a significant improvement on the rate when 2
= 1. However, for fixed £ = 2 the rate does not depend on k. If we wish A, to
converge to zero at a rate of O(n™"), where 0 < y < 1, we must choose % to be at
least of order n"(log n) %%,

The fast rates of convergence described in Theorem 2 can sometimes be
achieved using a constant scale factor, rather than the random scale factor A,.
We illustrate this property by referring to the test distribution G.. Set a,
= {E(A})}"? and let

AD = SUpP_wcecw | P(PSy = an2) — B(2)|.

ProposITION 3. Suppose X is symmetric about p = 0, and P(|X| < x)
= G.(x), where 2 < a.< 4. Then the ratio (AY + n™")/(8, + n™") is bounded away
from zero and infinity as n — oo,

Next we treat the case of a simple, known norming sequence. Let

AY = SUp—wcocw | P(PS,/(n — k)* < 2) — ®(2)|
and
A? = SUpP_w<z<w | P(Sn/n"? < 2) — ®(2)].
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The quantity A} corresponds to a central limit approximation after extremes
have been deleted from the sample, while A is a central limit approximation for
the entire sample. Our next theorem shows that A%}’ converges to zero no more
quickly than A?, up to terms of order n™"'. Therefore the operation of deleting
extremes from the sample has no appreciable effect on the rate of convergence.

THEOREM 4. Assume the conditions of Theorem 2. Then the ratio
(A1 + 1Y) /(B2 +n7Y)

is bounded away from zero as n — .

Theorem 4 suggests that a hypothesis test or confidence interval based on the
sample mean and population variance, cannot be made more robust by trimming
out the extremes. This is despite the fact that trimming can greatly improve the
rate of convergence in the central limit theorem, when the trimmed mean is
scaled optimally.

3. Proofs. In the proofs we define m = n — k, and let the symbols C, Ci, C:,
... denote positive constants.

PRrROOF OF THEOREM 1. Let Y, Y, Y, --- be independent and identically
distributed random variables with the distribution of X truncated at +x, where x

> 0isfixed. Thus, P(Y =y) = {F(y) — F(x—)}/G (x) for | y | = x. The characteristic
function of Y — u(x) is given by a(¢]|x) = E[exp{it(Y — p(x))}]. Now,

11— alt|x)]
/G(x)

/ G(x) + |exp{itu(x)} — 1 — itp(x) |/ G (x)

f [exp{itu(x)} — e™] dF (u)
J |u|=x

<<

j (1 + itu — e™) dF (u)
|lul=x

=< Cit%exp{| tu(x) |}

for all x = x; (say) and all ¢, where C; depends on neither x nor ¢. (It is assumed
G (x) is bounded away from zero for x = x;.) The function p is bounded uniformly
in x, and so there exists C, > 0 and &; € (0, 1] such that

3.1) |1— a(t]|x) > < Cat* < t7/100
and all x = x; and | £| < &. In this case,

log{a(t|x)} = a(t|x) — 1 + ri(t]| x),
where | r1(¢| x) < | a(t|x) — 1|°. Therefore

(3.2) {a(t/m"?| x)}™ = exp[m{a(t/m"?|x) — 1} {1 + ra(t|x)},
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where by (3.1),
| ran(t] %) | = m|ri(t/m'?| x) | exp{m | ri(t/m*?| x) |}
=< Com™'t*exp(t*/100)

uniformly in x = x; and | ¢| < eym 2
Let r3,(t|x) = |a(t]|x) — 1 — itu.(x) + Y%t’o%(x)|, and set p = u(x) and W
=Y — p. Then

ra(t|x) < |E{(e*™ — 1 — itW + Bt*WAHI(| W| = n'?)} |
+ |E{(e*V — )I(|W|>n"?}|
< 2E {W?min(1, | tW))I(| W| = n'/?)}
+ 2E {min(1, | tW|)I(| W| > n'/2)}.
Hence there exists x; = x;, r1 = 1 and & € (0, &] such that

(3.5) ran(t] x) = mra,(t/m"?| x) < ¢£%/100 + 1

(3.3)

(3.4)

whenever x = x;, n = », and 0 < ¢ < e;n'/%. Using (3.4),
| Panlt| x) |2 < 2L5[E | W]L(| W| < nV)}]?
36 + 8E{|W|I(| W| > n"?)}]2
Furthermore,
[E{| W|I(|W|>n")}]* = E{W(|W|>n")}P(|W|>n""?).

