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A LOCAL TIME ANALYSIS OF INTERSECTIONS OF BROWNIAN
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By DoNALD GEMAN, JoSEPH HOROWITZ, AND JAY ROSEN
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We envision a network of N paths in the plane determined by N inde-
pendent, two-dimensional Brownian motions W;(¢), t =0,i=1,2, ..., N.
Our problem is to study the set of “confluences” z in R? where all N paths
meet and also the set M, of N-tuples of times t = (¢, ..., &v) at which
confluences occur: Mo = {t: Wi(t;) = --- = Wn(t~)}. The random set M, is
analyzed by constructing a convenient stochastic process X, which we call
“confluent Brownian motion”, for which M, = X~'(0) and using the theory of
occupation densities. The problem of confluences is closely related to that of
multiple points for a single process. Some of our work is motivated by
Symanzik’s use of Brownian local time in quantum field theory.

0. Introduction. A family of N = 2 spiders moves in the plane according to
independent Brownian motions W;(¢), i =1, ---, N, each spinning a gossamer
trail. Our problem is to study the set of “confluences” z € R* where all N strands
meet, and also the set of N-tuples of times ¢ = (¢, - -« , ty) in RY (ie. # =0) at
which confluences occur, that is z = Wi (1) = .. - = Wn(¢n). Notice that only the
trails join at a confluence; the spiders themselves need not collide.

S. J. Taylor [18] proved that the set C of confluences has Hausdorff dimension
2, for each N, and R. Wolpert [21] showed that the corresponding set M, of times
t € RY has dimension 1, though we were unable to follow his argument in a few
places. Independently of this, following the suggestion by one of us (D.G.),
Wolpert constructed a finite random measure on M, by considering M, as the
zero set of the Gaussian random field

(0.1) X = (Wi(t)) — Walte), -+, Wro1(tv—1) — Wa(tn)),

which we will call confluent Brownian motion (CBM) in view of the statement
of the problem. Thus M, = {t € RY: X; = 0} and the measure turns out to be the
local time or occupation density of X at 0.

We are going to study X; systematically from the point of view of our paper
[11], obtaining detailed information on the level sets M, = {t € RY: X, = x}, with
the above results as corollaries. What is more important is that CBM serves as a
test case for the methods developed in [11]. Perhaps the most interesting aspect
is that we have not been able to determine whether CBM and related random
fields are locally nondeterministic, and so have had to modify the approach of
[11]. The concept of local nondeterminism was introduced by Berman [3] for
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realtime Gaussian processes to account for an unremovable element of noise in
the evolution of the process; it was generalized to random fields by Pitt [13], and
is central to the discussion in [11], but the intuitive interpretation is less clear in
the case of fields. Basically, LND says that the “increments” of a random field
are “almost independent”, and thus LND, when it is available, emerges as a
useful computational device in handling the integrals . ,(B) introduced in
Section 2 below. It turns out, however, that the results of [11] persist without
LND: one simply attacks the integrals directly.

The problem of confluences is closely related to that of multiple points for a
single process. Indeed, the classical results on multiple points of Brownian motion
(e.g. Dvoretzky, et al. [6]) were obtained by looking at confluences of independent
segments of the trajectory. The approach in this paper has been applied to
multiple points and to confluences for other processes than Brownian motion; see
Rosen [14], [15]. These problems also arise in physics; see Symanzik [17],
Westwater [20], Wolpert [21].

The main results for CBM and some background material are given in Section
1, with proofs in Section 3; Section 2 contains some general results-which modify
and extend those of [11]; in Section 4 we consider the confluences of Brownian
motions in spatial dimensions other than 2, and, finally, in Section 5 we give
detailed results on the Hausdorff dimensions of the level sets of CBM.

While we were writing this paper, S. Orey pointed out to us the fundamental
paper of Ehm [8], who considers occupation densities for stable sheets, and we
have adapted certain of his arguments to improve some of our original results.

Some preliminary work by the second author was done during a visit to the
Forschungsinstitut fiir Mathematik, ETH, Ziirich; the hospitality of the Institut,
and especially of Prof. H. Follmer and Fr. L. Karrer, is gratefully acknowledged.

1. Background and main results. We recall some terminology from [11],
to which the reader is referred for details on occupation densities.

Let X(¢) be any Borel function of RY with values in R”. The occupation
measure of X relative to a Borel set A in RY is defined on the Borel o-field %p of
R? by
(1.1) pa(B) =An(ANX7YB)), BE %,

where Ay is Lebesgue measure on RY. If s << Ap, we write a(x, A) = dja/d\p(x)
(Radon-Nikodym derivative) and call a(x, A) the occupation density or local
time on A. If there is an occupation density for each A, then we may choose a(x,
A) to be a kernel, i.e. measurable in x and a finite measure in A. The formulation
in [11] uses [0, 1]" instead of RY, but carries over with no essential changes.

The same definitions apply to each trajectory X;(w) of CBM, where w € & (the
underlying probability space) is held fixed, or, indeed, to any random field which
is jointly measurable in (¢, w). Of course then p4(B) and a(x, A) also depend on
w. In the case of CBM, D = 2(N — 1), and we assume that all the trajectories are
continuous. Here are the main results for CBM.

A rectangle in RY is a set @, = [[1 [s;, ], 0 < s; < t; < o, where s =
(s1, ~++,8n), t = (t1, -+, tn). If s = 0, we simply write @;; if Qs is a cube, we
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write e(@s,) for the (common) edge length ¢; — s;. Notice that all rectangles are
bounded and have their edges parallel to the axes.

THEOREM 1. With probability 1, the occupation density a(x, A) exists for any
Borel set A in RY, and may be chosen so that (x, t) — a(x, Q) is jointly
continuous.

THEOREM 2. The following local Holder-type condition is valid for a(x, A):
let T € RY be fixed; there exist a constant C; not depending on 1, and an a.s.
finite random variable e, = &, (w), which depends on 1, such that, with probability
1,

(1.2) a(x, B) = C:(\v(B))""(g|1g An(B) ¥

for all x € R and any cube B with lower left corner at v and e(B) < &.

THEOREM 3. The following global Hélder-type condition is satisfied in any
fixed, rectangle @ in RY: there exist an a.s. finite random variable e = & (w)
and a constant Cs such that, with probability 1,

(1.3) a(x, B) = C:(\v(B))"V|1g An(B) |¥
for all x € R and any cube B C Q such that e(B) < &.

