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APPROXIMATE LOCAL LIMIT THEOREMS FOR LAWS
OUTSIDE DOMAINS OF ATTRACTION

By PHILIP S. GRIFFIN!, NARESH C. JAIN?, AND WiLLIAM E. PrRUITT?

University of Minnesota

Let { X} be a sequence of independent, identically distributed, nondege-
nerate random variables and S, = X; + --- + X,. Define G(x) = P{| X| >
x}, K(x) = x72 [1,1xy* dF (¥), Q(x) = G(x) + K(x) for x > 0, and {a,} by Q(a.)
= n~! for large n. Let (A) denote the condition: lim sup, .G (x)/K(x) < .
We show that (A) implies the following: there exist ¢ > 0, C > 0, such that for
each M > 0 a sequence {b,} and a positive constant ¢ can be found for which
c¢c<a,P{S, € (x — ¢, x + ¢)} = C whenever | x — b, | < Ma, and n is sufficiently
large. In fact, the upper bound is valid for all x. We also prove that (A) is
necessary for either the upper bound result or the lower bound result so that
these results are equivalent. Feller had shown that (A) is equivalent to the
existence of {v,}, {0,} such that the sequence {(S, — 6,)/v.} is stochastically
compact.

1. Introduction. Let X;, X,, - .- be independent, identically distributed,
nondegenerate random variables taking values in R'and S, = X; + --- + X,.
Let X be a random variable with the same distribution as X;, F its distribution
function, and for x > 0 define

G(x) = P{| X| > x}, K(x)=1x? f ¥ dF (y),

(1.1) Q(x) = G(x) + K(x) = E(x'| X| A 1)%

The function @ is continuous and strictly decreasing once the support of F is
reached. Thus for sufficiently large n, we may define a sequence {a,} by

(1.2) Q(a,) = 7—11 .

The sequence {a,} is increasing, tends to infinity, and may be used to normalize
{S,} for weak convergence whenever X is in the domain of attraction of a stable
law; but we will see that it also describes the distribution of {S,} quite well much
more generally.

The basic analytic condition we will assume is

Glx)
K(x)

This condition was introduced by Feller [2] who showed it to be equivalent to

(A) lim sup,_. < o
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the existence of a centering sequence {b,} such that {(S, — b,)/a,} is stochastically
compact which means that it is a tight sequence and all its limit laws are
nondegenerate. It is also worth noting here that Jain and Orey ([5]; Theorem
2.5) showed that stochastic compactness is equivalent to

(B1) lim,_.sup,nG(pa,) = 0.
Thus (B,) is equivalent to (A). Another equivalent analytic condition is:
(B2) There exists A > 0 such that x*@(x) eventually decreases.

This follows from Lemma 2.1 of [7]. If X is in the domain of attraction of a
stable law of index a then

Gx) _2-a
K(ix) a

so we are considering a class of distributions much larger than the class of
distributions in the domain of attraction of a stable law.

We will show that the condition (A) implies that there exist ¢ > 0, C > 0 such
that for each M > 0 a centering sequence {b,} and ¢ > 0 can be found for which

(1.3) c<a,P{S,€E(x—¢ex+e)}=<C

for all n sufficiently large, the upper bound holding for all x and the lower bound
for x € (b, — May, b, + Ma,). We will also show that by taking M large the mass
S, assigns to the complement of (b, — Ma,, b, + Ma,) can be made arbitrarily
small uniformly in n. (Of course, in the lattice case ¢ must be taken large enough
so0 that the interval includes a lattice point and some obvious modifications must
be made to allow for periodicity.) Furthermore, (A) is necessary for (1.3); in fact,
it is necessary for either the upper bound result or the lower bound result so that
these results imply each other! We will also show that (A) is equivalent to
tightness of the sequence {(S, — b,)/a,} for an appropriate centering sequence.

The pair of inequalities (1.3) gives a weakened version of the local limit
theorem (see [11]). By summing the bounds in (1.3) over x one also obtains
bounds for long intervals, and by using this together with the tightness of
{(S, — b,)/a,}, one also obtains a weakened version of the central limit theorem
under (A). In many applications these estimates are all one needs. Feller [2] does
make some comments about the local limit theorem in this setting but he has
neglected the possibility that the limit density may be zero and so his observations
are incorrect.