Let A be an increasing function on [0, ) with A(0) = 1, A(0) = o and
E{X?A?*2|X]|)} < . Then for any y > 0,

[E{|WPI(| W] =n')]
=[y®+ E{| W|A(| W) WI(| W| < n)}/A(3)]?
=2[y° + {A()) 2E(W?2A%(| W|) E{W*I(| W| = n'/?}].

Note that E{W?A4%(| W|)} is bounded as x — . Combining the results from
(3.6) down, we see that for any » > 0 we may choose x5 = x2, > = »; and
&3 € (0, &2], and a large value of y, such that

rsn(t| x) = m? | raa(¢/m?| x)|?
(3.7) = 983(1 + tY[n ' E{W*'I(| W| = n'?)} + nP(| W| > n'?)]
+ Cst*(1 + tYn7,
where Cs does not depend on ¢, x or m. Consequently,
exp[m{a(t/m'?|x) — 1 — i(t/m"*)pn(x) + Ya(t/m"*)%0%(x)}]
=1+ m{a(t/m"?|x) — 1 — i({t/m"®p.(x) + %(t/m*%62i(x)} + re.(t|x),
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where by (3.5) and (3.7),
ren(t]| x)| =< rsn(t]| x)exp{ra(t| x)}
(3.8) < ent*(1 + tYe " [nE{(Y — p)*I(|]Y — p| = n'?)}
+nP(|Y — | >n")] + Cit?(1 + t4)et"®n 2,

Choose x4 = x3 and »s = », so large that oZ(x) = 27/50 whenever x = x, and
n = v;. For such values of x and n, and for 0 < ¢ < &sn'/?, we see from (3.2), (3.3),
(3.5), (3.7) and (3.8) that

{a(t/m*?| x)} "exp{—itm " *u.(x)}
(3.9) = [1 + m{a(t/m"?|x) — 1 — i(t/m"*)pa(x) + %(t/m"*)’00(x)}]
- exp{— t’on(x)/2} + ru(t|x),
where
| Poa(t] )] < (Csmt*(1 + t)nE[min{1, (Y — p)/n'?)*}] + Cet*(1 + t)n"")e /4,

in which Cs is an absolute constant. Thus,

£(27/50)"/°n'"?
0

(3.10)
&3n
= J 7 roa(t| x) | dt
0

4
=< CmnE[min{l, (XE-I_/TM) }] + Csn},

where C; is an absolute constant.
Let L.(-|x) denote the function whose Fourier-Stieltjes transform, as a
function of ¢, equals

(B.11)  Yn(t|x) = m{a(t/mY?0,|x) — 1 — i(t/m"*0a)un + %(t/m"%0,) 07} e /2,
where we have written o, for 0, (x) and p. for p.(x). Thus,

L.(z|x) = mf / {(D(z - mll/lzo ) - ®(2) + m_1t/¢2_&_¢(z)
luln'/® " "

dt

_t
rn on(x)

2
(—“-—) ¢’(z)} dP(Y — p =< u)

m1/2on

+ f / {(D(z - ) - <I>(z)} dP(Y — p = w).
’u|>nl 2 n

We shall apply the smoothing inequality (see Theorem 2, page 109 of Petrov,

1
2
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1975), in which we take T = £3(27/50)"/2n "2,
“F(2)” = P{37 (Yi — p) = m"%0,2 + mpn} and “G(2)” = ¢(2) + La(z|x).
In view of (3.9), (3.10) and the smoothing inequality, we have
SUP-w<z<w | P{ET (Yi — p) = m20nz + mpn} — ®(2) — La(2]x)|
@12 = CnE[min{1, (Y — p)/n"?*}1+ O(n7'7?)

uniformly in x = x4, as n — o,

During applications of this result we shall take x = | Xy.|. Writing p = 1
— F(x4) and using the normal approximation to the binomial via an Edgeworth
expansion, we see that