These results are along the lines of Theorems (26.1) and (27.1) of [11], but the
conclusions are stronger and they do not involve local nondeterminism. The
implications of such Holder conditions for the behavior of the trajectories of X;
are explained in [11]. Ehm [8] has obtained similar results for the occupation
densities of stable sheets, and we will adapt his method to prove our theorems in
Section 3. In Section 5 we apply the above results to obtain the following uniform
Hausdorff dimensions result for the level sets of X,: with probability 1, dim M,
= 1 for every x € R”.

2. Modification of the results of [11]. Our inability to determine the
status of local nondeterminism (LND) for CBM is an embarrassment only
partially ameliorated by the fact that the whole notion of LND can be avoided in
obtaining the results of Sections 25-27 of [11]. By being careful, we will even get
slightly better results. Since our goal here is to circumvent LND, we refrain from
even writing down the definition; it will be found in Pitt [13] and [11].

In this section X; will denote a jointly (t, w)-measurable Gaussian random
field, not necessarily CBM, taking values in R”, with t € RY and X, = 0. It will
be clear that a similar method will work for certain non-Gaussian fields,
especially those for which the joint characteristic function has a simple repre-
sentation, such as the stable fields.

Weuse (-, -),| - | to denote, respectively, the ordinary Euclidean inner product
and distance in R?, and V to indicate variance.
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The central role in this work is played by the integral

2.1) Jk,y(B)=j J eXp[—1 V(Zh1 (o, Xt’)):] T* . |u/|"diz db:
Bt | (RP) 2 J=1

in which y = 0, 2 = 2 is an even integer, B is a Borel set in RY =@, -, u"),
t=(, ..., t"), and each u’ € R?, t/ € RY. The coordinates are then written as
subscripts, e.g. &' = (U}, «+- , ub).

Let A(s, t) be the determinant of the covariance matrix of X; — X; and

(2.2) Viy(B) = J:;» Hj;l A@, #7Y) "2 gf 40 = 0.

Most of the results in this section are obtained from those of [11] by striking all
mention of LND and replacing Vi, by Jk,. Thus we need only supply details
where the proofs differ substantially from those of [11].

For distinct points ¢, - - - , ¥, let px (Z; ¥) denote the joint density of X, - -+,
Xy, and assume that the followmg, called condition (A:) in [11], is satlsfied for
some locally integrable function g (¢),

(2.3) pr(t; X) < gu(t) for all x.

In this connection it is worth noting that p (£; X) is continuous in x and
pe(t; X) = 2m) ~*° J'(Rb)kexp(—iﬁ-f)exp<—% V(Zh (W, X,x))) di,
(see [11], page 43) so that
)  mEH=sED™ J (R,,,,e"p[‘% V(S (0 Xm] di

If we take gk(Z) to be the right member of (2.4), then condition (A:) follows from
Jro(B) < .
Define
1

(2.5) ap(x, B) = lim inf, -5 J' Io,1m (| Xs — x|) ds,
cpn B

where cpn~? is the volume of the ball of radius 1/n in R?, and B € #(R"Y.), the
Borel o-field on RY. For each B, the joint (x, w)-measurability of ao(x, B) is
clear. By (21.17) of [11], a.s. X; has an occupation density, one version of which
is ao(x, B); and ao(x, B) is in Lf.(dx) if Ay(B) < . We do not assert that
ao(x, B) is a kernel. As in (25.5) and (25.8) of [11] we have, for Ay (B) < « and all
X,

(26)  Elao(x1, B) - -+ aolxs, B)] = Jkak(Z; %) dt < (2m) ™Jho(B),

2.7) E[ao(x + w, B) — ao(x, B)]* = 2(27) *°|w |, (B),
forany y,0 <y <1,and w € R".
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(2.8) THEOREM. Suppose, for some rectangle @ = @, C RY and some k, y such
that ky > D, we have J:,(Q) < ; then there is an occupation kernel a(x, dt)
which is a.s. jointly continuous in the sense that (t, x) — a(x, @.) is continuous

on @ X RP.

Remember that @, is the rectangle with “upper right” corner at ¢. It also
fg})lows that, if Jk,, (@) < o for every @, the joint continuity will hold on RY x

This is the analogue of part of [11], Theorem (26.1). The proof of the
corresponding result of Pitt [13] has a gap, as does the proof in [11], which is also
unreadable, and therefore we will give the argument in some detail. Perhaps, after
going through the hands of four different authors and at least five referees, it will
be correct.

Using the remark after the proof of Theorem (3.5), it is easily seen that CBM
satisfies

E(ao(x, [S, T]) — a0 (&', [S, TD)* = | (%, S, T) — (x', S', T") "'V

where [S, T] = {(r1, -+~ ,ry)|sisri=t},S=(s1, «+-,sn), T = (t1, ++, Ln).
With such an inequality one can apply Garsia’s lemma [10] in (x, s, T') and
significantly shorten the proof of joint continuity. We prefer to prove the more
general Theorem (2.8) in order to conform with the general framework of [11].

We may restrict attention to @ as the time set. Write J# for the field on @
generated by all boxes in @ having rational corners; thus #% consists of all finite
unions of such boxes, hence is countable, and, incidentally, generates the Borel
o-field #(Q). Consider a fixed trajectory X;(w) for which ao(x, B) is a version of
the occupation density.

Note. The word “version” is used in two ways. In the last sentence it refers
to the Radon-Nikodym derivative dua/dAp: different versions may differ on a set
of Ap-measure zero, but they all refer to a fixed w. Later we speak about versions
of stochastic processes: for each fixed value of the parameter, two versions agree
for almost every w. The intended meaning will be clear from the context.

