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CONVERGENCE AND EXISTENCE OF
RANDOM SET DISTRIBUTIONS

By ToMMY NORBERG

University of Goteborg

We study the relation between distributions of random closed sets and
their hitting functions T, defined by T'(B) = P{¥ N B # &} for Borel sets B.
In particular, a sequence of random sets converges in distribution iff the
corresponding sequence of hitting functions converges on some sufficiently
large class of bounded Borel sets. This class may be chosen to be countable.

1. Introduction. Let S be a locally compact second countable Hausdorff
space and & its Borel g-algebra. By a random (closed) set in S we mean a
mapping ¥ of some probability space (2, %, P) into the class & of closed subsets
of S, satisfying

(PNB#D)={o,P(0)NB#D}E R BE ¥

Matheron (1975) gives the necessary background on random set theory, cf. also
Kendall (1974) and Ripley (1976). The aim of this paper is to examine the
relation between the distribution P! and the hitting function 7' defined by

T(B)=P{¢NB#Q)}, BE ¥

Our main result is Theorem 2.1 which gives necessary and sufficient conditions
for convergence in distribution w.r.t. the topology defined on page 3 in Matheron
(1975). Loosely speaking, a sequence of random sets converges in distribution to
some random set iff the corresponding sequence of hitting functions converges
on some suitable class of bounded (i.e. relatively compact) Borel sets. This class
of sets may even be chosen countable.

We give two existence criteria. The first one (Theorem 2.2, essentially due to
Choquet, 1953) characterizes hitting functions, while the second one (Theorem
2.3) is in terms of a {0, 1}-valued random process.

Theorem 2.4 extends a characterization of the infinitely divisible distributions
due to Matheron (1975). Finally, Theorem 2.5 gives necessary and sufficient
conditions for convergence in distribution of the union of many uniformly small
independent random sets.

We conclude this introduction with some remarks on terminology and nota-
tion. Let % and & denote respectively the classes of compact and open sets
andput 4 = {B € ¥ B~ € % }. Say that a class &/ C 4 is separating if there
exists, forall KE % and G € ¥ with K C G, some A € o/ suchthat KC A C
G. In this case we may choose A € o7 such that K C A° C A~ C G. Note that
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every separating class includes a countable separating subclass. Let o/ be
separating and a: &/ — [0, ] increasing, i.e. «(A) < a(B) whenever A C B. We
define the outer limit o~ and the inner limit o° of a by

a (K) = inf{a(A),A € o/, KC A%}, K€ %,
a’G) = sup{a(A),AE€E o4 A" CG}, GE ¥

Note that «™ is defined on % while o is defined on & If 8 is the restriction of
a to some separating subclass then clearly 3~ = «~ and 8° = a°. Furthermore,
a " =a""=a"and a® = a7 = o’ A set B € & is said to be a continuity set of
a if a®(B®%) = o~ (B~). Let 4, denote the class of such sets. Note that B € 4,
iff «®%(B%) = o~ (B~) (since a®(B°) < a~(B~), B € %) and that %, need not be
included in o

If B is another increasing function defined on some separating class then
B, N B is separating. This may easily be seen by reduction to the corresponding
result for increasing functions defined on [0, 1].

We shall write N = {1, 2, ---}.

2. Our results. The families {F, FN K=0}, K€ ¥ and {F, FN G # J},
G € ¥ constitute an open subbase for a topology in # With this topology, &
becomes a compact second countable Hausdorff space (see Matheron, 1975, page
3). Let 4(% ) denote the Borel-c-algebra in % and write Z for the s-algebra
in & generated by the family {F, FNB# J},B€ %.

Since % is second countable, #(% ) C Z. Conversely, every event in 2 is
known to be universally measurable (see Matheron, 1975, page 30 or Rockafellar,
1976, page 164f).

Note that the hitting function T of a random set ¢ is increasing. Moreover, T
- =T on % and T = T° on ¥ (Matheron, 1975, page 28). Hence B € % iff
T(B°) = T(B™), ie. iff Pl N B =@, ¢ N B~ # @} = 0. Since A° U B° C
(AUB) and (AU B)~ C A~ U B~, %ris closed under finite unions.