The main results are proved in Theorem 1 in Section 2. The equivalence of
(A) to stochastic compactness is due to Feller, and the equivalence of (A) to
tightness is easy via (B;). That (A) implies the upper bound in (1.3) for all x is
in [3] and has also been shown independently by Hall [12]. The heart of the
matter here is the lower bound results. We will explain a little of the difficulty
at this point. The centering sequence to be used for tightness or stochastic
compactness is not too critical and can clearly be altered by addition of any
multiple of a,. However, for the lower bound in (1.3) the centering is much more

lim, e
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delicate and in fact may need to be changed if M is increased. Centering at the
mean, if it exists, may not even work for tightness and stochastic compactness,
and even centering at the median of S, may not work for the lower bound! In the
proof we will work with the limits of subsequences of {(S, — b,)/a,}. These limits
do have densities but some may have support on [0, ) and others on (—o, 0].
The crux of the problem is to find a centering sequence b,(M) so that all these
limit densities will be positive on [—M, M]. We give a constructive definition of
b.(M) in terms of F in Section 3. We will also show that in certain nice situations
one may in fact center at 0 or at ES, even for the lower bound. This is often
important in applications. Finally, in Section 4 we will prove that (A) implies
| P(S, = 2} — P{S, = | < =721
an

in the lattice case under the right assumption about periodicity. This is often
quite useful in conjunction with the upper bound in (1.3).

An interesting question which arises in this context is to characterize the class
of limit laws which may be obtained as subsequential limits in this way. The
restriction of stochastic compactness (distributions satisfying (A)) rules out much
of the unusual behavior that can otherwise arise. In particular, one consequence
of our proof will be that these limit laws must have C* densities! This class of
limit laws is described in [8] in terms of a condition analogous to (A) on the Lévy
measure. For some other work related to stochastic compactness, see Jain and
Orey [5] and Doeblin’s original paper [1].

Bounds analogous to (1.3) for random variables taking values in RR" are
obtained in [3] under some simplifying assumptions. In fact, this work was the
motivation for the present paper. The problem in R" is harder for two reasons:
the tail of the distribution may die at different rates in different directions (even
the two directions in R cause difficulties) and the centering question becomes
more complicated.

We should also mention that these results have been used in two applications,
one in the transient case and one in the recurrent case. In the former, Griffin [4]
obtains an integral test for the rate of escape problem for transient random walk.
In the latter, Jain and Pruitt [6] obtain the lim sup behavior for the local time
of the random walk.

2. Main results. We start with a few observations about the function
defined in (1.1). It is clear that

(2.1) x*Q(x) 1.
Furthermore, if (A) is satisfied then there is a A > 0 and an x, such that
(2.2) x*Q(x) | for x = x

(see Lemma 2.4 of [7].) It then follows that there is a positive ¢, such that
(2.3) 2Q(x) = coy’Q(y) for 7 l=<x=<y.
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It is a consequence of (2.1) and (2.2) that for given < 1, there exists an no such
that with a, as in (1.2)

(2.4) 7 = nQ(na,) < 7% n=ne
and also if M > 1 then
(2.5) M™2 < nQ(Ma,) < M™, n = n,.

Although a, may not be defined for small n, this will not matter since the results
are for large n.

We first prove a lemma and a proposition which describe some of the conse-
quences of (A) failing to hold. The proposition is of some independent interest
and helps explain the equivalence of the upper and lower bounds. Below X7 will
denote the symmetrization of X;, and the superscript s will always mean that
quantities correspond to these symmetrized random variables.

LEMMA 1. If (A) fails and G is not slowly varying, then there exist integer
sequences {m;} and {n;} such that

m; <n;, mj/nj—1, and an/a, — 0.

Furthermore, if am, < x; < 2%; < @y, then there exists an integer r; such that
a, € [x;, 2x;], and

(2.6) K(x;) = o(G(x))).

PrROOF. By Lemma 2.5 [7] G is not slowly varying iff

2.7) lim sup,_..K(x)/G(x) > 0,
and (A) fails iff

(2.8) lim inf, K (x)/G(x) = 0.
Let 0 < ¢ — 0, and pick {y;} so that

(2.9) i °Q(y;) — 0.