We hold w fixed in the ensuing discussion, noting that all of the quantities
defined will be jointly (x, w)-measurable. Let

1
(2.9) a1 (x, B) = lim infclxmf ao(y, B) dy, Be %,
c

where C runs through the family of cubes centered at x. The limit process here
is discusssed by Saks [16], Chapter IV, Section 14, to which the reader is referred
for details. Since ao(x, B) is integrable, a;(x, B) actually exists as a limit and is
equal to ao(x, B), for a.e. x. Thus a;(x, B) is also a version of the occupation
density relative to B and (2.9) remains valid with «a; in place of ap under the
integral. Moreover, for each x, there is a sequence of cubes C, (x), centered at x,
for which (2.9) is a limit; the sequence C,(x) depends on B as well.
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For § > 0 and L compact in R” define

a1 (x, B)— a1(y, B) *
; = dx d:
KB Lk 9) ” [z =y Lglx — y ][0 |
where Lg(u) = 1g(u A 1) for u > 0. By (2.7) we have
dx dy

(2100 E K (B, L; k, 8) < 2(2m) "y ,(B) j J’ <o,
L) lx =l

"|Lg| x - y[|"*
According to Garsia’s lemma [10] we have
(211) |ou(x, B) — au(y, B) |
<8(K (B, L; k, 8)*|x — y|"~P/*| Lg| x — y||*+97*
for a.e. pair (x, y) from L. Rewrite (2.11) in the form
—¢(|x —y|) <ai(x, B) — ar(y, B) <¢(|x — y]|),

so ¢ (|x — y]) is a bounded, continuous function on L X L. Let C,(x), C.(y) be
the sequences of cubes described after (2.9) corresponding to x and y, respectively.
If we average the last inequality over C,(x), C.(y), respectively, and let n — o,
we obtain (2.11) for every pair (x, y). Since J# is countable, there is a set of
probability 1 on which K (B, L; k, §) < o simultaneously for all B € 5#; and all L.
Thus we have a Holder-type condition for, and so the continuity of, a1 (x, B) as
a function of x € R”. Now we want to replace a; with a kernel having the desired
properties.

Let az(x, dt) be any version of the occupation kernel (cf. Section 1). As on
page 47 of [11], we find x, € R” such that a.s., a1 (xo, B) = az(xo, B) for all B €
Hp, and the measure az (%o, dt) has no mass on any “hyperplane”, i.e. a set in @
of the form {¢:¢; = a}. We now observe that a1 (x, B) is finitely additive on #3 for
every x € R”: first, referring to Section 25 of [11], we know that, a.s., for a.e. x
€ R”, ao(x, B) exists as a finite limit in (2.5), for every B € #%, and is clearly
finitely additive. Thus i (x, Y7 B)) = }.}=1 a1 (x, B;) for a.e. x, and then for every
x, by the continuity just established above.

Take @ = [0, 1]" for simplicity in the remainder of the proof. Fix i, 1 <i < N,
and let

m-—1

R S {se Q:

m
<&$—},15m5m

n
Also, let || ]l = supxer| f(x) |. We will now show that, as n runs through a suitable
subsequence,
(2.12) Trmillaa(e, Limd) [E— 0 (n=n,— ).
Indeed, from (2.11), a.s.

“ o ( *y Inmi) “L = a2 (xO’ Inmi) + Cd},_D/k | Lg dL | (1+5)/k(K(Inmi, L; k) 8 ))Uk,

where di, = max.er|x — %o|. Using the inequality (a + 5)* < 2*(a* + b*) we see
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that the left member of (2.12) is majorized by 2* times
(maxlsmsna2 (xO, Inmi))k_la2 (xO, Q)
+ dF P\ Lgde|"*® Ym—1 K (Lumi, L; &, 8).

Since az(xo0, dt) has no hyperplane masses, the function f;(u) = az(xo, {s:s;
= u}) is continuous for 0 = u < 1, hence uniformly continuous, and so the first
term in (2.13) tends to zero as n — o. To prove (2.12) it is enough to show

(2.14) limy, .o $;m=1 E K(Inmi, L; k, 8) = 0.

(2.13)

The sum in (2.14) is at most a constant times

Y1 oy (Lumi) = J (R”)kexp[—% V(X5-1 (u, Xoj ))] IT:_, 1u’|" did dt
(RD)k

VY

by (2.10). But it is not hard to see that
AN X ooo X ANn(Un=1 Iﬁmi) =n*V590

where Ay X ... X Ay is the k-fold product of Ay on @*. This implies (2.14). In
effect, (2.12) says that a; (x, -) has no hyperplane masses; however, a; (x, -) is not
(yet) a measure.

Define the distance between two rectangles in @ to be the maximum distance
between the corresponding corners. Let x € L C R” and w € £ such that all of the
above assertions hold. The function «a; (x, B) defined for rational rectangles B €
Hp can be extended uniquely to a function, again denoted a; (x, B), defined for all
rectangles B in @, and continuous in the sense of the distance between rectangles.
In fact the symmetric difference between two overlapping rectangles is contained
in UN.11,.,; for some n and choice of m;, 1 < m; < n. It is a classical result, Saks
[16], Chapter III, that a;(x, B) extends to a measure on % (), which we denote
a(x, B). The joint measurability of a(x, B) is obtained by a monotone class
argument. Thus a(x, B) will be the desired kernel.

Now consider a(x, @;) as a function of x and ¢: (i) if ¢ = (¢4, - - - , tn) is rational,
i.e. each ¢ is rational, then a(x, @;) is continuous in x; and (ii) for each x, it is a
continuous function of ¢ This implies a(x, ;) is jointly continuous, as follows.
Let (", x™) — (t, x) € @ X R”, and & > 0. Choose s € @ rational so that s; > ¢; for
eachi=1, ..., N,so Q; D @, and so that a(x, ;) < a(x, @) + ¢. This is possible
by (ii). For sufficiently large n we will have ¢t} < s; for each i, and so @, C Q.
Thus

lim sup,-«a(x” Q) < lim sup,—..a (X", Q)
= a(x, Qs)
=alx, @) +¢
the second line being due to (i). Since ¢ is arbitrary, we have

lim sup.a(x”, @) < a(x, @:),
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and a similar argument “from the inside” gives
lim inf,a(x”™, @) = alx, @:).

So Theorem (2.8) is proven at last.

The next result is stated for the unit cube 7' = [0, 1]", but is valid for any given
Q: in RY. Since we want to apply these results to continuous fields, it is no
restriction to assume that, a.s., the trajectories are bounded on compacts in R¥
and, in addition, separability.

Let 2, be the nth “dyadic partition” of T'into 2™~ cubes, each of measure 2",
and put 2 = U, Z,.

