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THE SUPREMUM OF A PARTICULAR GAUSSIAN FIELD

BY ROBERT J. ADLER'
Technion—Israel Institute of Technology

We find exact upper and lower bounds for the distribution of the supre-
mum of a homogeneous Gaussian random field with pyramidal covariance
function. The upper bound comes from a reflection principle type argument.
The lower bound is found by exploiting a relationship between this random
field and a particular Banach space valued process in one-dimensional time.

1. Introduction. A real valued, two parameter Gaussian random field X(t),
t = (t1, ), is called a 7-pyramidal covariance (7-PC) field if it has zero mean and
covariance function given by

R.(s, t) = E{X(s)X(t)}
=1 =lti=sil/I )" X A= |ty = s2|/| 2 )"

Such fields are homogeneous, and represent a generalization of one of the few
stationary one-parameter Gaussian processes for which the exact distribution of
the maximum is known. (Slepian, 1961; Shepp, 1966, 1971.) Our aim will be to
obtain information on the distribution of the maximum of a 7-PC field X(t) as
its parameter varies over a rectangle. Our results, unlike most others currently
in the literature and dealing with the maxima of Gaussian fields, will provide
exact upper and lower bounds on this distribution which are valid throughout
the full range of the variable and not just at asymptotically high levels (e.g.
Hasofer, 1978; Bickel and Rosenblatt, 1973; Piterbarg, 1972).

An earlier result, similar in spirit to the upper bound (2.4) we shall obtain
below, is due to Cabaiia and Wschebor (1981), who showed that for a 7-PC field
X(t)

(1.2) P{M(X, T) > u} < 16@(~u(r175/(r1 + T1) (72 + T2))"?),

where M(X, T) = max{X(t):0 < t; < T}} and & is the standard normal distribution
function. This result suffers from two drawbacks. Firstly, because of the large
constant on the right hand side of (1.2), the upper bound is greater than one
throughout much of the range of u (cf. Table 1, column 4). Secondly, it is easy
to check that for large u, when the bound is less than one, it is the wrong order
of magnitude. For example, when 7; = T; = 1, the bound is O(exp{—u?/8}),
whereas a general result on Gaussian processes (Landau and Shepp, 1971;
Fernique, 1975; Marcus and Shepp, 1975) indicates that bounds of the form
O(exp{—u?/v}) exist for every v > 2.

(1.1)
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The upper bound that we shall present in Section 2 to replace (1.2) suffers
from the same defects as that of Cabana and Wschebor, so that the improvement
that it offers is in degree rather than in kind. The improvement in degree is,
however, substantial.

In Section 4 we shall develop a lower bound for the excursion probability (1.2),
which we believe to be close to the true probability. The technique we shall use
there relies on a relationship between random fields and Banach space valued
processes noted by Kuelbs (1973), and exploited by Goodman (1976) to obtain
lower bounds on the excursion probabilities of the tied and untied Brownian
sheets.

We note the obvious fact that the bounds obtained below are of interest not
merely because of the information they provide about triangular covariance
processes, but because by virtue of Slepian’s inequality (Slepian, 1962), they lead
to bounds for excursion probabilities of random fields whose covariance functions
are either dominated by, or dominate, (1.1).

In the one-dimensional case, the distribution of M(X, T') for X a standard PC
process has been given by Slepian (1961) and Shepp (1966), for T' < 1, and Shepp
(1971) for T = 1. The results we shall give in the following sections will depend
upon these known probabilities, and, in particular, on the probability

(1.3) gw) == PIM(X, 1) = u} = 1 — ®*(u) + ¢(w){ud(u) + ¢(w)},

which is immediately derivable from the result of Slepian and Shepp. Here ¢ :=
&’. Note that straightforward analysis of the above shows that for large u

(1.4) gw) ~ (u+ 2/u)¢(u),

a result we shall exploit later.

Finally, we note that since the 7-PC field with + = (1, 1) will occur often, we
shall simply refer to it as a standard PC field. For a review of what is known
(primarily in the asymptotic case) about excursion probabilities of general ho-
mogeneous Gaussian fields, the interested reader is referred to Section 6.9 of
Adler (1981).

2. The upper bound. To obtain an upper bound for the exceedance prob-
ability of a r-pyramidal covariance field X(t), we shall exploit a close relationship
between X and the Brownian sheet W(t); i.e., the zero mean Gaussian random
field with covariance function

E{WE) W)} =(s1At) - (s2A L), s, t:>0.