(3.13) P(| X | = x0) = $423 (;?)pfu -p)"7=0(n™

for all A > 0, since 2/n — 0. The estimates (3.12) and (3.13) form the heart of our

proof.
We may deduce from (3.12) and (3.13) that with A, = m'?0,(| X.x|) and B,
=m{p(| Xnr|) + (] Xuz|)}, we have

SUP-c<z<eo | P((k)sn =A,z+ B,) — D(2) — E{Ln(zl IXnkI)}I

3.14 ® —u\*
(3.14) = Cnf E[min{l, (%5&) }] dGur(x) + O(n™V?)
0

as n — . Since
| ®(2 + v) — B(2) — vp(2) — %V’ (2) — Y%ev’p” (2)| =< (1/4))v*supw | ¢” (w)|
uniformly in z, then

SUP—co<z<w
2

L.(z|x) + % ¢”(2)m %63 f udP(Y —p<u)

|u|<m Y/

Y—pu !

uniformly in x = x5, where Cs is an absolute constant. Combining (3.13), (3.14)
and (3.15), we see that

SUP—w<z<w | P(PSn = Anz + B,) — ®(2)|
© ) Y _ .U. 4
=C{n | E|minsl, T2 dGr(x)
0

f {0n ()} dGra(x) u*dP(Y —p<u)
0

(3.15)

(3.16)

+n72

)

|u|<n /2

+ O(n7"3).
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Next we shall derive a lower bound to
£, = SUP—w<o<e | E{Ln(z | |Xnk I)} I

Let w > 0 and define b,,(t) = (w — t)te’”?if 0 < t < w, b, (t) = 0 otherwise. Set
bu(z) = f e™b,(t) dt.
0

It is readily proved that b, is absolutely integrable, and so the Fourier transform
b, may be inverted to yield

3.17) bu(t) = (27)7! f ) e *bu(2) dz = (2m)™ j ) e b, (2) dz.
Note too that

Ynl(t]| x) = j“ e dL,(z|x) = —it j“ e*L,(z|x) dz,
where Y, (t| x) is defined by (3.11). Thus,

(3.18) J' eE {L,(z|| Xu|)} dz = —(@it)™" J' Yn(t]| x) dGrr(x).
o 0

Applying Parseval’s formula to the pair of Fourier transforms (3.17) and (3.18),
we see that

- f (i) "bw(2) dtf Yn(t| x) dGur(x) = J' E{L.(z| |Xnk|)}5w(z) dz.
—o0 0 —0o0

Therefore

t22

© 1
f dGu(x) f (1- t)xp,,(twlx)exp( ;" ) dtl < Co(w)tn,
0 0

where Co(w) does not depend on n. Taking real parts in this expression, we find

that
@ 1 tw(Y — 1) 1 [tw(¥ —p))°
J; dGnk(x) J(; (1 - t)E[COS{%} -1+ 5 { wril"l/Z—onu } ] dt i

= C9(w)£n~

m

Subtracting two versions of this inequality, one with w = 1 and the other with
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w = 2, we may deduce that

© 1 2
(319) n f dGoi(x) f (1—t)E[1—cos{L;m}] dt =< Ciokn.
0 0 m = On

Since

1 1/2 4
f (1—8)(1 —cos 0¢t)* dt = Cmin{l, (21_1;72,._0) }
S n

for all large x and large n, then in view of (3.13) and (3.19), there exists a constant
Cu such that

(3.20) nf E[min{l, (X;Ll_—/ﬁ) }] dGur(x) < Cri(én +n7Y)
0

for all large n.

Returning to the estimate (3.12), we choose the constant 7 to equal 1/2C7Ch;.
(Recall that C; is an absolute constant.) It then follows from (3.12) and (3.20)
that

SUP—w<z<w| P(PSn < Anz + Bn) — ®(2)| + O(n™"?)

1 ) ) Y— 4
= (2011)nf0 E[mm{l, (TIEH‘) }] dGnr (x).