(2.15) THEOREM. Suppose ky > D and
(2.16) Jry(B) = c1(An(B))'** for every B € Upn=n,Zn,

where ¢, p > 0 and no, a positive integer, may depend on k, y; we also require
(2.16) to hold for y = 0. Then, for any n > 0, there exist a constant ¢ > 0 and a
random variable ¢ = e(w) such that, a.s., the following global Holder condition
is satisfied:

(2.17) a(x, B) = ¢(An(B))"*|1gAn (B) |+

for all x € R® and all cubes B in T with e(B) < ¢.

This is a more precise version of Theorem (27.1) of [11]; the condition & >
d/yin that theorem should be replaced by & > 2d/y. It is understood that a(x, B)
is the good version obtained in (2.8). The condition involving y = 0 is not a serious
restriction; it is fulfilled in the application below. One of the main difficulties in
the proof is the uniformity in x of the Holder condition (2.17), which necessitates
most of the hard work. This result is already interesting for a fixed x. The same
comments apply to the proof of Theorem 2 below (Section 3).

We write ¢z, cs, etc. for positive constants whose exact values are unimportant,
and »y, »2, etc. for a.s. finite, positive integer-valued random variables; and we put
g\ =N |1g(\) |25 A > 0.

Using (2.6), (2.7), and (2.16), we obtain, from Markov’s inequality,

(2.18) P{a(x, B) = g(\n(B))} < c:2""n~*" BE 2,
where n = no henceforth, and, for any z > 0,
219) P{|a(y, B) — a(ys, B)| = |31 — y2|"g A (B))z*} = cz2 7"V~

Let G. = Z° N [—1g n, 1g n]”, i.e. the points of the integer lattice Z” which fall
in the cube of edge length 2 Ig n, centered at the origin, in R”. The cardinality of
G, satisfies #G,, < c3(lg n)? for all large n.

Now

P{max.cq,a(x, B) = g(An(B)) for some B € 2,}
= YxeGn YBean P{a(x, B) = g(An(B))}
< c3c32™V(Ig n) P2 Vp 1+ by (2.18).
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Thus, since (Ig n)?n~"*" is summable, Borel-Cantelli gives
(2.20) maxxec,o(x, B) = g(An(B)) for all B€ 9,, forn =,

for some »;.
Next, for positive integers, n, h, and x € G,, define

Fn,h,x)={yERP:y=x+Y",27% for &€ {0,1}7}.

As a little picture will indicate, F'(n, A, x) consists of the “dyadic points up to
order A” in the unit cube of edge 1 with lower left corner at x. Any pair y,, y2 of
adjacent points in F(n, h, x) is said to be linked; more precisely, y: and y, are
linked if y; — y2 = €27" for some ¢ in {0, 1}°. We then have at most 2”" linked
pairs, and so, by (2.19),

P[Ugep,Usec,Un=1Uy, yermnn{|a(y;, B) — a(yz, B) |
= |y — 2218 (Av(B))2 4]
(2.21) = ¢,2™V(lg n) P Y5, 2Pk Ny ~Atnlg ~(D+d)A
=< ci(lgn) Pn 0"
here we take 0 < § < ky — D. Thus, by Borel-Cantelli,
|a(y1, B)— a(yz, B)| < cs27™g(\n(B))2P+o/*
= csg (\w (B))2 M- @+d1/B

for every B € @y, x € G, h = 1, and linked pair yi1, y2 in F(n, A, x), if n. = v,.
Since the trajectories are bounded, we have | X;| <lgnforallt € T, n=»;, as.

Let n = »1, 2, vs, and consider y € R?. If | y| > 1g n, we have a(y, T') = 0, so that

(2.17) holds (for y); if | y | < g n, we can find x € Gy, such that y = lim_.y», with

(2.22)

m=x+3127%, §€{0,1}° y=x,
so each pair yx, yr-1 is linked in F'(n, A, x). From (2.22) we conclude
(223) |a(y, B) — a(x, B) | < csg(An(B)) Xii=1 2720~ P+/B = ¢oa(\n(B)),

and, with (2.20), we find that (2.17) holds for all y € R” and B € 9, for n large,
say n = 4. As in [11], page 50, any cube B with e(B) < & = 27" can be covered
by at most 16" dyadic cubes of edge length < 27, and this completes the proof.

It is also possible to formulate a local Holder condition, but we will not do so.
When (2.16) holds for a fixed y > 0 and all k, a more accurate version of both the
local and global Hélder conditions may be given; these are formulated for CBM
it Theorems 2 and 3 in Section 1.

3. Proofs of the results in Section 1. Let X; denote CBM, defined in (0.1).
Our first task is to untangle the variance appearing in J3,(B) in (2.1). We will
write points u € R? (D = 2(N — 1)) in the form u = (u1, uz, +-- , u,) where v =
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N —1and each u; € R*. Thus the u’ appearing in (2.1) are now written as u =
Wi, -, ul), v, € R*. We also take u} = uy = 0 in what follows.
Define

(3.1) vi=u/—uj_,, 1=si=N,
so v’(1 =i =< ») are independent coordinates in R” and
v =— Y1 vl
Let W(t) = (Wi(t1), Wa(tz), - -+, Wn(tn)); then
Yo (W, X)) =Tk v/ W) = 3K, Y1 v] - Wit));

the dot products being in R*" and R?, respectively. Since the W; are independent
planar Brownian motions, we have

(3.2) V(Sho (&, Xe)) = X, V(S 0f - W)

where W denotes a generic planar Brownian motion.
Let S denote the set of permutations of {1, --- , k}. If we neglect ties among
the ith coordinates, there is a unique permutation m; € S; such that

(3.3) tT) < 7@ < oo < 7B,

In fact, the set of £ € (RY)* having a tie in the ith coordinates for some i is a set
of Lebesgue measure 0 and may be neglected for the present purpose. Thus,
neglecting ties, (RY)* is partitioned into (!)" disjoint sets A(m1, -+, 7n), m €
Sk, where t € A(my, -, ) iff (3.3) holds for each i = 1, - .., N; there is a set
A(my, -+ , mv) for each choice of (m, « -+ , 7n) € SP.

If the terms on the right side of (3.2) are now rearranged to take advantage of
the independent increments of Brownian motion, one obtains

(3.4) VEE L (W, X)) = T Bhor |wi|?r!
where
wf =Yi,vr®, 'r{ = 7)) — ¢rUD

(Wi(O)’ = O) t? = 0)~
The key ingredient in proving the results in Section 1 is the following estimate
involving oJy,,(B).