Let

= inf{x > y;: ——(22>e, for some y € (y;, x), & —~ K(x) _ <é¢
G(y) G(x) —

and

0; = sup{yiyj <y<yz, th; }

In view of (2.7) and (2.8) the z/’s exist and since K/G is right continuous and
jumps up, whenever it jumps, we must have

K(%)/G(z) = ¢, K(6;)/G(6;) = ¢;.
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Now, if x € (2, 2], then since x’K(x)1

K@) _ 2z K(z)

Gx) £ Gz) 7

(2.10)

It follows that 6; < ¢;z;; in particular
(211) yi = §zj.
It is also clear that

K& | 4

(2.12) o) > &

on [z, 2]
By (2.12) we have x% Q(x)| on [¢2, 2] by Lemma 2.4 [7], where p; =
28?/(1 + ef), and so if g2 =X < 2x%; < z;,

11 1 ~p,~log2~2ej~*log22 g e,
Q2x) Q(x) Q(x) Qx) Q(x)) Q(y))
where (2.11) is used at the last inequality and then (2.9). Since 1/Q(a,) = n, this
means r; exists such that a, € [x;, 2x;]. We now pick m; and n; so that a,, €
leiz;, 2¢2), an, € [2/2, 7] Then an,/a, — 0. By (2.10) and Lemma 2.4 [7],
x* Q(x)1 on [g2;, 2], s0

n; _ Qlam) - Q(ez) _ 72 —5 1.

m Qla,) ~ Qz)
Finally, (2.6) follows from (2.10). This completes the proof of Lemma 1.

3

=(2%-1)

PROPOSITION 1. (i) If (A) fails, then there exists a subsequence {r:} of the
integers and a centering sequence {b,} such that (Sy, — br)/ar, > o vaguely,
where 0 < \ < 1 and 8, is the probability measure concentrated at 0. (ii) If (A)
fails, then there exists a subsequence {r:} of the integers such that S7,/a, — Ao
vaguely for some 0 < A < 1.

PROOF. The failure of (A) means that lim inf,_.K(x)/G(x) = 0. We consider
two cases. If lim,_K(x)/G(x) = 0, then G is slowly varying (see Lemma 2.5 7
and then S, /a, — 6, vaguely (Proposition 7.2 [13]). Furthermore, when G is
slowly varying it is easy to check that G°(x) ~ 2G(x), so G* is slowly varying and

nG(a,) ~ 2nG(a,) ~ 2nQ(a,) = 2.

Thus S%/a, — €28, vaguely (Proposition 7.2 [13]).
We now consider the case when lim sup,_...K(x)/G(x) > 0. Choose sequences
{m;} and {n;} as in Lemma 1 and suppose m; < r; < n,. Define

by, = ri E(X1{| X| < an,}).
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Then, for 0 < ¢ < 1, we have by truncating at + a,, and using Chebyshev

o — L] 2
= r;lz;n Klam) |, — r:)G(am,)

P{|S,, — by, — Sy, + b, | Z ean} =

< e (m = 1) Qan) = 2 "
and the last quantity — 0 as i — . Essentially the same argument shows that
(83, — S5)/anm;— 0 in probability since @°(x) = CQ(x) for some C > 0. Now take
a subsequence of {n;} so that (S,, — by,)/an, converges vaguely to V. To simplify
the notation we do not rename the subsequence. Now it is possible to find {v;}
such that v;/a,, — 0 and (S, — bs,)/vi — Néo, where A = V({0}), i.e., the mass
that was going to the origin still does and the rest of the mass necessarily goes
to infinity. Since there is no harm in assuming v; = a,, we may actually choose
v; = a,, for some r; € [m;, n;] by Lemma 1. Now by the first part of the argument
(S,, — b;,)/a,,— Ndo. The same argument clearly gives part (ii) of the proposition.
It only remains to show that 0 < A < 1. Let ‘
T, = Yi Xelf| Xk | < am} — by Tt = Tha Xel{| Xi| > am}.
Fore> 0,
razK(an) 1 r K(anm)
Vo i
e%ar, & m; G(an,) -0

since r; ~ m; and K(a»,) = 0o(G(an,)) by (2.6). Thus

P{|T,| = ea,} <

P{|S, = b,| = ea;} = P{ T, + T',| <ea}
= P{|T,| <ean, | Xp| <am, 1 =k=rj}
= P{| X| < @, 1 =ksnr}— P {|T,| > ea},
and there must be mass at least
(1 = G(an))" ~ exp(—1:G(an,)) ~ exp(—m;Q(an,))= e

at 0 for the limit law. On the other hand, if exactly one of the r; summands
exceeds a,, in absolute value and it in fact exceeds a,, then we will have (when
| T, < eay,) '

lSri—bril = an,'_ lTr,'l = (1 —e)ar,-

and this mass goes to infinity. So the mass going to infinity must be asymptoti-
cally at least

rG(a,)(1 — G(an))™" ~ riQ(ay)e™ ~ e
The proof that 0 < A < 1 in (ii) is similar; one needs the inequality
K*(x) < 8K(2x) + 2G(x)G(2x).

