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LARGE DEVIATIONS FOR A GENERAL CLASS
OF RANDOM VECTORS

By RicHARD S. ELLIS

University of Massachusetts

This paper proves large deviation theorems for a general class of random
vectors taking values in R? and in certain infinite dimensional spaces. The
proofs are based on convexity methods. As an application, we give a new proof
of the large deviation property of the empirical measures of finite state Markov
chains (originally proved by M. Donsker and S. Varadhan). We also discuss
a new notion of stochastic convergence, called exponential convergence, which
is closely related to the large deviation results.

I. Introduction. This paper proves large deviation theorems for a general
class of random vectors taking values in R? d € {1, 2, ---}. We also partially
extend an upper large deviation estimate to a general infinite dimensional setting.
These theorems complement some of the major large deviation results in the
literature (e.g., Donsker-Varadhan, 1975, 1976, Bahadur-Zabell, 1979). The lat-
ter papers consider random vectors with a fairly general state space but a
relatively simple dependence structure (i.i.d. or Markovian). The present paper
handles any sequence of random vectors {Y,,} for which the limit

c(t) = lim,..(1/a,)log E,fexp(t, Y,)}, t € RY,

exists for some sequence a, — oo. This limit, which arises naturally in large
deviation theory, is an analogue of the free energy in statistical mechanics. In
fact, our results were inspired in part by the beautiful large deviation calculations
for statistical mechanical random variables due to Lanford (1973). Applications
of the present paper to statistical mechanics will appear in a forthcoming book
(Ellis, 1984).

Our main analytic tool is the theory of convex functions and of the Legendre
transform in particular. One purpose of this paper is to illustrate the power of
these techniques in deriving large deviation results. We emphasize that proving
these results for random vectors (d = 1) rather than just random variables
(d = 1) is a nontrivial extension. As an application, we give an elementary proof
of the large deviation property of the empirical measures of finite state Markov
chains. This property was shown first by Donsker-Varadhan (1975) in much
greater generality. Our new proof seems worthwhile since the proof of their
general theorem was by necessity fairly involved.

Other papers have studied large deviations for general random vectors, but
they differ in several respects from the present paper. Dacunha-Castelle (1979)
treats only the case d = 1. (Although the proof in Dacunha-Castelle (1979) uses

Received November 1982; Revised May 1983.
AMS 1980 subject classifications. 60F10, 26A51.
Key words and phrases. Large deviation property, entropy function, exponential convergence.

1

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )20

The Annals of Probability. RIKOAN

WWw.jstor.org



2 RICHARD S. ELLIS

the differentiability of the function c(t) — see Section II below - the differentia-
bility is not stated as a hypothesis.) Steinebach (1978) considers general d = 1,
but he is interested in different large deviation estimates and his hypotheses are
not the same as ours. Gértner (1977) is closest to the present paper, but he does
not prove the estimates for general closed and open subsets of R? as we do.
Section II states the large deviation results, Section III contains the application
to Markov chains, and Section IV discusses exponential convergence. Section V

proves properties of the entropy function, then proves the theorems in Sections
Il and IV.

II. Statements of results.

Ila. Finite dimensional case. For simplicity, we consider random vectors
indexed by the positive integers. With minor changes, our results go over to
families of random vectors indexed by more general sets.

Let {Q,, %, P.);n=1,2, ---} be a sequence of probability spaces and % the
Borel os-algebra of R?. For each n, let Y, be an &, — % measurable map of Q,
into R% Let % be the sequence {Y,;n=1,2, ---}. Given t € R let"

(1) cnlt) = co( 25 t) = (1/a,)log E,{exp(t, Yn)},

where the {a,} are a fixed sequence of positive numbers tending to infinity, E,
denotes expectation with respect to P,, and (-, -) is the Euclidean inner product
on R%

HYPOTHESIS IL1. ¢(t) = ¢(%; t) = limn_cCn(t) exists for all t € R?, where we
allow + both as a limit value and as an element in the sequence {c,(t)}. (Define
¢(t) = o0 if ¢ca(t) = o for all n = ng (no depending on t)). Let D (c) = {t € R%:c(t)
< o). D(c) has non-empty interior containing the point t = 0, and c is a closed
convex function on R

D (c) is always non-empty since c¢(0) = 0 < . The convexity of ¢ follows from
the convexity of each c,. By definition, ¢ is closed if for each real a, the set
{t € R%c(t) < a} is closed in R?. This is equivalent to ¢ being lower semicontin-
uous. If ¢ is differentiable on the interior of Z(c), int Z(c), then we call ¢ steep
if || grad c(x,,) | — o for any sequence {x,} C int < (c) which tends to a boundary
point of Z(c). If ¢ is closed and Z(c) is an open set, then c is steep (Barndorff-
Nielsen, 1978; Corollary 5.3). For the theory of convex functions on R?, Rocka-
fellar (1970) is the standard reference.