(3.5) THEOREM. For0<y<1/vand B = [[[ai, a: + A],
iy (B) < a*hMVD (RN

where a is a constant independent of B.

PROOF. Break up the integral for ¢, (B) into a sum of (k!)" terms of the
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form
(3.6) f f [13-1 | w/|" [T exp(— X%-1 | wi|?r)) dit dt,
A J RO
where A = A(m1, +++ , wny) N B% &1, - -, 7y € S, the w’s are functions of the u’s,

and the 7’s are functions of the ¢’s, as described above. Now make the change of
variables hs] = ¢/, h'/%z = 0. We note that for j = 1, 7} =¢7® which is in the
interval [a;, a; + h]. The integral can only get larger if we replace this interval by
[0, ], and, when this is done, a factor of 2**~"? comes out because of the change
of variables. Changing the letters s, v back to ¢, u, we may consider (3.6) anew,
but now with B = [0, 1]V, and it suffices to show that this new version of (3.6) is
dominated by a*.

Let || j;||v denote the norm in LY((R”)*, Apx). We will use a generalized version
of Holder’s inequality:

f T £ = T W £l

We apply this to

fi= (Hlk-l | ujP) VN [Imei1=m=n exp(— % 25‘-1 | w;;t|27'{n/") ,
the product of which is the integrand in (3.6). The result is that (3.6) is less than
or equal to

dt.

e 1217 Tl exp(— Lyi] w’ml2'rin/v)

(3.7) f I
A

N

The transformation z — v on R given in (3.1) is linear, so that |« | < ¢;| v| for
some constant c;. Thus (3.7) is at most

(3.8 ¥ f mx. dt.
A

. 1 -
TD=1 [0/ Tl eXp<— 3 2l W’m|2‘rfn/1’>

N

We now show that
(3.9) L1 | 07)Y = (@5)* [Tmwes [1=1 (1 + |l D,

where w’} = Y-, v7®, as in (3.4). From the equation for v’ after (3.1) we have
vi=— lemsN,m#iU{n, so

07| = et [ 0] = Snzsmesi| V] + [v1]
=2 Yi=m=Nmxi| Ufnl =< 2 [Imrir=m=n(1 + |Ufn|),
the last inequality is easily derived by expanding the indicated product. Thus
[T |v/] = 2% [Tmmiammen o2 (1 + | V5]

= 2% [Insiism=n H;’_l 1+ |U’r;1"'(’)|)
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< 2* [[mwi1=m=N Hf-l 1+ |w’m| + |wjrr71|)
< (15)* [[nwinzmen [[5=1 (1 + | wh|?),
noting vipY = w, — wi'!; to prove the last inequality it suffices to consider a,
cev, @r =0, ar+1 = 0, and to estimate
Me A+ aj+ ae1) =27 2 [(1+ 2a) + (1 + 2a541)]
=27 % [} (A + 2a))%,

where the sum is over all 8 = (81, - - - , B&) subject to 8; =0, 1, or 2, and }; B8; =
k. The number of such B’s is at most 3*. Thus the last expression is dominated by

3% * [[;(1 + 20j)% < 327%5* [[,(1 + a}),

whence the stated result.
Consider now the L"-norm appearing in (3.8); if we raise it to the Nth power,
the resulting expression will be at most

‘ 1 o
159N Tl [[=1 1+ |wh [P ]'[m,‘iexp<— 2 Yk, |w’,,,|2'r{,,N/v) diz.
R2)

Since the transformations u — v — w are all linear, we may replace diz by dw, at
the same time getting a new constant c§ in front, and then the integral will be

ck [Inwi Hf=1j (1 + |z|?)Yexp(— | 2|?Nt%/v) dz
R
(dz; Lebesgue measure on R?)
< cf [Inwi [11 (7)1 J' 1+ u/rh)e™du
0

< ¢f [lmwi [-1 (72) 7,

using (1 + u/7)” < 1+ (u/7)” in the last line.
Recall now that 7%, = t70) — ¢7nU~1; we take the Nth root above and go back
and dominate (3.8) by

cﬁf Hﬁl Hm"i Hf_l (T{;l)—(y+1)/N di
A

ot [ Ik (o o
A

N
cg(J Hj(sj - sj_l)—(v/N)(Hl) ds)
O<s1<...<sp<l

1 Nk
< ck (J u~W-1/Mey+1) du) ,
0

and the integral here is finite iff y < 1/». Thus (3.5) is proven.
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REMARK. If Bis a rectangle of the form [[; [ai, a; + A:] (and we wait until
(3.9) before scaling out the A;’s), we obtain

Jry(B) < a* () V(M hy - - - hy) @O,

We now turn to properties of the occupation density of CBM. First we remark
that the existence of an occupation density follows from oJ;0(B) < o, by (21.17)
of [11]. Just for the record, the existence also follows from

(3.10) J Kiﬁ dt< o forae.s
Q

where A = A(s, t) = det Cov(X,; — X;) and @ is any rectangle as is proven in (22.1)
of [11]. To show that (3.10) holds, one must evaluate the determinant A. If s =
(S1, +++, 8n), t = (t1, ++-, tn), and §; = | s; — t;|, then it can be shown, by some
extremely tedious computations, that

A2 = P, [Trmibms

then, by the geometric-arithmetic means inequality applied to the partial products
[Trwi®m, AYZ = NVN [TX1 88~"/¥ and (3.10) follows.

Theorem 1 of Section 1 is now immediate in view of (2.8) and (3.5).

For the proofs of Theorems 2 and 3 we need some preliminary estimates.
Remember, as in Section 1, all cubes have edges parallel to the axes.

(3.11) LEMMA. Let B be a cube with lower left corner at t; then, for any x,y €
RP, even integer k, and y < 1/,

(3.12) Ela(x + X, B)l*= A0\ (B)N(RH N
3.13) E[a(x + X., B) —a(y + X, B)*= 2Ak| x—y |k7()\N(B)) ®R/NYA=y/2(R1) N
where A = a/(2m)° (a appears in (3.5)).

We observe that a(x + X;, B) is the occupation density on B of the random
field Y; = X; — X,, which has the same law as X;_, on B, since t; = 7;,i =1, -,
N, when ¢t € B. Thus the J-integral over B corresponding to Y, given by (2.1), is
the same as the J-integral for X over [0, 2]", where 2 = e(B). Thus, applying
(2.6) and (2.7) to Y and estimating %, ([0, 2]") by (3.5), we obtain (3.11).