This proves the proposition.
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In order to discuss the lattice case we must first say a few words about
periodicity. We assume throughout that Z, the integers, is the right lattice for
the random walk. This means that S, € Z a.s. for all n and this is not the case
for any sublattice. (Note that this assumption just amounts to a change of scale.)
It still may be the case that the symmetrized random walk S} with summands
having the distribution of X; — X, may live on a sublattice. For example, the
symmetrization of simple random walk lives on the even integers. We will let p
denote the largest integer such that S§ € pZ a.s. for all n. Then the original
random walk has the property that Sy, € pZ a.s. for all k while Sy,; will be in
some coset C; of pZ in Z ass. for all k, i =1, ---, p — 1. More details can be
found in Spitzer [10].

We begin by listing the various equivalent statements. These statements are
first formulated for the lattice case; where necessary, the modifications needed
for the non-lattice case are given afterwards.

G(x)

(A) lim ) <o

(U) There is a positive C and an n, such that with {a,} as in (1.2)‘

P{S,,=x}sa-(2 forall x € Z, n = n,.

n

In the non-lattice case, for every n > 0, there is a positive C and n, such that

P{lS,,—xlsn}sag for all x € RY, n = n,.

n

(Ly) For every ¢ > 0, there exist ¢ > 0, no, and sequences {a,}, {8,} such that

(2.13) P{S,=x} = ai forall n=n,

n

and all x € [a,, 8,] such that x € C; where n = i (mod p) and
P{S, & [an, Bul} < &
Furthermore, the dependence of ay,, 8, on ¢ is such that

.Bn(c) — an(e) =

limn—»w,c—»O
Qan

In the non-lattice case, replace (2.13), (2.14) by P{| S, — x| < n} = ca;" where ¢
depends on 7.
(Ly) For every M > 0, there exist ¢ > 0, n,, and a sequence {8,} such that

(2.14) P{S,=x} = ai forall n=n,

n

and all x such that | x — 8, | < Ma, and x € C; where n = i(mod p).
(Ly) Same as (L) with “For every M > 0” replaced by “There exists M > 0”.
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(T;) There exist a sequence {6,}, a C > 0 and an n, such that
C
P{|S, — 6,| = ba,} = 7 forall 6, n=ne

where X is as in (2.2).
(Ty) There exists a sequence {6,} such that {(S, — §,)/a.} is tight.

(C) There exist sequences {v.}, {6,} such that for every subsequence of
{(S, — 6,)/v.} there is a further subsequence which converges weakly to a
nondegenerate limit.

In applications, it is essential that the sequences {a,}, {8.} be constructed
knowing only the distribution of X. We will do this in the next section. It will
also be apparent that for any ¢ > 0, (a, + 8.)/2 may be used for é, in (T}), (Ty),
and (C).

THEOREM 1. The statements (A), (U), (L), (Lg), (Ls), (T1), (Ts), and (C) are
equivalent.

PROOF. The proofs go via the analytic condition (A). Feller proved that (A)
< (C) so we will not repeat this. Also (A) = (U) is in [3, Theorem 3.6] and has
been proved independently by Hall [12]. The necessity of (A) for (U) and (T5)
follows easily from Proposition 1. Since (L;) = (L) = (Ls3) and (T,) = (T:) we
only need to prove (A) = (T,), (A) = (L1), and (L3) = (A). We will need an
estimate on the characteristic function ¢ of X which is contained in Theorem
2.10 of [3]. Under (A), there is a ¢ > 0 such that

(2.15) |‘P(u)|51—cQ<—1—), o<|u|s;’;.

lul

In the non-lattice case, the bound holds for 0 < | u| = M for any M where ¢ may
depend on M.