The Brownian sheet can also be thought of as a function indexed by rectangles,
by defining

W((s, s + t]) = W(s; + t1, 52 + to) — Wi(sy + t1, 55) — Wisy, 82+ t5) + Wisy, s2)

as the increment of W over the rectangle (s, s + t] = (s, s; + t1] X (s2, 52 + t2].
Increments of W over disjoint rectangles are independent, with variances equal
to the areas of the rectangles. The relationship between X and W is simple: on
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the positive quadrant X is a version of the process Y defined by
Y(t) = (rim) AW, t + 7]), b, 8> 0,

as is easily checked by evaluating the covariance function of Y. Thus, writing
t<Tif t € (0, T], we have

(2.1 P{sup<r X(t) = u} = Pfsupir W((t, t + 7]) = u(ri72)"?}.

We shall bound the right hand side of (2.1) via a “reflection principle” type of
argument.

Fix n =1 and let t,, k =1, -- -, 2*" be the point in [0, T] with coordinates
tw=Tik;+1)27" i=1,2, where k =1+ k; + k2" and k&, and &, run from 0 to
2" — 1. For any t € [0, T] write

t*=(T1+ 711, t), t'=(t, To+ 1)
and define

E). := {Supm<k W((tm, tn + 7]) = u (1172)"%} = {sup Y(tn) = u}
Fh = EhEi—l e Ecl

Suppose we are given F,. Then since (0, T, + 7] X (tyo + 72, T + 72] and
(0, t; + 7] are disjoint (draw a picture), it follows that W(((tx1, tre + 72), (tx1 +
71, To + 72)]) is independent of W((t, t. + 7]) and so has probability Y2 of being
positive and thus making W((t, (t. + 7)’]) > u(r,72)"/% Hence

P{F,} < 2P{F}; sups<r W((s, (s + 7)’]) = u(r172)"%}.
Summing over k, letting n — o, and using separability we obtain the bound

29) P{super W((t, t + 7]) = u(r172)"%
' < 2P{supeer W((t, (t + 7)']) = u(rir2)"3).

We need now to apply a reflection argument once more to obtain the final bound.
To do this, we first note that

supecr{ W((t, (¢ + 7))} = supeeel W(((1, 0), £ + 7]}

where =., denotes equivalence in distribution. Defining, with the above conven-
tions, E; as {supm=i W(((tm1, 0), (tn + 7)]) = u(r,72)"?}, following the above
argument again easily yields that the right hand side of (2.2) is bounded by

(2.3) 4P{sup,<r, W(((t:, 0), (61 + 71, T2 + 72)]) = u(ri72)"}.

(Draw another picture). The supremum within this probability is, however, easily
seen to be distributionally equivalent to that of the PC process with covariance
71(Te+ 72)(1 — | t|/71)" on the interval 0 < ¢t < T'. This, in turn, can be expressed
in terms of the standard PC process to give
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THEOREM 2.1. Let X be a 7-PC field on the plane and Z a standard PC process
on the real line. Then if Ty, To >0

Pfsupo<i<r X(t) = u}

|

1/2
=4 mian~{supo<z<rl/f,Z(t) =z u<T2’j 72) ’

|
J
=)

T1+71 I'.

PROOF. All that remains to be proven is that the above bound extends from
the first term in the min to the minimum. But this is a trivial consequence of
the fact that the argument leading to (2.3) could have also been applied with the
roles of t* and t’, and k, and k,, interchanged.

Theorem 2.1 allows us to use one-dimensional results to bound excursion
probabilities for 7-PC fields. In particular, if 7, = T; = 1, (2.4), (1.3) and (1.4)
yield

(2.4)

P{Sup()<5<T2/72Z(t) > u(

(25)  PIM(X, (1, 1)) = u} < 4g(u/v2) ~ O(exp{-u?/4}), u large.

Comparison with the general bound mentioned in the previous section indi-
cates that although the above represents a substantial improvement on the
Cabafia and Wschebor upper bound (cf. Table 1) it is still, asymptotically, of the
wrong order of magnitude. Note, however, that despite this problem, this bound
still yields quite reasonable order of magnitude bounds to the percentiles of
M(X,T).

TABLE 1.
Exceedence probabilities for the pyramidal covariance
field on the unit square

" Lower bounds Upper bounds
(6.1) (5.6) (2.4) (1.2)
0 9917 .9990 3.637  8.000
0.4 9610 .9936 3.358  6.732
0.8 8743 9714 2971 5513
1.2 7093 9084 2495  4.388
1.6 4911 7813 1.971 3.390
2.0 2833 .5942 1.456  2.538
2.4 1354  .3880 9993 1.841
2.8 .0538 .2136 6356  1.292
3.2 .0179  .0983 3737 .8768
3.6 .0050 .0377 .2027 5749
4.0 0012  .0120 .1014 .3640
4.4 .0002 .0032 .0467 2224

4.8 .0001  .0007 .0198 1312
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3. A Banach space valued version of PC fields. We shall now introduce
new, Banach space valued, processes that are essentially equivalent to PC random
fields, and which we shall use, in the following section, to derive lower bounds
for excursion probabilities. In order to introduce these processes we shall use the
standard formalism detailed, for example, in Carmona (1977).