NoteE. Of course (3.12) and (3.13) remain valid if we replace X, by zero
therein; the same comment applies to (3.15) and (3.16) below.

(3.14) LEMMA. With the notation of (3.11), there are absolute constants b, ¢ >
0 such that, for any z > 0,

(3.15) P{a(x + X,, B) = b(An(B)) /Nz"} < ce

P{la(x +X,,B) — a(y + X,, B)| = b | x — y|"(An(B)) VN /Dz N}
(3.16)

=< ce %
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“Absolute” means not depending on 7, B, x or y.
We prove these inequalities simultaneously. Let A be shorthand for either of

the quantities
a(x + X,, B)/An(B))N
or
|a(x + X,, B) — a(y + X., B) |/ (A\v(B)) V472 x — y|7.
Then (3.11) yields, in either case, E A* < 2A4*(k!)", or, using Jensen’s inequality,
E AN < 2VNA¥NR! (R even).
If % is even, we also have
E A(k—l)/N < (E Ak/N) (k—1)/k < 2 l/NA (k—l)/Nk!’

so that, for any integer m =0, E A™~ < 2VYA™"(m + 1)L.
Dividing this inequality by M™, for any M > A", and summing on m = 0, we
obtain

E exp(AYN/M) = 2V Y5 (m + DAY /M) =c.
Chebyshev then gives
PA=M"zN)<ce™ z>0;

now replace z by 2z and let b = (2M )~ to finish the proof of (3.14).

PrOOF OF THEOREM 2. We use c1, c2, etc. for positive constants and »1, »s,
etc. for positive integer-valued, a.s. finite random variables.

Let B, = [[X1 [7i, i + 27"]. The local law of the iterated logarithm says that,
for a standard Brownian motion w (¢),
|wt+h) —w®)| _

v2hlglg(1/h)

for each fixed ¢ = 0. Applying this to the components of X; we obtain, a.s.,

lim supso a.s.

3.17) supies, | X: — X,| = c127*(g n)** for alln =y»,.
Let 6, = c:27*(1g 1g 2" ™ */(1g n) ™", n = 2, and
G.={xER":|x| < a2(gn)"% x =6,p for somep € Z"},

where Z2 is the integer lattice in R”. Thus G, consists of those points in the
lattice of step size 6, which are contained in the ball of radius c:27"%(1g n)*?,
centered at the origin. The cardinality of G, satisfies

2(1g n) (1/2)+(N/y) D
B ( Iglg 2™ " 1) ’

which is less than a positive power of g n, thus # G, < (Ig n)? for some 8 > 0. By

%G < diameter P
"~ \ step size
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(3.15) we have, with g(A) = A" (1g|1gA|)" for A > 0,
P{a(x + X,, B,) = bg(An(B,)) for some x € G,} < can2 # Gn,
and so, by Borel-Cantelli,
(3.18) max.ecq,a(x + X,, B,) < bg(An(B,)) for all n = »,, a.s.
Now, for integers, n, h = 1 and x € G,, define
Fin,hx)={y€ER":y=x+ 60,3127 for ¢ € {0, 1} 7).

(The reader is advised to draw a picture to clarify the proof.) Define a pair of
points yi1, y2 € F(n, h, x) to be linked if y, — y; = 6,e27" for some ¢ in {0, 1}°.
Then, using (3.16), we get, as in (2.21),

P{la(y + X, B,) — a(y: + X,, B,) |
= b(An(Br)) YNy — yo| TRV (1gn) N
for some x € G, h = 1 and some linked pair y1, y: € F(n, h, x)}
2D/n2 )
© Dh_, —2hlgn P
=# Gn Y 5-12"" =(gn) T= 207

Since this is summable, Borel-Cantelli gives us a random variable »; such that,
a.s., if n = v, the event indicated in (3.19) does not occur.

Consider the set of outcomes of probability 1 for which (3.17), (3.18), and the
conclusion in the last paragraph all hold. Let n = », »2, v3, and y € R?, |y| <
c127%(1g n)"/?. We represent y as y = lims_,.,y», where

(3.20) Yh=x+0,Y" 1627 (y=x)
for some x € G,,. Then each y;_1, y» is linked, so
|a(y + X;, Bx) — a(x + X;, B,) |
(3.21) < b(An(B,)) YN AD2%9x (Ig n) N V5o, RV
= csg (A\v (Bn)).

To complete the proof, we again choose n = 1, »2, v3, and observe that a(y + X,
B,) =0if|y|=c:27"2(lg n) /% and, otherwise, a (y + X,, B,) =< (b + c3) g An(B.))
by (3.18) and (3.21). O

(3.19)

Proor oF THEOREM 3. This is quite similar to the proof of Theorem 2. It
suffices to consider the case T = [0, 1]".

Let 9, be the family of 2"" cubes obtained by successive subdivision of T, let
0, =272 and let

G.={x€ER” |x|=n,x=0,p forsome peEZ”}.
Then
2n+1

n

D
MAWB)=2""" for BEZ, and #G,= ( ) =< cnP2rP2,
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Let g1(A\) = AVM|1gA |V, A > 0. From (3.15) we have
P{max.cq,a(x, B) = bg:(An(B)) for some BE€E 2,}
< c2nP27P/% 2"Nexp(—2 1g 2™N)
= c;n”27",
Thus, by Borel-Cantelli,
(3.22) max.ecq,a(x, B) = bgi1(An(B)) for all B € &, whenever n = r,, a.s.

Next, define F'(n, k, x), x € G, by the same formula as in the proof of Theorem
2 (the symbols have new meanings, of course). Using (3.16) we have

P{|a(y1, B) — a(ys, B) | = b|y1 — y2| "\ (B)) VM2 N(1g 27N) ¥
for some B € 9,, x € G,, h = 1, and linked pair y,, y. € F(n, h, x)}
= cnP2"P2"N Y2 2PRexp(—2h 1g 2™V)

=csnP2™,

(3.23)

and thus, a.s., if n = »,, the event in (3.23) does not occur.

Finally, since the trajectories are a.s. bounded—indeed, they are continuous—
there exists »3 such that | X;| < vs.