When this estimate is combined with (3.15), we see that
SUP-w<z<w0 | P((k)Sn = Anz + Bn) - q)(Z) I + O(n‘l/z)

0 Y _ 4
> cm( n J E[min{l, (T,j‘> }] dG (%)
0

f {0, (x)} 2 dGpi (%) u?dP(Y —p<u)
0

lul<n'?

(3.21)

+n7?

)

ProOF OF THEOREM 2. Theorem 2 can be proved in the same manner as
Theorem 1, provided we show that the term O (n~'/?) in (3.12) may be sharpened
to O(n™"). Now, (3.12) was derived via the smoothing inequality, in which we
took T = £3(27/50)/?>n'/? = en'/?, say. If instead we take T = n, then the desired
version of (3.12) will follow from (3.9) and (3.10) if we show that

\ S t
(322) J:nl/zt T (O’n(x) x)

uniformly in x = x5, for some x5 = x4.

Theorem 1 follows from (3.16) and (3.21).

dt=0(n™)
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The left side of (3.22) is dominated by

(50/271)V/2n
f T rm(t|x) | dt
(3.23) o
amiecal
enl/?

1/2
for some C > 0. (Use the definition (3.9) of 77.(¢| x).) Furthermore,

m

+{1+Cm(1+ tz)}e‘27‘2/l°°] dt

t
o(

SUP=en?| & (/M| x) | < supe=c| a(t]x) |
=< {(sups=.| E(e™) [}/G(x) + {1 — G(x)}/G(x).

We may deduce from Cramér’s condition (C) that by choosing x5 sufficiently
large, this quantity is dominated by a number p < 1 and for all x = x5. The result
(3.22) now follows from (3.23).

Theorem 3 may be proved by adapting the proof of Theorem 3.1, page 87 of
Hall (1982).

ProOF oF THEOREM 4. By a slight modification of the argument leading to
Theorem 2 (see in particular the inequalities (3.12) and (3.13)) it may be provded
that the ratio (A, + n7%) /(8. + n™") is bounded away from zero and infinity as n
— o, where

A} = SUP-w<i<w| P(®S, = m'?2) — E[®{z/0n(| Xnz|)}]]|.
Let ¥ (z) = ®(z~Y?) for z > 0. Then for any x > 0 and 2z > 0,
D{z/0n(x)} — ®(2) = 2 %oh(x) — BV (z7%) + % 2 o2 (x) — 1}2¥"(27%0, (x)),

where 0, (x) lies between 1 and o2 (x). Replacing x by | X.x| and taking expecta-
tions, and noting that E {o2 (| X.x|)} — 1 and

E{ci(|Xu|) — 1}* = (Eon(| Xus|) — 1)%,
we see that

|E[®{2/0:(| Xnt|)}] = @(2) |+ O(n™") = % 22| E{o5(| Xuz|)} — 1| ¥'(27?).
Therefore
Ne=|E{oh(| Xu|)} — 1]
< Ci[SUP-w<icw| P(PS, = m*?2) — E[®{2/0n(| Xux|)}]]
+ SUP-w<zco | P(PSn = m'?2) — @(2) | + n7']
<G+ AP +n ) = CGAP +n™,

using Theorem 3. Consequently 8, + 17, = C4(A" + n7'). It is also true that
A2 +n™/062 + n™!) is bounded as n — o, where

8¢ = E{X’I(|X| > n'?)} + n'E(X'I(|X| < n"*)};

see Corollary 4.6.2, page 184 of Hall (1982). Therefore if we prove that
2(8, + M) + O(n™Y) = 82, it will follow that (A" + ™) /(A2 + n™") is bounded
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away from zero as n — oo.
To this end, observe that

1-E{oa(|Xm|)} = [1—f dGhr(x) u’ dG(u)]
x=0 O=<u=min(x,n"?
[f dGrr(x) ( 1 1) f u® dG(u)
— » u
x>0 * Gx ) O<u=min(x,n""?)
= Nn1 — MNn2,
say. Now,

"1n1=f dGnk(x)f u? dGu)
x>0 u>min(x,n"?)