Let @, be the distribution of a;'Y, and let I = I(%; -) be the Legendre/
Fenchel transform of c:

(2) I(2) = supers{(t, z) — c(t)}, z € R%

Given a subset A of R? define I(A) = inf{I(z):z € A}. Here is our first large
deviation result.



LARGE DEVIATIONS FOR RANDOM VECTORS 3

THEOREM I1.2. We assume Hypothesis I1.1.
(a) For any closed subset K of R®,

3) lim sup,_(1/a,)log Q.{K} = —I(K).
(b) If c is differentiable on all of int D (c) and is steep, then for any open subset
Gof R?
4) lim inf,_..(1/a,)log Q.{G} = —I(G).

If (3) and (4) hold for all closed K and all open G, respectively, then we say
that {Q,} has a large deviation property with entropy function I. A special case of
this theorem is where Y, is the nth partial sum of i.i.d. random vectors X;, X5,
... for which Efexp(t, X;)} < o for all t € R%. Then Hypothesis IL.1 is valid
with c(t) = log E{exp{t, X;)}. This case is well-known.

In general, if ¢ is not differentiable on all int Z(c), then (4) is not valid for
certain open G. Here is a simple example. Let Y, have distribution (6, + 6-,)/2.
Then (with a, = n) we have c(t) = | t|, t € R, which is closed and steep, and I(2)
=0if |z| =1, o if | 2| > 1. If G is an open subset of the interval (-1, 1), then
the left-hand side of (4) equals —oo while the right-hand side equals 0. Thus (4)
fails for these G. On the other hand, it is easy to see that the distributions {Q,}
of {Y,} have a large deviation property with entropy function

_J0 for z=1, z=-1
I(Z)‘{oo for z € (1, -1}

This entropy function is not convex.

IIb. Infinite dimensional case. We extend the upper bound (3) for compact
sets. We can also partially extend the lower bound (4) (see the paragraph after
(30)), and Theorem V.1. But we omit these.

Let & be a real vector space of points z and 7 a given topology on Z. We
assume that under 7, Z is a locally convex Hausdorff topological space (l.c.H.t.s.).
Let 7 be the topological dual of Z (7 = Z*)andfort€ 7 andz € ¥ let
(t, z) denote the value at z of the continuous linear functional t. We consider 7
with the topology of weak convergence over Z Then 7 is also an l.c.H.t.s. Let
{(Qn, Fn, Po);n=1,2, --.} be a sequence of probability spaces and % the o-
algebra of Borel subsets of Z. For each n, let Y, be an &, — % measurable map
of O, into Z. Given t € 7 we define c¢,(t) = c,( %; t) as in (1), where {a,} and E,
are as above.

HypOTHESIS I1.3. c¢(t) = lim,_«c.(t) exists for all t € 7, where we allow +%
both as a limit value and as an element in the sequence {c,(t)}. (Define c(t) = o if
¢, (t) = o for all n = ny(ny depending on t)).

Let Q. be the distribution of a;'Y, and let I = I(%; -) be the Legendre/
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Fenchel transform of c:
(5) I(2) = supe 7 {(t, 2) —c(t)}, 2€ Z
I is well-defined (see Ekeland-Temam, 1976, Chapter I).

THEOREM IL.4. We assume Hypothesis 11.3. Then for any compact subset K
of 7

(6) lim sup,_(1/a,)log Q.{K} = —I(K).

III. Application. We prove a special case of a result in Donsker-Varadhan
(1975). Let {X1, Xo, - - -} be a Markov chain with state space I' consisting of d
distinct real numbers {x;, ---, x4} (d = 2). The chain starts at a fixed point

x € T. Let P, be the probability measure for the chain and (i, j) = = ({x:}, {x;})
its transition probabilities. We assume that the matrix = = {x (i, j)} is irreducible
and aperiodic. The chain then has a unique invariant measure p. For each subset
A of T we define the empirical measure of A by the formula L,(w){A} =
(1/n) Y1 6x.1A}. By the ergodic theorem

(7 L,=,p as. (P)).
Let # be the set of probability measures on I'. L, takes values in .# Any
v € A can be represented as (vy, - - -, va), where »; = »({x;}) = 0 and Y»; = 1. We

identify # with this subset of R4 Part (b) of the next theorem is new.