Thus, let B = C[0, 1] be the space of continuous functions on [0, 1], equipped
with the supremum norm || - ||. Let B* be its dual, 2 its Borel ¢-field, and u the
measure induced on % by the zero mean Gaussian process with covariance
function (1 — |t — s|)*. It is well known that B* can be embedded in
L*(B, %, u) by a one-one, continuous and weakly continuous mapping. Let H
denote the closure of the range of this embedding. Then H is a Hilbert space
with inner product (-, -)u. If 8, is the delta function in B* defined by (4., f) =
f(x), f € B, then it is a simple calculation to check that

(3.1) (82, 0y)u = f (65, F)(8y, FHu(df) =1 — |x = yI)7,

a result we shall use later. .
We would now like to define and study the B-valued, zero mean, Gaussian
process {X;, t € R} satisfying, for each s, ¢t € R, and each f, g € B*,

(3.2) E{(f, X)(& X} =Q —|t—s])" - (f, &)n.

This process does not seem to have been studied before, so that we must prove

THEOREM 3.1. There exists a continuous sample path, zero mean, Gaussian
C[0, 1]-valued process on R satisfying (3.2).

Note that such a process is necessarily stationary, and that X, and X, are
independent whenever |s — t| > 1. The importance of this process, for our
purposes, lies in

THEOREM 3.2. A separable, continuous version of the standard PC random
field is given by the C[0, 1]-valued Gaussian process satisfying (3.2) under the
correspondence X(s, t) = X(t).

PrROOF OF THEOREM 3.1. Comparing this result with Carmona’s (1977) proof
of the existence of the generalised Ornstein-Uhlenbeck process, it is easy to see
that a Gaussian process satisfying (3.2) exists, and that its almost sure continuity
will follow from the existence of a continuous and increasing p on R, with p(0)
=0 and

f p(e'“z) du < ©
for which

(3.3) Ef| X: — X, 1} = p(t — s).
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To show that such a p exists, fix ¢t and s and define the real valued process
Y(r) = Xi(r) — X,(r), re](o,1].

Clearly | X; — X, | = sup{Y(r), r € [0, 1]}. Furthermore, it follows from (3.1) and
(3.2) that

E{Y(u)Y(U)} = Ef{[(8u, Xi) — (bu, Xs)] - [(80, Xi) — (b0, XS)]}
=2|t—s|(1—Ju-v]),
so that Y is a version of V2|t — s|Z, where Z is a standard PC process on

[0, 1]. From (1.3) and (1.4) it is obvious that | Z || has all moments, so if we write
M, for 2?E{|| Z | “} then

E{l X, — X, |V =E{| YII}M. |t —5|* a>0.
Setting o = 2 now yields (3.3) with p(u) = M| u| and so the proof is complete.

PRrOOF OF THEOREM 3.2. Following the proof of Theorem 2 of Kuelbs (1973),
which establishes a similar result relating the Brownian sheet to C[0, 1]-valued
Brownian motion, we see that it suffices to show that for every pair of points
(51, t1), (s2, t2) we have

E{X, (t)X,,(t)} = E{X(s1, t1)X(s2, t2)}.

However, in view of (3.1), (3.2), and (1.1), this is an easy calculation, which we
leave to the reader.

4. The lower bound. In this section we shall use X to denote both a
standard PC field and the B = C[0, 1]-valued process of Theorem 3.1. Exactly
which interpretation is intended will always be clear from the context. If u € R
is fixed, let us write % for the set {x € B: sup.go,1x(t) < u}. For Borel sets E, F
of B we can define the transition probability

P(E,F):=P{X,EE, X, € F} = P{X, € E}P{X, E F}.

Since each x € B is a.s. continuous, and the sup norm is measurable, % is a
measurable event and so we can also define the transition probability for X
absorbed by % as

QE,F:%)=P{Xo€EE,X,EF, X, € % Vte€ [0, 1]}.
Clearly Q(E, F: %) < Q(E, F:B) = P(E, F), and so the transition density

u _ QUdx, dy: %)
q (x‘, y) = ~Plx, dy)

is well defined as a Radon-Nikodym derivative. Furthermore, ¢“(x, y) < 1 a.s.
relative to P(dx, dy).
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Now let us note that the probability we are interested in is simply

@1 1- f ) f /q“(x, y) du(x) du(y) = 1 — Pfsup,(sup,X,(t)) < u}

= 1 — P{sup,sup,X(s, t) < ul,

since X,(t) is a version of X(s, t) by Theorem 3.1. This last probability is precisely
what we are seeking, and we shall bound it by obtaining bounds for the transition
densities g“(x, y). This is an approach originally developed by Goodman (1976)
for studying the corresponding problem for the Brownian sheet. We adopt an
approach similar to Cabafia and Wschebor’s (1982) simpler formulation of
Goodman’s technique.