Let n = 1, vz, v;. For any y € R”, if |y| > n, a(y, T) = 0, whereas if | y| < n,
we can write y = limy, with y, as in (3.20), and, arguing as in (3.22), we find

|a(y, B) — a(x, B) | < cs0381 (An(B))2™% Y51 27"AY, BE 9,,
= ¢;81(An(B)).
Putting this together with (3.22) we have
a(y, B) = ceg1(An(B)) forall BE 2,, n=nwn,ur,rs.

(3.24)

Now any cube B can be covered by at most 16" dyadic cubes of edge length at
most e(B), and this concludes the proof.

4. Related results for d-dimensional Brownian motions. In forming
the confluent Brownian motion X; in (0.1), we used planar Brownian motion. If,
instead, we use d-dimensional Brownian motions W¢ in (0.1), we denote the
resulting confluent random field by XM?. We now show that X!¢ has an
occupation density for the following combinations of N and d, and no others:

i) d=1or2,alN=2
i) d=3, N=2.

The case d = 2 has been the main concern of the previous sections, so we need
not treat it further; d = 1 can be handled along the same lines as d = 2, only a few
changes being needed in the proof of (3.5).

Let d = 4, N = 2, and suppose X' has an occupation density with positive
probability. A simple Fubini argument shows that there is a point x € R? such
that the level set M. (w) = {¢:X7"?(w) = x} is nonempty with positive probability;



102 GEMAN, HOROWITZ AND ROSEN

here D = d(N — 1) is the dimension of the range space of X¥'?. But then, with
positive probability, there is a point ¢ € RY such that W¢(t;) = W1 (tis1) + xi,
i=1, ..., N — 1, which is impossible [6] if d = 4, so there is no occupation
density. A similar argument using [7] handles the case d = 3, N = 3.

This leaves only the case d = 3, N = 2. It suffices to prove the finiteness of

ey ([0, 1]%) = f exp[—-;- Vo (W, Wit) — W%(t;‘)))] diz dt.
[0,1]* JR™

To simplify the notation a bit, we will write everything with subscripts, and let ¢
=(rj,s),J=1 ¢+, k,u= (U, -++,ur),r=(r1, -+-,rz), 8= (s1, -+, sx). Using
the independence of W3 and W3, we can rewrite the above integral thus:

(4.1) ey ([0, 1]) = f Y(u, r)Y(u, s)é(u) du dr ds,
[0,1}* J[0,1}* JR*

where £(u) = [[1 | w|” and Y(u, r) = exp[—(%) V(T 5-1 (u;, W(r;)))] with W= W°.
We will show this is finite for y < %.

Using the Schwarz inequality on the innermost integral and writing o/ for Js,,
(- -+) we obtain

1/2
JV? < J ( V23(u, r)é(u) du) dr.
[0,11* \JR*
As in Section 3, we break this integral into a sum of terms corresponding to the
permutations 7 € S;. Write #n(¢) = (¥.), ++ - , U») and similarly for #(r), and let
A={re[0,1]xn<ri< ... <r).

The last integral is then the sum over 7 € S;, of

1/2 e
I,,=J’ (f Vi(u, r)§(u)du> dr=J’< V2w, 7(r))E () du) ar
mA) " A R™

1/2 1/2
= J’ (J’ Y (m(u), m(r))é(m(u)) du) dr = J’ ( V2 (u, r)é(u) du) dr,
A * A R™*

since Y(w(u), #(r)) = Y(u, r) and &(w(u)) = £(u). Thus I, is independent of 7 € S,
so we can write I, for the common value, which we want to show is finite.
Consider the transformation 7 of R given by

T(vi, +++, ) = (1 — V2, Vg — U3, »++ , Up — Ur+1), Urs1=0.
A simple calculation shows
YT (v), r) = exp[—%£V (T=1 (v, W(r;) — W(rj-1)))]

= exp(% Y =1 | v 2(r; — ri-v),
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where r € A and ro = 0. Make a change of variables u = T'(v). We obtain

1/2
I =f ( V23w, r)é(u) du) dr
A R*

1/2
= f (J exp(— Xi-1 | vi|*Ar) Y1 |vj — vja|” dv) dr,
A 3k

with Arj = r; — rj_;. Arguing as in [11], page 44, we dominate the inner integral by
a sum of terms of the form

[15=1 exp(— | vj|?Ary) | v;]™ dv,
Raﬁ

where each 8, = 0, 1 or 2. Now, since x'/2 is subadditive, I, is bounded by a finite
sum of terms of the form

1/2
A R
and this becomes

1/2
f s ( j exp<—|vj|2Ar,>lv,«lvﬂfdvf) dr
A R?

1/2
= const J’ [1% 1—1 <Jm e “oPit? do) ! dr
= . J= - .
., (Ary) (vB;+3)/4 .

The do integral is clearly finite and pulls out. After a change of variables s; = r;
— rj-1, the remaining integral is dominated by

T 7979 ds,
o1

which is finite for y < %.
5. Hausdorff dimensions. Let X; be the CBM random field in (0.1) based

on independent planar Brownian motions Wi, ..., Wy, and recall that the level
sets are M, = {t € RY: X, = x}.

(5.1) THEOREM. With probability 1, dim M, = 1 for every x € R?, D =
2(N - 1).

Recall that a point z € R? is a confluence if z = W;(t;),i=1, - -. , N, for some
t=(t, -+, tn) in RY, whence t € M,.

(5.2) CorROLLARY. With probability 1, the set C of confluences has dimension
2.
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The results for C and M, are known, Wolpert [21]; and Ehm [8] gives a partial
result along the lines of (5.1) for stable sheets. We are able to use the Holder
continuity of the trajectories of CBM (lacking for stable fields) to give the
complete result. Extensions to confluences of other processes than Brownian
motion, and to self-intersections of various processes, are also possible; see Rosen
[14], [15].

The proof of (5.1) is based on the following results, similar to those of Tran
[19] for the Brownian sheet; see also Ehm, [8], Lemma 6.2.

(5.3) THEOREM. a) P{a(0, Q) >O0forallt>0}=1; b) P{a(x, RY)>0forall
x} =1

Remember that @, = [[X..1[0, #] and ¢ > 0 means all ¢ > 0. The occupation
density a in (5.3) is the jointly continuous version.

Assuming (5.3) for the moment, here is the proof of (5.1). We begin by noting
that X, satisfies a Holder condition of order 8, for any & < %. Since X: RY — R?
has a jointly continuous occupation density, a theorem of Adler [2], page 230,
gives dim M, < N — 6D for all x and each § < %, whence dim M, < 1 for all x.
Next, combining Theorem 3 of Section 1, Theorem 8.7.4 of Adler [2], and (5.3b)
above, we have dim M, = 1 for all x.