(A) = (T1). For 6> 0 we let
U,,(O) = 7=1X,1{|Xl| = 0(1,,}

and 6, = EU,(2*). Then for 8 = 2/ we have for large n

| EUL(0) = b,| = nf |x| dF < nba,G(2"a,)

Mg, < | x| <0ay

< nba,Q(2"a,) < g a,
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)

by (2.5). Then by Chebyshev’s inequality and (2.5)

P{| 8 = on| = ban} = P{S, # Un(6)} + P{I U.(6) — EUL(0)| =

NI

40%a2K (0a,,)

4
< nG(ba,) + n 0%2 = 4nQ(ba,) < >

The bound is trivial for small 6.

For the last two assertions, we will give the details of the proof in the lattice
case, and then indicate the necessary modifications in the nonlattice case.

(A) = (L;). We assume that a,, 3, satisfy

a<=P{S.=a,}, P{S,.<ap} =

N

(2.16)
¢1 = P{S, = B}, P{S.> B} < %

for some ¢; > 0. In the next section we will see how to construct these sequences.
But they certainly exist even if we take ¢; = ¢/2. We will show that any {a,}, {8,}
satisfying (2.16) will work in (L;). Choose x, € [an, 8.] to satisfy

P{Sn = xn} = minlxel%.ﬁn]ﬂcilp{sn = x}
where n = i(mod p), and let
¢ = lim inf,_.a,P{S, = x,}.

We need to prove ¢ > 0. Choose a subsequence along which a,P{S, = x,} — c.
Since (A) = (T,) if we use {,} as above, we can find 6 so that

P{|Sn—6n| Z0‘171}<cl

and so [an, 8.] C [, — fa,, 6, + 0a,]. By taking further subsequences we may
thus assume that

(2.17) ﬁn - Bn N 6, On — 6n - a, Xn — 6n

n an an

—)z

where
—f<a<z<pB<H

Furthermore, by Helly’s compactness theorem, we may assume that

Sp, — 6n

an

(2.18)

— H vaguely

along the subsequence. For the remainder of this proof, we restrict n to be in this
subsequence. Since we have already proved that (A) = (T:) we know that H is a
probability distribution. It is necessarily infinitely divisible. We let ¥ denote its
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characteristic function. By the inversion formula, we have

a.P{S, = x,} = a, i f exp(—iux,)?™(u) du
(2.19)

p T/p
=qa, — exp(—iux,)?™*(u) du
2 —x/p

since exp (—iux,)®"(u) is the characteristic function of the random variable S, —
x, which must have period 27/p because it takes its values in pZ. Now we need
a bound for the integrand. By (2.3) we have for 1 < |v| < 7p~'a,

<£n—) Q(—a—"-) = coahQ(a,) so that nQ(f—"-) =c|v|™

[vl |vl |v|
Now, by (2.15)

|7(vaz)| = (1 B cQ(I?I))

< exp(—cnQ(a,|v|™)) < exp(—cz|v|), 1= |v| = g an.

(2.20)

Recalling (2.17), (2.18), and (2.19), and using dominated convergence

ra,/p
a,P{S, = x,} = £ f exp(—iva; (x, — 6,))P™(va;)exp(—iva;'s,) dv

27l' wa,/D

A f e *Y(v) dv = ph(z)
27r —00

where h is the density for H. In fact, (2.20) implies that | ¢(v)| < exp{—cz|v|*}
for |v| = 1 so that h not only exists but has derivatives of all orders. We note
that this is true for any subsequential limit of {(S, — b,)/a.} as mentioned in the
introduction. To complete the proof we must show that h is positive on [a, 8].
For this we apply a result of Sharpe [9] which asserts that an infinitely divisible
law with characteristic function in L” for all p has a density which is either never
zero or else zero on a closed half-line. Note that ¢ is in L” for all p by the bound
on | ¢ |. Finally since

lim"—’wP{M = 6} = limn—woP{Sn — Bn = ﬁn — Bn} = C1

n an a,

with a similar argument applying to the left tail, we see that H has mass on both
sides of [a, 8] and so h must be positive on [a, 8]. To prove the last statement,
suppose there is a sequence ¢, — 0 and a subsequence {n.} such that

(2.21) Q&(ﬁ”)a_—%i(i) S M< o,
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By the choice of {«,} and {8,} we have

ank(ek) - ank < Snk - an,, < 6n,,(8k) - Bnk =1
ap, - Qn, h A, '

limk_,wP{

Since {&“_—6"“} is tight and (2.21) holds, we must have

g

O,

- 6n .Bn - 6n
k ks o, k k

a"h a"h

- B

along a subsequence (where «a;, 8; are finite). Thus along a further subsequence
a limit law would have compact support [a;, 1], which is a contradiction. (Recall
Sharpe’s result.)