Write =, for equality in distribution, i.e. ¥ =4 5 iff P~ = Pyp~! on Z, and
— 4 for convergence in distribution (see Billingsley, 1968).

Our first result gives necessary and sufficient conditions for convergence in
distribution.

THEOREM 2.1. Let ¥,, Y5, --- be random sets in S and Ty, Te, --- the
corresponding hitting functions. If ¢, —4 some random set ¥ with hitting function
T then

(2.1) lim,T,(B) = T(B), B€ %r.

Conversely, if there exists a separating class &7 C %4 and an increasing set function
a: 7 — [0, 1] such that

(2.2) a®(A%) = liminf,T,(A) < limsup,To(A) < a (A7), AE

then ¥, —4 some random set ¥ with hitting function T satisfying T = a~ on %
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and T = o on <, If further &/ C B, then T = a on . Finally, if &/ C % (or
o C &) then of C B, may be replaced by o = a” (or a = a°) on o

Note in particular that ¢, —4 ¢ follows from the condition T,(A) — T'(A) for
A in an arbitrary separating class. Thus no continuity condition is needed in this
direction. :

ProOOF. The necessity of (2.1) follows from Theorem 5.1 in Billingsley (1968),
since the mapping

1 if FNB#J

F—1p(B) = {0 else

is, for fixed B € %, continuous at Fif FN B’ # @ or FN B~ =@.

Suppose conversely that (2.2) holds for some separating class o/ C % and a:
o — [0, 1]. Fix K € % and choose {A4,,} C o such that K C A}, C A, \ K.
Then

limsup, T, (K) < limsup, T,(A») < a (An) — o (K).
A similar argument yields
liminf, T, (K) = liminf, T,(K°) = «°(K°)
S0
(2.3) lim,T,(K) = a™(K), K€ % N %..

Since # is compact, the space of distributions on ¥ is weakly compact. Hence
if M is a subsequence of {¥,}, there exists a further subsequence M, and a
random set ¥ with hitting function T such that ¢, —; ¢ through M,. It follows
from (2.3) and the direct part of the theorem that T'= o~ on the separating class
¥ N B, N Bp.But T=T and a=~ = a~. Hence T = a~ on % If ¥, with
hitting function T} is a limit point of {¥,} the same argument yields 7o = a” on
% . Hence T = T, on %, and it follows that P9 = P¥;' on B(F ) (see
Matheron, 1975, page 28). As noted above, each event in 2 is universally
measurable so ¢ =, ¥o. Now it follows by Theorem 2.3 in Billingsley (1968) that
©, —q4 Y. Moreover, T = o® on & Hence %1 = %.. The proofs of the last
assertions are elementary. ]

An interesting example of a random set is the support of a simple point
process. Combining our theorem with Theorem 4.7 of Kallenberg (1975) leads to
the conclusion that a sequence {£,} of point processes —4 a simple point process
£ iff the corresponding sequence of supports —4 the support of £ and moreover

limt_,wlimsupr,PtgnB >t}=0, BE %,
limsup,P{¢, I>1} = P{tI>1}, 1€ 7

where 7 C 4 is such that the class of finite unions of _7 -sets is separating.
For increasing real-valued functions « defined on a separating class o/ C %,
which is assumed to be closed under finite unions, we define recursively the
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successive differences of o w.r.t. A}, A,, --- at A by the formulas

(2.4) Aga(A) = a(AU Ay) —a(A), A A E€E 7

(25) A4, A4, - Aa,a(A) = Ay, -+ Aga(A U Anyr) — Ay, -+ Ay a(A),
n€N,A Ay, -+, Apy1 €E A

Recall that « is alternating (of infinite order) if 4

(2.6) (=1)""'Ay4, --- As,a(A) =20, nEN, A Ay -+, A E &

cf. Choquet (1953) page 170.
The following theorem is a slight extension of a theorem of Choquet (1953),
cf. also Kendall (1974), Matheron (1975) and Ripley (1976).