Corollary (5.2) follows as in Kaufman’s [12] theorem. More precisely, Kauf-
man’s lemma shows that for planar Brownian motion W (t), P(F) = 1, where F
denotes the set of W(.) for which there exists an N such that for any disc B of
radius 27%, n = N, W(B) N [0, 1] is contained in the union of less than n*
intervals of the form [k47", (k + 1)47™"], 0 = k < 4"

Now let W(t) = (Wi(t1), - -+, Wn(tn)) be a path in FV for which dim(M, N
[0, 1]Y) = 1. Assume that dim(C) = a < 2 — &. Then for any & > 0, we can find
arbitrarily large n, and a sequence of discs B; of radii = 27" such that C C U;B;
and

(*) ¥.i(radius B;) e <8,

Define n; by 27 < radius B; < 2~ and let B; be the disc centered at B; with
radius 27", Then

Mo [0, 1] C U; W (BY) N [0, 1]~ C U;{the union of < n*" cubes of the form
TV [eed ™", (e + A1),

Let I;;, 1 = j < n!" denote these cubes. By (*) for n; large,
Yijely) = XintV4H < 4 Ty (niV 440
= Y:27@9 < ¥ (radius B;)** < é.

This would imply dim(Mo, N [0, 1]7) < 1, and this contradiction shows that we
must have dim(C) = 2, and hence exactly 2.
Turning to (5.3), we will prove (b) first, assuming the result of part (a). Let

an = P{a(x, RY) > 0 for all x such that | x| < 1/n}.
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By scaling, we have a, = a. Suppose a < 1. Then P(B,) =1 — a > 0, where
(5.4) B, = {a(x, RY) = 0 for some x, |x| < 1/n}.
But then we would have P(N.B,) =1 — a > 0. However,
NuB, = {a(x, RY) = 0 for some sequence x = x — 0}
C {a(x, @:) = 0 for some sequence x = x — 0} (¢ > 0 fixed)
= {a(0, @) =0} as.

since a(x, @) is a.s. jointly continuous. Consequently, P(N,B,) = 0, contradicting
P(N.B,) =1— a> 0 and (b) follows.

Here is a sketch of the proof of (a). It suffices to show that P(A) = 1 where A
is the event {a(0, [0, 1/n]%) > 0 for all n = 1}. Since E a(0, [0, 1/n]") > 0 by (2.6)
we have P{a(0, [0, 1/n]") > 0} = b, > 0. Using the scaling property again, b, =
b, and so P(A) = b > 0. We will develop an analogue of the Blumenthal zero-one
law [4], page 30. Since A is a “germ event” of positive probability, it will follow
that P(A) = 1. )

We may take the probability space £ to be the space of continuous functions
from RY to R?"; we introduce coordinate functions W; = (w1 (t1), - -+, wn(tn)),
t € RY, o-fields #? = 6{W.:s <1t} (s < t means s; < ¢; for all {) and F° = o {W.:
s € RY}, and translation operators 6;: 2 — § such that W, ¢ 6; = Wi.... Let P* be
a (regular conditional) probability on £ for each x € R*" such that the coordinates
wi(t), -+ , wn(ty) are independent planar Brownian motions; each of these has
its own structure as a Markov process. Finally, we write P for P°, and we
complete #° under P, obtaining a o-field #; then we “augment” & { by adjoining
all sets in Zof P-measure zero, obtaining 4. These are not the same completions
as in [4], Chapter I, but they suffice for our purposes.

The result is a process (W;, % %, P*, 8;) as in [4], except that now ¢ € RY.
Writing %+ = Ne>0%+., Wwhere € = (e1, - - - , en), we have

(5.5) LEMMA. For any & °-measurable nonnegative random variable Y,
E[Y ° 0:' .%-0-] = EW’[Y].
This can be proven along the lines in [4], but we give a more direct argument.

Consider a family of bounded, continuous functions ¢;; on R?, and times ¢!, - -+,
t" € RY. It suffices to prove (5.5) for Y = [[.Y;, where

Yi = [[}-1 ¢ij(wi(t));

we can use n instead of n; by taking some of the ¢;; = 1. To begin with, assume
that each #/ > 0, and let

A= nilil A;, Ai€o{wi(s):si=t+ &},
where 0 < ¢; < ¢/ for all i, j. An elementary computation gives
(5.6) E[Y°6:; A] = E[[L:E¥*“* ([ ;i (wi(t} — &))); A]

using the Markov property for each of the coordinate processes; Ei* is the
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expectation corresponding to P§, the regular conditional probability for the ith
coordinate process. The family of sets A described above is a 7-system which
generates & (.., whence [4], page 7, (5.6) holds for all A € #?,,, and, also, %...
Now let A € %.; then (5.6) holds for every ¢, 0 < & < ¢, and, letting ¢ | 0, we
obtain

(6.7 E[Y°0; A] = E[ILE*® ([1j¢:;(wi(¢))); Al = E[E " Lijis(wi(t])); Al

If some of the t{ =0, we can let t{ | 01in (5.7) to get a valid equation, so that (5.7)
now holds for all ¢/ € RY, and (5.5) is proven.

We now mimic the proof of (8.13) in [4], page 43, but with our interpretation
of #! and %. For Y as above, we have

Y = [T, jme, 05 i) X TL; jrme, dis(wi(2))).

Taking the conditional expectation given #¢;, the first factor “pulls across” and
the second plays the role of G<6, in [4]. The conclusion is

E[Y|#%] = E[Y|£?],
and, as in [4], (8.12), page 42, that

(5.8) LEMMA. %, = 4.

These are the necessary ingredients for the Blumenthal zero-one law [4]; page
30: P(A) =0or 1 for A € %. It remains to prove that A € %, where

A = {a(0,[0,1/n]") > 0 for all n}.

Suppose f: R* — R is continuous. Approximating by Riemann sums on the
event where W is continuous we see that [o, f(W;) ds is #-measurable, and this
extends to the case where fis only Borel measurable. Now, a.s.,

. 1
a(0, @) =limspo— | I (| Xs|) ds,
28 @

so a (0, @;) is %-measurable, and A € % = %.
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