Let us first note that for each r € [0, 1] the three processes

(4.2) Y'(s) .= X(s, r) —sX(1,r) — (1 -9)X0O,r), s€]0,1],

X(@, t), t € [0, 1] and X(0, t), t € [0, 1] are all independent, as is easily verified
via a direct computation of covariance. Hence for fixed r € [0, 1] the conditional
distribution of

X, r)=Y(s)+sX1,r)+ (1 —5s) - X0, 1)

given X(0, t) and X(1, t), for all t € [0, 1], is the same as the one given X(0, r)
and X(1, r) only. If we now convert these statements to statements on the B-
valued process, and let x, y € %, then we have

P{X,(r) <uforevery r € [0,1]| Xo = x, X1 = ¥}
(4.3)
= P{X,(r) < u for every r € [0, 1] | X,(r) = x(r), Xi(r) = y(r)}.

But this last probability is simple to evaluate, since it is only the transition
density of a real-valued PC process on [0, 1] conditioned at its start and end
points. To evaluate this, let Z(t), t € [0, 1] be a standard PC process, and W(t),
t € [0, 1], a Brownian motion, with covariance s A ¢ and arbitrary initial value.
Then a check of covariances shows that Z(t), conditioned on {Z(0) = x, Z(1)
= y} is a version of V2W(t), conditioned on the event {W(0) = x/v2, W(1) =
y/~2}. Thus

P{Z(t) <uVtE[0,1]| Z(0) = x, Z(1) = y}
(4.4) = P{W(t) < u/v2 Vt € [0, 1]| W(0) = x/v2, W(1) = y/2}
=1 — exp{—(x — u)(y — uw)},

where the last line follows from the known transition density for W (e.g. Feller,
1971, page 341).

Now let us return to the transition density q“. Since X; € % implies X(¢t, r)
< u for each r, it immediately follows from the definition of ¢“, (4.3) and (4.4),
that for x, y € %,

q“(x, y) =1 —exp{—[u—x(r)] - [u—- ¥}, Vrelo,1].



SUPREMUM OF A GAUSSIAN FIELD 443

But this implies the seemingly stronger result
(4.5) q“(x, ¥) <1 — exp{—[u — sup,x(r)] - [u — sup,y(r)]}.

However x and y represent values of X, and X;, which are independent, as must
therefore be the distributions of their suprema. These distributions are, of course,
already known, with the tail probabilities given by g(u), as at (1.3).

Thus, combining (4.1) and (4.5), we finally obtain

THEOREM 4.1. Let X(s, t) be a standard PC field on [0, 1)%. Then

(4.6) P{sup.pX(s, t) =z u} =1 — f_ J: (1 = e f(x)f(y) dx dy

where

f(x) = dg(x)/dx = ¢p(x){p(x) + x¢(x) + x>P(x)}.

REMARK. The fact that in the above result we have considered the distribu-
tion of the supremum of X(s, t) only over the unit square is, unfortunately, of
crucial importance to the arguments used in obtaining the result. If a smaller
rectangle were to be considered, the same argument would carry through until
(4.5). However the two suprema appearing there would no longer be independent,
and since their joint distribution is unknown (the marginal distributions are, of
course, the same as before) the simplification of (4.5) to (4.6) is not possible.

If a rectangle larger than [0, 1]? is to be considered, the arguments relating
the univariate processes X(-, t) to a standard Brownian motion break down, just
as they do for the one-dimensional problem of Shepp (1966) and Slepian (1961),
and no result is easily forthcoming.

5. Numerical results. Table 1 contains an evaluation of the bounds given
in this paper for P{supy 2 X(s, t) = u}, when X is a standard PC field. Column 2
gives the lower bound of Theorem 4.1, Column 3 the upper bound of Theorem
2.1, and Column 4 the upper bound (1.2) of Cabana and Wschebor. Of course,
the upper bounds should in fact be replaced by unity when they exceed this value,
but we thought it interesting to merely include them as they arise from the
appropriate formulae. In Column 1 we have included a simple lower bound
obtained from

5.1) Pfsup,2X(s, t) = u} = P{(supo,yX(0, t) = u) U (supp,X(1, t) = w)}
' = 2g(u) — g*(u),

the last line following from (1.3) and the independence of X(0, t) and X(1, t).
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