THEOREM IIL.1. (a) Let {Q,} be the distributions of {L,} in #. Then {Q,} has
a large deviation property with entropy function

(wu);

(8) I-;r(”) = _infu>0 E:’i=1 Vilog U , VE /ﬁ,
where u = (uy, - -+, Ug), each u; > 0, and (wu); = ¥4, =@, ju; I(v) = o for
v € RAA.

(b) More generally, let {=™} be a sequence of irreducible, aperiodic stochastic
matrices which tend to an irreducible, aperiodic stochastic matrix =. Then the
conclusion of (a) holds for the distributions of the empirical measures based on
{ ﬂ.(n)}.

PROOF. (a) Large deviations for {L,} are equivalent to those for the random
vectors {n"'Y,}, where Y, has ith component Y,; = ¥}, éx{x;}. Given t € RY,
define #(x;) = t; for x; € T'. Then

) ca(t) = (1/n) log E.fexp(Tj-1 t(X;)},

where E, denotes expectation with respect to P,. Let B = B(w, t) denote the
matrix {exp(t;) - =(i, j)}. A short calculation shows that

(10) cnl(t) = (1/n)log 37, i=1 8:(x;,)B" (i, in)exp(t;,).

Let B be an irreducible, aperiodic, non-negative matrix (such a matrix is also
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called primitive. (Berman/Plemmons, 1979)). Its largest eigenvalue in absolute
value, A(B), is simple and for each i, j, [B"(i, j)]** — A(B) (Spitzer, 1971;
Theorem 1.9, 1.11). Hence for each t € R?

(11) lim,,_cn(t) = c(t) = log MB(, t)).

¢(t) is closed, differentiable, and steep, and so the conclusions of Theorem II.2
hold with

(12) I(v) = supwere{(t, v) — log NMB(m, t))}.

The next lemma allows us to reduce (12) to (8).

LEMMA II1.2. Let _#* denote the set of all t € R which are of the form t; =
log[ui/(wu);] for some u > 0 in R®. Then \(B(w, t)) = 1 if and only if t € _#'*.
Furthermore, any t € R’ can be written as t + c1 for some t € _#" and real c,
where 1 denotes the constant vector (1, - - -, 1).

In (12) we replace t by t + c1 as in Lemma II1.2. For v € .#
(13) (v, t + c1) — log A\(B(, t + c1)) = (v, t) — log MB(, 1)),
and since ¢ is in _#*, the last term is zero. Since t; = log(u;/(wu);) for some
u>0, (12) becomes
Y
(Wu)j'

This is exactly (8). We must prove that I(») in (12) is » for » € R™\ #. Since L,
takes values in _#, this follows from the lower large deviation bound (4).

(14) I(V) = SUpP.>o0 E(}=1 I/leg

(b) For each t, B(zx™, t) — B(x, t) and so A(B(x™, t)) — \(B(m, t)) (Kato,
1966, Theorem II.5.1). This is the same function ¢(t) as in part (a).0

ProoOF OF LEMMA II1.2. We write B for B(x, t) and A for A(B(m, t)). Say A\ =
1. Then B has a corresponding right eigenvector u > 0, and exp(t;) - (wu); = w;
for each i. This implies that t € _#*. If t € _#*, then t; = log(u;/(wu);) for some
u >0 and u is an eigenvector of B corresponding to the eigenvalue 1. If A exceeded
1, then by the proof of Theorem 1.11 in Spitzer (1971) both A\™"B"(i, j) and
B"(i, j) would have positive limits for all ; and j. This is impossible, and so A =
1. To prove the last assertion, given t € R? define ¢ = log \(B(, t)) and ¢t =t —
c. This tisin .#*.0

IV. Exponential convergence. We discuss a new notion of stochastic
convergence which is related to the large deviation results. Let 2" = {Y,} and
{a,] be as in Section Ila. Given vy € RY we say that {a;'Y,} tends to v
exponentially, and write a,'Y, —p 7, if for any sufficiently small ¢ > 0 there
exists M = M(e) > 0 such that

15) Pu{lar'Y, — v = ¢} < exp(—a,M) for all sufficiently large n.
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If a,'Y, —exp v, then we say that {a,"'Y,} satisfies the exponential law of large
numbers. If the {Y,} are all defined on the same probability space and
¥ =1 €xp(—a, M) < o« for all M > 0, then exponential convergence implies almost
sure convergence. This is a direct consequence of the Borel-Cantelli Lemma.