=f E{XI(|X|> x)} dGnk(x)+f
x=0

x>n

dGni(x) f u® dG(u).

vz n'*<usx

Since P (| Xuz| = x,) = O(n™) for all x, and all A > 0, then

2= {1+ 0(1)} f dGu(x){1 — G(x)} f u?dGu) + O(n™)
x=0

0<u=<min(x,n'?
= {1+0(1) f P(|X| > x) dGu(x) + O(n™).
x=0

But P(|X| > x)/E{X*I(|X|> x)} — 0 as x — =, and so
1-E{on(]Xu|)} +0(®™)

= {1+ 0(1)} E{X’I(|X| > x)} dGn(x)
x=0

+ j dGrr(x) u? dG(u)
x>n!/ nl2<u=x

~ 1 = f dGrr(x) u? dG(u)
O=x=n'/?

x<u=n'/?

+ j dGr(x) f u? dG(u)
0<x=n'/? u>n!/

+ j dGrr(x) J u? dG(u)

- f W2P(| X | < w) dG(w) + E{X?I(|X| > n'?))
O<u=<n!/?

- j WP(| Xon| < w) dG(w) + E(X?I(|X| > n?)}.
O<u=n'/?
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Since

{1+0(1)}8,+0(n ) =n"" j u'P(| Xu| = u) dG(u)

O<u=<n'?
(see (2.1)) then
208, + 1 — E{02(| Xue|)}] + O(n7Y)
=nT'E{X'I(|X|=n"?} + E{X’I(|X| > n"?).
The term within square brackets is dominated by 8. + 7., and so the proof is

complete.

PRroOF OF PROPOSITION 1. Let U, be the kth largest value of an n-sample
from the uniform distribution on (0, 1). Then using (2.1),

1

1-n—%2
8 ~n! f 1 —-u)™P(Unm>u)du+n f P(U..>u) du
0 1

—n—a/2
4 -1 1
= n‘l(; - 1) {f (1—u)"*dP(Uu < u)
0

1
- f 1-w)*dP(Un < u)}
1-n—a/2

-1

-1
(1) e 1 - ()
4 a
Letd(k) =T'(k — 4/a + 1)/T'(k) ~ k' ¥~ as k — ». Then

1
j 1-u)"*dP(Uwx<u)=dE)'(n+ 1)/F(n —§+ 2) ~ d(k)n**!
0

as n — o, Furthermore,
1

n=2P(Uy>1—n"%) < n™? j 1—-w'*dP(Uu < u)

1-n-/2

1
= n“k(Z) f u" 1 — wy"* du
1

—n-a/2

< C nk_l (n—a/Z)k—4/a+l
- | T(R)

= Cd(k)n4/a—1n(k+1-4/a)(1—a/2)_1/1.,(k _4 + 1)
44

= o{d(k)n*="1}.
Therefore 8, ~ (4/a — 1) “'d (k)n*/*2, from which follows Proposition 1.
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PROOF OF PROPOSITION 2. In this case,

nl/2

8n ~ n'lj
0

dGni(x) J’ u* dG(u)
0

o nl/2 x
+ nj dGni(x) {n‘2f u? dG(u) + j dG(u)} .
nl/2 0 nl/2

We shall prove that the second term in this expression is negligible in comparison
with the first. Now,

(3.24)

nl/2

nl/2 x
no,; = J dGni(x) j u* dG(u) ~ j x%|log x|™® dGr(x)
0 0 0

G(n]/2)
~ 2% j (1 — w)y {-log(1 — u)} % dP(Un < u)
0

1-n"'(logn)#2*

= 2%p (Z) j u" %1 — w)* 2 {~log(1 — u)} * du.
0
Suppose first that £ = 2, and observe that

1
J’ u" (1 — w)*?*{~log(1 — u)} " du

1-n""(logn)F2#

1
=< Cy(log n)™% j (1 — w)*? du < Co(2°n7Y)*(log n) P**VE7,
1-n"'(logn)#2#

while

1
J’ u" %1 — u)**(~log(1 — u)} * du
0

-l Go)

-1
~ {(k -1) (Z : })} (log n — log &) ™%,

-1
} E{-log(1 — Up—14-1)} %

Therefore

(3.25) 8 ~ 228(k — 1) (log n — log k) .
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When k =1,