n+1

THEOREM 2.2. If T: % — [0, 1] is the hitting function of some random set
then T is alternating and T'(D) = 0. Conversely, let of C B be a separating class,
closed under formation of finite unions, and suppose that a: o/ — [0, 1] is
alternating with a(J) = 0. Then there exists a random set ¥ with hitting function
T = o on % If further &/ C B, then T = a on o Finally, if & C % (or &/
C &) then &/ C B, may be replaced by a = a~ (or a = a®) on oF

PrROOF. The direct part is immediate. The case &/ = % of the converse
part is proved in Matheron (1975) on page 31ff. The general case follows at once
from the observation that «~ is alternating if « is so. 0

This result follows also from Theorem 2.1. To see this, construct a sequence
of random sets with finitely many points whose hitting functions converge to «
on some suitable separating class. Proceed as in the proof of Theorem 5.6 in

" Kallenberg (1975).
We define the hitting process 1, of the random set ¥ in S by

1, if PAB#QD
1¢(B)={0’ e NB#Y pe g

Clearly 1¢ is increasing with 1,(&) = 0. Moreover, if I is an arbitrary index set
then

1¢(U;B;) = sup;1¢(B;), B;,U,B,€ ¥4 for i€l
Let o C & be a class of sets and let £ = (§(A), A € &) and n = (3(B),
B € %) be random processes. If £(A) = n(A) a.s. whenever A € o/ then we say
that 7 is an extension of £. Our next result is similar to Theorem 9.2 of Vervaat
(1982). .

THEOREM 2.3. Let o C % be separating and closed under finite unions and
£ ="(¢(A), A € ) an increasing {0, 1}-valued random process satisfying £(J) =
0 and

@) £(A U B) = max(£(A), £(B)) as., A, BE
Then there exists a random set ¥ such that with probability one 1,(K) = £ (K),
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K€ % and 1o(G) = £%(G), G € < If further

(ii) A% =¢t(A7) as, AE

then 1e is an extension of £. Finally, if &/C % then (ii) may be replaced by
(ii’) (EA)=£((A) as, A€ o

and if o/ C & then (i) and (ii) may be replaced by _

i) £E(U;A;) = sup;£(A;) as., Ay Ay -, UA E A

PROOF. A simple calculation yields £°(G, U G;) = max(£°(G,), £°%(Gy)) as.
whenever G, G; € ¥ Let ¥ C ¥ be countable, separating and closed under
finite unions. Then, a.s.,

£°(G1 U G2) = max(£%(Gy), £%G2), Gy, G2 € %.
Discard the exceptional null-set. By compactness we may now prove that
£ (K) = supsexé({s})), K€ %

Define for each w € Q a closed set ¥ = {s € S, £ ({s}) = 1}. Clearly £ (K) = 1 iff
Y NK#D,ie. iff 1,(K) = 1. Hence 1o = £ on %% This implies that 1, = £° on
YFix A€ AIf %A% = £7(A7), then 1,(A°) = 1,(A7) and therefore £(A) =
14(A). Hence 1, extends £ if (ii) holds. The next assertion is obvious. To prove
the last assertion, note first that (i) is obvious if & C ¥ and (i’) is true.
Moreover, it follows that £(A) = £°(A°) a.s. whenever A € o/ 0

Recall that a random set ¥ with hitting function T is infinitely divisible, if for
each n € N there exists some independent and identically distributed random
sets ¢,, ..., @, with ¢ =, UL, ¢, cf. Matheron (1975) page 54. This holds iff
the function 1—(1—T)Y" is a hitting function whenever n € N, and by Theorem
2.2 this is true iff 1—(1—T)'" is alternating.

Before characterizing the infinitely divisible distributions, we must extend the
definition of an alternating function to cover the case where the function may
take the value + «. Let o/ C % be separating and closed under finite unions
and a: o7 — [0, ] increasing and subadditive, i.e. a(A U B) < a(A) + a(B), A,
B € oZ Thus a(A U B) is finite iff both «(A) and «(B) are so. In the present
case, the successive differences of « are only defined when «(A), a(A;), a(As),
... < oo, and we shall still say that « is alternating if (2.6) hLolds.