Our first result shows that {a,'Y,} satisfies the exponential law of large
numbers if and only if ¢( %} t) is differentiable at ¢t = 0. The equivalence between
(b) and (c¢) is an aspect of Legendre/Fenchel duality, which will be explored
further in the next section.

THEOREM IV.1. We assume Hypothesis I1.1. The following three statements
are equivalent.

(@) an'Y, —exp 7y for some y € R
(b) ¢ =c¢(%Z; -) is differentiable at t = 0 and grad c¢(0) = v.
(c) I=1(%:; -) achieves its global minimum at the unique point +.

In statistical mechanics, the parameters {a,} represent the numbers of particles
in a sequence of physical systems indexed by {n}. These particles may assume
different configurations (e.g., molecules in a gas, spin configurations in a magnet).
The {Y,} represent configuration-dependent quantities (e.g., total energy, total
spin) which are proportional to {a,}. The inequality (15) states that in the limit
n — o, almost all configurations have the same value v of a;'Y,. This gives a
scheme for deriving the stable thermodynamics of macroscopic systems from the
chaotic behavior of the individual particles which constitute the system. A nice
application of Theorem IV.1 is to convergence properties of the total spin in
Ising and related models of ferromagnetism. These properties include the case
where the total spin fails to converge exponentially to a constant, this being
equivalent to the ferromagnetic phase transition (called spontaneous magneti-
zation). The monograph Ellis (1984) will treat these and other applications of
Theorem IV.1.

V. Properties of the entropy function and proofs of theorems in
Sections IT and IV. The following theorem will be used to prove the theorems
in Sections II and IV. In parts (c), (d), and (g), dc and dI denote the subdiffer-
entials of ¢ and 1.

THEOREM V.1. We assume Hypothesis 11.1.

(a) I=1(%; -) is a closed convex function on R

(b) Fordllt€ 2(c) and z € D (1), {t, z) < c(t) + I(2).

(c) (t,z) =c(t) + I(z) if and only if z € dc(t).

(d) z € dc(t) if and only if t € dI(z).

(e) c(t) = sup.enei(t, 2) — I(2)}, t € R".

(f) For each a real, the set L, = {z:1(z) < o} is a closed, bounded, convex subset
of R4

(g) inf{I(2):z € R%} is 0, and I(2,) = 0 if and only if zo € 3c(0), which is a non-
empty, closed, bounded, convex subset of R.
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ProOOF. (a)-(e) Rockafellar (1970; Theorems 12.2 and 23.5).
(f) By Hypothesis IL.1 there exists ¢ > 0 and a ball B, of radius 2¢ and center
0 which is contained in int Z(c). Foranyz€ L, .

(16) supees, | (¢, 2) | =¢llz]| < a + supsesp, | c(t) | < oo,

and so L, is bounded. The other properties are obvious.

(g) By the definition of subdifferential I(z) achieves its global minimum at
20 © 0 € 0l(zy) & 20 € 3c(0) by (d). By (c), I(z5) = 0 for any 2, € dc(0). The
properties of dc(0) follow from Hypothesis II.1, Rockafellar (1970; Theorem 23.4),
and the fact that dc(0) equals the set L, in (f).0

PrOOF OF THEOREM I1.2. To prove the upper bound (3), we reduce the case
of an arbitrary closed set K to the case of closed half spaces. The next lemma is
the key. It relies strongly upon Lemma 1.1 in Gértner (1977).

LEMMA V.2. Given t € 2 (c) and « real, define the closed half space
amn H.(t, a) = {z € R%(t, 2) — c(t) = a}.

Let K be a closed subspace of R. If 0 < I(K) < », then for any ¢ € (0, I(K)) there
exists finitely many points t, - - -, t, in Z(c) such that

(18) K C Ui Hi(ti, I(K) — e).

If I(K) = o, then for any R > 0 there exist finitely many points t,, - - -, t, in Z(c)
such that

(19) K C U, H.(t;, R).

We prove the lemma in a moment. If I(K) = 0, then (3) is clear. Say 0 < I(K)
< . By (18) with a = I(K) — ¢ > 0, Chebyshev’s inequality implies

P,,{% € K}» =3 Pn{% € H.(t;, a)}’

n n

(20) = 2;=1 Pn{<ti, Yn) = an(c(t) + a)}

< Y1 explan(ea(ty) — c(t:) — o).
This yields (3) since c,(t;) = c(t;) < c0. If I(K) = oo, then (19) yields (3).