1—-n""(logn) #2f
28—-1n"'% (Z) J * u (1 — u)*?{—log(1 — u)} * du
0
= {1 — n"'(log n) 27} '(log n + B log log n — B log 2)'~%

1-n"'(logn) #2#
+(n-1) J’ w2 {—log(1 — u)}'~* du;
0

1
(n-1) J' u"2{—log(l — u)} "% du = E {~log(1 — Un-11)}'"%#
0

= 1-28 1 .
(log n) {1 + 0<log R E

and
! n"'(logn) #2f
(n—1) j u"{—log(l —u)}'"*#du= Clnj (~log u)'~%* du
1-n"(logn) #2f 0
< C,(log n)*~3A.
Therefore
(28 — 1)27%8,1 {1 + 0(1)}
= —(log n)"*#{1 + B(1 — 2B)(log n) "'log log n
(3.26) + O(1/log n)} + (log n)'~%{1 + O(1/log n)}
~ B(2B — 1)(log n) *1log log n.
Since

nl/2 ©
n’! j u! dG(u) + nf dG(u) < C(log n) 7%,
0

nl/2

the second term in the expansion (3.24) is dominated by
Cillog m) #B( Xl > ') = Cullog ) ? (1) P, -+, 1541 >

< C;(log n) " **PE2B% k! = 0(8m1)

in either the case 2 = 2 or k& = 1. Proposition 2 follows on combining (3.24) —
(3.26).

PRrOOF OF PROPOSITION 3. The proof is similar in many respects to those of
Propositions 1 and 2, and so we provide only an outline. The following results are
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readily proved:
2
(1 - ;)E {02 (| Xne|)}

1
— k(Z) f un—k—l(l _ u)k—l[l _ {1 _ min(u, 1-— n—a/Z)}l—Z/a] du,
0
2 2
(1 _ &.) E (04(| Xul))

1
= k(:) f u"—k—2(1 - u)k—l[l J— {1 —_— min(u, 1 —_ n—a/2)} 1"2/(!]2 du,
0

If we could replace the term min(u, 1 — n™*/%) by u in each of these expressions,
the quantity (1 — 2/a)*var{o% (| X.z|)} would equal

k(Z){B(n—k—1,k)—2B(n—k—1,k—3+1)
4
( . >}
+Bln—-k—-1,k——+2
4
2 2
- [k(Z){B(n—k,k)—B<n—k,k—-+1)}]
4

=n—-k'n-k-17"

: [n(n — 1) - 2n (1 4 Oy TR 2t ‘FZ 2 )
Tk —4/a+2)
4/a 1
+ Vel + Oy D ]

—_ — -2 2/ -1 F(k—2/a+1) 2
(n—k) [n n?*{1 + O(n )}.--_-——P(k) ]

2
— (n— B)nt/(1 + O(n_l)}[r(k —4/a+2) {I‘(k - 2/a + 1)} ]

T'(k) T'(k)
k 1-4/a
o))
n

as n — o. The error caused by replacing min(x, 1 — n™*%) by u may be shown to
be of this order of magnitude, and so

(3.27) var{o%(| X|)} = O{n"'(k/n)*~¥}

asn— oo,
Let V. = 0% (| Xut|), vo = E(V3,) and ¥(2) = ®(27"/?). Arguing as in the early
part of the proof of Theorem 4, we see that with

Allzl = Sup—eo<z<00| P((k)Sn = anz) - E{¢ (zv’lt/z/v’l’/z)} |’
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the ratio (A; + n™")/(8, + n™') is bounded away from zero and infinity as
n — o, Therefore in view of Theorem 3, Proposition 3 will follow if we prove that
with

T = SUP-w<z<a| B {®(207%/Vi/?)} — ®(2) l,

we have 1, = C(8, + n™"). From a short Taylor expansion of ®(zv}?/V}/?) =
¥(27°V,/va), and by considering the cases | Xz| = xo and | Xnr| < %0 for a large xo,
we may deduce that

= O{var(V,) + n_l}

as n — . The desired result now follows from (3.27) and Proposition 1.
Acknowledgment. I am grateful to the referee for his detailed comments.
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