Our next result is a slight extension of a theorem by Matheron (1975).

THEOREM 2.4. If the random set ¥ with hitting function T is infinitely divisible
then y = —log(1 — T) is alternating with (&) = 0. Conversely, let &7 C % be a
separating class, closed under finite unions and suppose that y: o7 — [0, ©] is
alternating with Y(3) = 0. Then there exists an infinitely divisible random set ¢
with hitting function T = 1 — exp(— y~) on #. If further &/ C B, then T =1 —
exp(—y) on < Finally, if &/ C % (or &/ C &) then &/ C %, may be replaced

byy =y~ (ory =y°) on o/
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Note in particular that a random set ¢ in S with hitting function 7 is infinitely
divisible iff ¢ = —log(1 — T') is alternating.

ProOF. If ¢ is infinitely divisible then ¢ is alternating, since y =
lim,n(1 —(1 — T)""). The converse part is proved for the case Y(A) < oo,
A € o = % in Matheron (1975) on page 56f. This proof may be extended to
cover the case where Y may take the value +o. Note that it is necessary to
assume Y to be subadditive. The truth for general o7 follows from the fact that
Y~ is alternating if ¥ is so. [0

Let {#,;, n € N, j € J,} be a family of random sets in S and {T,;} the
corresponding family of hitting functions. Say that {¥,;} is a null-array if for
each n € N the random sets {¥,;, j € J,} are independent and, moreover,
sup, T»;j(K) — 0 for all K € #. Note that J,, may be infinite, provided that U, ®,,;
is a random set.

THEOREM 2.5. Let {#,;} be a null-array of random sets and {T;} the corre-
sponding hitting functions. Put ¢, = U;¥,; and let T, be the hitting function of
. If Y, —4 some random set P with hitting function T then ¥ is infinitely
divisible and

2.7) lim, 3; T,;(B) = —log(1 — T(B)), B € %r.

Conversely, if there exists a separating class &/ C % and an increasing function
¥: &/ — [0, ] such that

(2.8) Y%A°) =< liminf, 3; T,;(A) < limsup, ¥, Thj(A) = ¢y (A7), AE &/

then ¢, —4 some infinitely divisible random set ¥ with hitting function T =
- 1 —exp(—y7) on % If further o7 C By then T =1 — exp(— ) on </ Finally,
if o CH# (or &/ C &) then o/ C By may be replaced by a = o~ (or a = a°)
on .

Note in particular that ¢, = U;®,; —, ¢ follows from the condition }; T,,;(A)
— —log(l — T'(A)) for A in an arbitrary separating class. Note also that the
convergence in (2.7) and (2.8) is in [0, »].

Our proof depends on the following lemma.

LEMMA 2.6. Let BE€ % and v € [0, ®]. Then ¥,; T,;(B) — 7 iff T.(B) = 1
—exp(— 7).

ProoOF. Let x € [0, d] for some d € (0, 1), and put D = 1/(1 — d). Then
(2.9) x < —log(l — x) < Dx

and-

D
(2.10) 0=<—x—log(l —x)=< 5 x2
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Since sup; T',,;(B) — 0, we may assume that T',;(B) < d. By (2.9),
Y Thj(B) < —log(l1 — Tw(B)) =D %; T,;(B),
and from (2.10) we get
0 = -Y; Ts(B) — log(1 — Tyx(B))

D D
= E 2;’ Tnj(B)2 = E ZJ' T,U(B) supjT,,j(B).
Now the stated equivalence follows. 00

PROOF OF THEOREM 2.5. If ¢, —, ¢, then (2.7) follows immediately from
Theorem 2.1 and Lemma 2.6. Morever, —log(1 — T') must be alternating, since
Y.; T.jis so. Hence ¥ is infinitely divisible.

Suppose conversely that (2.8) is true for some separating class &/ C %4 and
function ¢: o7 — [0, «]. It follows, as in the proof of (2.3), that ¥; T,;(K) —
Vv (K), KE % N A,. Now all assertions follow from Lemma 2.6 and Theorem
2.1.0
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