ProoOF OF LEMMA V.2. We prove only the case 0 < I(K) < oo; the case I(K)
= o is handled similarly. Let A = {z € R%:1(2) < I(K) — ¢}. By Theorem V.1 (f),
this set is compact. Let S be a closed ball containing A such that the boundary
of S (bd S) and A are disjoint. Define U = (K N S) U bd S. We shall find finitely
many points t;, - - -, t. in Z(c) such that

(21) U C UL, Hi(ti, I(K) — e).
Afterwards we prove that (21) implies (18).
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We write H.(t) for the closed half space H.(t, I(K) — ¢) and H_(t) for the
opposite closed half space. By the definition of I(z), A = Me» () H-(t). Hence A°
= U int H,(t). Since U € A¢ for each z € U there exists an open
neighborhood N(z) of z and a point t € Z(c) such that N(z) € H,(t). The
compactness of U implies (21).

We now prove (18). Since K N S¢ C S¢, it suffices to prove that any x € S¢
belongs to Uj; H.;, where H,; = H,(t;). Say there exists an x € S° for which
this fails. Then x € N}, int H_,. Pick any § € A, which is a subset of N}, H_;.
Since NI, int H_; is convex, the interval

(22) @, x] =f{z:2=M+ 1 —-Nx,0=A<1}

belongs to N_; int H_;. By choice of S, (6, x] intersects bd S at some point b.
Thus b € N, int H_;, which contradicts (21).0

We now prove the lower bound (4), first under the assumption that the relative
interior of Z(I) (ri Z(I)) is nonempty. The case where Z(I) is a single point
will be considered later. As in the proof of Lemma 1.2 in Géartner (1977), we need
the following key fact. )

LEMMA V.3. We assume that Hypothesis I1.1 holds and that c is differentiable
on all of int D (c) and is steep. Let & be the image of int D (c) under grad c.
Thenri (I)C & C D).

ProoOF. Rockafellar (1970; Corollary 26.4.1).0

If G is an open set, then I(G) = I(G N 2 (1)), where we define I(¢) = oo,
By the continuity property in Rockafellar (1970; Corollary 7.5.1), I(G) =
I(GNri 2(I)). Hence it suffices to prove

(23) lim inf,_.(1/a,)log Q.{G} = —I(GNri 2 1)),
where we assume that G N ri £ () is non-empty. For t € D (c,), let
exp(an(¢, x)) dQ,(x)

exp(a,c,(t))

Given z € G Nri I (I), we pick ¢ > 0 such that B(z, ¢), the open ball of radius ¢
centered at z, is contained in G. By Lemma V.3, there exists a point ¢t = t(z) €
int 9(c) such that grad c¢(t) = z. For all sufficiently large n, c¢,(t) < . With this
t, (t, 2) — c(t) = I(z) (Theorem V.1(c)). For x € B(z, ¢), —(t, x) = —(t,z) —¢| t|.
Thus for all sufficiently large n

(24) d@n(x) =

(25)  Qn{G} = @n{B(z, ¢)} = explanca(t)) L - exp(—an(t, x)) dQn(x),

lim inf,.(1/a.)log Q.{G}

(26)
= c(t) — (t, 2) — | t| + lim inf, ...(1/a,)log Q.. (B(z, ¢)}.
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We prove that

@ lim,, . @n, ¢{B(2, €)} = 1.
Taking ¢ — 0 in (26), we conclude that

(28) lim inf,_.(1/a.)log Q.{G} = —I(2).

Taking the~supremum overz€GNri () yield~s (23).~
Let a;'Y, have distribution dQ, .. and let 2 = {Y,}. For all s € R? with
| s || sufficiently small

(%5 8) = lim, .. — log f , €xXP(an(s, x)) dQr . (x)
(29) a, R
=c(Z; t(z) + s) — c(Z; t(2)).

Hence ¢( 7 ; -) is differentiable at 0, and (27) follows from (b) = (a) in Theorem
IV.1. (The proof of the latter relies only on the upper bound (3), which has
already been proved. It does not depend on the lower bound (4), which is now
being proved.)