We now outline the proof in the non-lattice case. Define

— COs X

Sinu, r(w) = (1 - |ul)*, R(x) =21—x2—

k(u) =

By the inversion formula,
_2p—n f R(p(xn - y))anP“Sn - yl = 77} dy

=a, f exp(—iux,,)r(%)k(un)‘l’"(u) du.

Split the integration on the left hand side into |y — x,| <nand |y — x,| =9
and use (U) on the latter set to obtain an upper bound

4C
T 6.P{]|Sn — x| < 21} + —.
n PN

For the right hand side, pick x, to minimize P{| S, — x,| < 29} subject to o, =
%, < B, and proceed as in the lattice case to show convergence to 27h(z) > 0; in
this case the bound for the integrand is only needed for |v| =< pa, because of r
and the bound may be extended to this range in the non-lattice case. With n and
2 fixed we may choose p so that 4C/pn® < wh(z).

(Ls) = (A). We shall symmetrize and use part (ii) of Proposition 1. If (L) holds
for S,, then for | x| < Ma,/2 and x € pZ

P{S;, = x} = Y,ecily-tni<MaeP{Sn = y}P{S, = x + y}

(2.22) _ <c>2 Ma, £2—].‘{—1—
h p p a

But this contradicts the conclusion of Proposition 1. The analogue of (2.22) in

the non-lattice case is similar.

Qar,

3. Centering. We start by observing that centering may be necessary for
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the lower bound even when it is not needed for stochastic compactness or
tightness. For example, let X have a stable distribution of index o < 1 which is
supported on [0, ©). Then n~'/=S, still has the same distribution and so converges
weakly. But (L;) and (L3;) do not hold without centering since there is no mass
on the negative axis. In fact, in this example 6, must grow with M (essentially
like Ma,) so this shows that the dependence of 6, on M cannot be dropped.
Furthermore since the median of S, is n'/* times the median of X it is asymptot-
ically a constant times a, which shows that the median of S, cannot be used for
5, when M is large in this example.

A centering sequence for stochastic compactness or tightness is easy to
construct. In fact the {6,} constructed in the proof of (A) = (T;) above suffices.
After taking care of some preliminaries, we will construct the a,(e), B.(¢e) se-
quences of (L;). Their average, for appropriate ¢, will also suffice for (L), (Ls),
(Tl), (T2), and (C)°

We start by introducing some notation. For a > 0, let

(3.1) Y=X;Na, Zi=—a VY,
and

T,=3YYi, V.=3XkiZ.
Then by Lemma 3.2 of [7] we have for C, < 1/6
(3.2) P{T, = EV, + CinaQ(a)} = ™3

provided that both @ and nQ(a) are sufficiently large and EX = 0 if EX%2 < o0, A
check of the proof shows that in fact nQ(a) = 7 is adequate. For future reference,
we note that

EV,=nEZ, = n( f y dF (y) + aG(a) — aG-(a))
3.3) Iyl=a

= nj; (G+(y) —G-(y)) dy

where we are using G.(a) = P{X > a}, G-(a) = P{X < —a}.
The condition (A) is assumed in the rest of the section.

LEMMA 2. Assume EX? = o, If n < %, (29*)™" = 7 where \ is as in (2.2),
p € (1, 7Y, and C, ¢ are fixed positive constants, then there is a ¢ (which depends
on 1, p, C, and ¢) such that

P{S, = nu, + Ca,} = ¢
for all n sufficiently large which satisfy
(3.4) G.(pna,) > en™
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where
na,,
Hn = J; (G+(y) — G-(y)) dy.

PrOOF. By (2.4), if k € [ n, n] and n is large we have
kQ(na,) = (29*)7" =17
so that we may use (3.2) with a = 5a,. Thus by (3.3) and (2.4)
(35)  P{T, = kun} = P{Tk = kpn + C1kna,Q(na,)} = exp(—3577%).
Now we take & positive and small enough that '
(3.6) e+ exp(—359%)>1 and d<e