We now consider the case where ri Z(I) is empty and Z(I) is a single point
{2o}. Then I(zo) = 0, and c(t) = (t, 2o) for all t € R? For all ¢, (¢, z0) — c(t) =
I(25). By the same steps used to prove (28), one shows that if G is any open set
containing z, then

(30) lim inf, ,.(1/a.)log Q.{G} = —I(2).
This yields (4) and completes the proof of Theorem I11.2.0

Assume that c is differentiable on only a subset A of int Z(c) and let
(31) F = {z:z = grad c(t) for some t € A}.
Then the lower bound (4) holds for any open set G in &

PrOOF OF THEOREM II.4. We need the analogue of Lemma V.2 for K
a compact subset of Z. Again we prove only the case 0 < I(K) < . The set
A={z€ Z:1(z) = I(K) — ¢} is closed and is disjoint from K. For t € Z(c), let
H.(t) denote the closed half-space H.(t, I(K) — ¢), ¢ € (0, I(K)), defined as in
(17). Since

(32) KC A®=U( int H(t),

for each z € Z there exists an open neighborhood N(z) of z and a point ¢ in
9 (c) such that N(z) € H.(¢t). The compactness of K implies (18). The latter
yields the upper bound (6) exactly as in the finite dimensional case. 0

ProOF OF THEOREM IV.1.
(b) & (c) Theorem V.1(g).
(c) = (a) Given ¢ > 0, let K be the closed set {z € R%:| z — v | = ¢}. By the
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upper bound (3), for all n sufficiently large

(33) P,,{—Y—" € K}» < exp<— % I(K)) .

an

Hence the exponential bound follows once we prove that I(K) > 0. If I(K) = 0,
then there exists a sequence {z,} in K such that I(z,) — 0. By Theorem V.1(f),
we may assume that 2, — 2 for some 2. Since K is closed, 2 is in K. Since [ is
lower semicontinuous (closed) and non-negative, I(2) = 0. We obtain a contra-
diction since K does not contain the point v and by hypothesis I(z) achieves its
minimum at the unique point z = +.

(a) = (b) Let s be an arbitrary unit vector in R?. Define D7 c(0) and D;c(0)
to be the right-hand and left-hand derivatives at 0 of the function u € R — c(us).
By Rockafellar (1970; Theorem 25.2) it suffices to prove

(34) D7 ¢(0) = Dyc(0) = (s, v).

Let J, = {i > 0:2us € int D(c) for all |u| < p}. J; is non-empty since
0€int 9(c). Forany g €J, ,0< | u| < g, and all sufficiently large n, c,(us) is
finite, and

(35) cnlus)

1
<S’ 7) = Aot lOg En{exp[anl‘(s’ Vn)]}»

n

where V, = a,'Y, — v. Given ¢ > 0, we divide the latter expectation into two
parts: the first over the set where | V,,| < ¢ and the second over the set where
| Vo || = e. The first is bounded above by exp(a, | 1 | ¢). For the second, we have

) E.fexplanpu(s, Vo), | Vol = ¢}
< exp(—anu(s, v))[Enfexp[2u(s, Yo)BIV2[Puf]l V|l = £}]2

By part (a) of Theorem IV.1, V,, —.y, 0. Putting these facts together, we conclude
that there exists £ > 0 and for all 0 < ¢ < ¢ there exists M(e) > 0 such that for all
0 < u < & and all sufficiently large n

(36

cnlps)

(s, v)
|

(37
loglexp(an |nle) + exp[—an#(& vy +

=

an(ca(2ps) — M(e))]l_

(7} 2

For —i < u < 0, the sense of the inequality is reversed.
Below we prove that for all 0 < ¢ < ¢ there exist 4 = j(e) € J; and 7t = rile, p)
such that forall |u| =gandalln=n

cn(2us) — M(e) .

(38) lule = —pls, v) + 2
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If we accept this, then for 0 <e<¢, 0 <u < g and n = n we have

cn(us) log 2

(39) —(sv)=et
anp

whilefor0<e<g¢ —p<u<0,andn=n

(40) cn(:s) _ log 2

s, = —¢ + .
(s, v) A

Taking n — o, then u — 0, then ¢ — 0, we conclude
(41) (s, v) = D;c(0) = D7(0) = (s, v)-

This is (33).
For 0 < ¢ < ¢ there exists u = u(¢) € J,, and for all | u| < g we have

(42) |nle=—uls, v) + c2us)/2 — M(e)/4.

This holds since ¢ is continuous at 0 and M(e) > 0. Now (38) follows since
{cn(2us)} converges uniformly to c(2us) on the interval |u| < i [Rockafellar
(1970; Theorem 10.8)]. 0
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