Then we choose £ so that G,(£a,) = dn~". (There are two ways of avoiding the
possibility of G, jumping over n™". One is to convolve X with a normal random
variable so that G, is continuous for the new summands. Then since a,n"Y? -
o when EX2 = o one may deduce the lemma for the given summands from the
lemma for the convolved summands. It is also easy to check that this change
does not alter a, significantly. A disadvantage is that this changes u, and this
complicates the definition of 3,. The alternative is to enrich the probability space
by introducing a sequence of auxiliary Bernoulli variables, one for each X, to
appropriately split the atom at £a,. If this is needed, then in what follows if we
write X; > £a, we really mean either X; > £a, or X; = {a, and the corresponding
Bernoulli variable is one.) By (3.4) and (3.6)

G.(pna,) > en™ = én7!
so that ¢ = pn. Now we take m so that
(3.7 m(p—-1)n=C
and define T'(iy, - - -, im) = A(iy, - -+, im) N AQy, - -+, i) Where
Ay, -y im) = { X, > O, -+ -, X;, > Ea,),
Aliy, -, Im) =
(2/(X; A 1a,) = (n — m)pa, X; < £a, for j # iy, -+, im, j =1},

where ¥’ denotes the sum over all j € [1, n] excluding iy, - - -, in. Now the events
A and A are independent and

P(A) = {Gi(tan)}™ = (%) , P(A) = exp(—3597%) + (1 - %) -1>¢>0
for large n by (3.5) and (3.6). Thus

P(I‘(ib R} im)) = c(é)
n
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and since the I'’s are disjoint

P(Uilv",imr(ila ety lm)) = (n> (4 (§> ~C 6—'
m n

Now, on this union, we have by (3.7)
S, = méa, + (n — m)pp, = mpna, + (n — m)py,
= m(p — 1)ga, + nu, = Ca, + nu,

since ¢ = pn and u, < na,. Thus we have proved the lemma.

Now we are ready to give the general construction of {a,}, {8.}. An important
special case where a simpler procedure works is obtained in Theorem 3. We
exclude the case EX? < o from Theorem 2 for simplicity; it will be covered in
Theorem 3.

THEOREM 2. Assume EX? = o. Given ¢ > 0, choose 7 < Y4 so that
(3.8) @)™ =14, (29)™ = 144 log(4/¢)
where \ is chosen so that (2 — N\)/\ is larger than the lim sup in (A) and let

2na,,
$n = J; (G+(y) — G-(¥)) dy.

Define
1 .
n§n+§nnanQ(2nan) if G+(2na,) = ﬁ
Br =
nin+ @)1+ 17 9a, if Gi(2na,) > ﬁ
and
né, — % nnan@(2nay) if G_(2na,) < -
n 3 Nnan Nqn -\ana,) = 4n
o, =

ng — @)1+ 17a, if G-(2n0,) > .
Then (L) is satisfied with these {a,}, {8,} sequences.
ProOOF. By Lemma 3.1 of [7] with a = 25a,, we have for all positive r and s
(3.9) P{T, = n¢{, + % re'n21a,Q(2na,) + sr'2na,} < e”*
and by (3.8) we may use (3.2) with a = 2na, to obtain
(3.10) P{T, = n{, + ¥ nna,Q(2na,)} = exp(—35/49%).
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Choose r to solve re” = Y% and use this and s = log(4/¢) in (3.9). Since

1 1 2
= nQ(2na,) = = (2) = =
6 6 r

for large n by (2.4) and (3.8), we may combine (3.9) and (3.10) to obtain
exp(—35/4%%) = P{T, = n{, + ¥5 n9a,Q(2na,)} < ¢/4.
Since S, = T, and P{S, # T.} < nG.(25a,), this gives the necessary inequalities

(3.11) ¢1 = P{S, = B} = -2‘3

in case G.+(2na,) < ¢/4n. For the other case we use the truncated variables as in
(3.1) with @ = fa, where § = (4¢7!)/*. Then, using Chebyshev’s inequality

P{|S, — EV,| = 6a,} < P{S, # V.} + P{| V., — EV,| = 6a,)

< nG(fa,) + nQ(fa,) < 2nQ(fa,) < 20'* =

N o

Moreover, by (3.3) and (2.4)

f ' (G+(y) = G_(y)) dy | < nb8a,Q(2na,) < On~%a,

21

IEVn - ng‘nl =n
so that

P{S,=nt + 01 + v ¥a,} < P{S, = EV, + 6a,} <

Do

The lower bound in this case follows from Lemma 2 since

21na,
nu, — ng‘n =n f (G—(y) - G+(y)) dy = —nnanG(nan) = - n_lan
na,

by (2.4). Thus we have (3.11) in this case also. This and the analogous inequalities
for a,, (which are similar) are all that were needed in the proof that (A) = (L,).

Finally, we describe one situation in which centering at the mean is adequate
even for the lower bound. This includes the domain of attraction setting for o >
1.

THEOREM 3. If

G(x)
K() <1,

then E | X | < o and one may use 8, = nEX in Theorem 1. Furthermore, for every
_positive M there exist a positive ¢ and an no such that

P{S, = nEX + Ma,} =¢, P{S,<nEX— Ma,}=c

(3.12) lim sup,—.«
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for all n = n,y. One may use
8. = nEX + Ma,, a,=nEX — Ma,

in (L,) where M = (4¢ ) (1 + e\/4(\ — 1)) and \ is chosen so that (2 — \)/\ is
between the lim sup in (3.12) and 1.

REMARK. There are examples in the domain of attraction of the Cauchy with
E|X| <o, EX =0, and P{S, = 0} — 0. Thus this result cannot be extended to
include those random walks in the domain of attraction of the Cauchy having
finite mean.

PrOOF. If EX? < » everything follows from the central limit theorem since
a, ~ (EX?'2n'2. Thus we assume EX?* = co. If (3.12) holds, then x*Q(x) | for
large x for some A > 1 by Lemma 2.4 of [7]. Then @ and G are integrable so
E| X | < . Next we have

na, 00
(3.13) o= fo (G+(y) — G-(y)) dy = EX — f ] (G(y) — G-(¥)) dy
and

L G(y) dy =< fa Q) dy = (9a,)*Q(na,) fa y™dy

< 1

< “la.n~
N1 na,.Q(na,) < 7 'apn

A—1
by (2.4). This means that
(3.14) nu, — nEX = O(a,).
We have for 1 <1 by (2.4)

ma,Q(na,) = 7' a,
where A > 1 here. Thus if we choose n small enough that

7 =7and »'™ = 24M

then by (3.2) with a = ga,
(3.15) P{S, = nu, + 4Ma,} = c.
Next we let p = 1 + My and observe that by (2.4)

pnay,
fa G(y) dy = (p — 1)na.G(na,) < (p — 1)na,Q(na,)

) 1 1
= (P - l)n_lan r_l = Man ;a
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J; G(y) dy = J; Q(y) dy =+ 1 7 %Q(an)

11 1

< < -
Sxo1fp =My

provided that M = 1/(A — 1). Thus by (3.13) we have

a,
|nEX — np, — nf (G+(y) — G-(¥)) dy| = 2Ma,.

ma,
Now there are two cases. If
(3.16) G.(pna,) = Mn™%,

then we have by (2.4) since pn <1

a,
n f G.(y) dy = na,G.(pna,) < Ma,
pnay,

and so
nEX =< nu, + 3Ma,.

In conjunction with (3.15), this gives the required lower bound. If (3.16) fails,
then (3.4) holds. Since we have

nEX < nu, + Cia,

by (3.14) we again obtain the lower bound by taking for C in Lemma 2 the sum
of C, and M. The other lower bound follows on replacing X by —X. It is now
clear that nEX may be used for §,. Finally, to see that the given value works for
B., truncate at (4e"')'*a,, use Chebyshev, and estimate the difference between
EX and the truncated mean as above.

4. Upper estimate for differences. In the classical case of finite variance
- this bound may be deduced by combining the local limit theorem with a version
due to Smith which gives a better error term for large x (see [10, page 79]).

THEOREM 4. Assume (A). Then there is a C such that

Cly — x|
2

|P{Sn=x}_P{Sn=y“s a

for all n and all x, y such thaty — x € pZ.
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PROOF. By the inversion formula and (2.15)

P{Sn ==z} - P{S, =y} = 51— f (e — e™)P™(u) du,
™ -7
| P{S, = x} — P{S, =y}| = %f |1 — e || P(u)|" du
™ -7
w/p
=P f |1 — e % | | @(u)|" du
™ Y0
p n/p
== |y—x| f u exp{—cnQ(u™)} du
™ 0

=§ ly — x| J; exp{—cnQ(v)} %g

To estimate the integral, we break the range of integration at a, with the integral
over [a,, ) clearly being at most 1/2a%. By (2.3),

p/™

a, ap d
f exp{—cnQ(v)} é% =< f exp{—ciapv} —z
p/m v v

IA

1
dw B
a,? J; exp{— caw™} i Ciaz2
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