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TWO OPERATIONAL CHARACTERIZATIONS
OF COOPTIONAL TIMES"?

By MARTIN JACOBSEN
University of Copenhagen

Consider a random time 7 determined by the evolution of a Markov chain
X in discrete time and with discrete state space. Assuming that the pre-r and
post-7 processes are conditionally independent given X,_;and 0 <7 <, it is
shown that: (i) the pre-r process reversed is Markov and in natural duality to
X if and only if 7 is almost surely equal to a modified cooptional time; (ii) the
pre-7 process itself is Markov and an h-transform of X if and only if 7 is
‘almost surely equal to a cooptional time with, in general, the possible starts
for the pre-7 process restricted. Also, a result is presented characterizing those
7 for which the reversed pre-r process is Markov in natural duality to X,
without the assumption of conditional independence.

Throughout this paper we shall maintain the same setup and notation as in
Jacobsen and Pitman [2], hereafter referred to as BDC. Thus a Markov process
with infinite lifetime is viewed as a Markov probability on the sequence space
Q = JV, J denoting a countable state space and N the nonnegative integers,
while a process with finite lifetime is a Markov probability on the space Q4 of
sequences in J U {A} with the property that once they reach the coffin state A,
they remain there forever. We shall write X = (X,, n € N) for the coordinate
process on Q and ¥, for the o-algebra determined by (X, k < n), & for the o-
algebra generated by all X,.

For 7 a random time, let K, = (Xo, -+, X,-1, 4, 4, ---) and 0, = (X,, X,41,
- - -) denote the pre-r and post-7 processes respectively.

Let P be a Markov probability on Q. In BDC characterizations were given of
the class of regular birth times and the class of regular death times for P. Here 7
is a regular birth time (regular death time) for P if 6.(K,) is again Markov and
0, and K, are conditionally independent given X, 7 <  (X,-;, 0 < 7 < o).

From the class of regular birth times one subclass is of particular interest; the
regular birth times with the property that 6, is Markov with the same transition
function p as the given Markov chain P. It is well known and follows easily from
the results in Section 3 of BDC, that = belongs to this subclass if and only if it is
P-a.s. equal to an optional time. (See also the introduction of [1]).

Thus in the terminology of Jacobsen [1], the properties of being regular birth
and preserving the original transition function, amount to an operational char-
acterization of optional (or stopping) times.
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The main purpose of this paper is to present two operational characterizations
of cooptional times, Theorems 2 and 3 below.

The first characterization is formulated by demanding that K, reversed from
7 have a transition function in natural duality to p. For the characterization to
work it is necessary to assume that K, and 6, be independent given X,_;, 0 <7 <
o, which is the conditional independence property required of regular death
times. As an intermediate step towards Theorem 2, Theorem 1 describes what
happens, when this conditional independence assumption is dropped.

Theorem 2 emerges as the natural analogue of the characterization of optional
times mentioned above, see the motivation below following the definition of
cooptional times. However, it is also possible to obtain a characterization, working
with K in the forward direction of time. This second characterization is presented
in Theorem 3.

The paper is concluded with Theorem 4, an analogue for birth times of
Theorem 1.

From now on, let P be a given Markov probability on Q with (stochastic)
transition function p. Define

Ex) = Zn-o PXn=12x) (x €J),

the occupation measure for P. By discarding all states never reached by the
process, we may and shall assume that £(x) > 0 for all x € J.
Next, introduce for x, y € {£ < oo}

p(x, y) = £(y)p(y, x)E7 (x).

We shall call p the transition function in natural duality to p (in standard
terminology it is in duality to p with respect to the occupation measure). We
‘remind the reader that if £(x) < oo,

2y:£(y)<°° ﬁ(x, y) = 1’

i.e: p is substochastic on {{ < }.
Recall from BDC, Section 5, that a random time 7 is cooptional (algebraic
definition) if either of the following three equivalent properties hold:

i) 7 =sup{n = 1:0,-, € F} for some F € 7;
(ii) 70, = (r — n)* : for all n € N;
(iii) (r=n+1)=(r00,=1) and
(1 = ®) = (700, = ©) for all n € N.

Motivation. Before continuing the buildup towards Theorem 2, consider
for a moment the special situation where P has finite lifetime, i.e. P is a Markov
probability on the subset Qo := ({ < ) of Qa, ¢ = inf{n:X,, = A} denoting the
lifetime. Defining £ on J as above we have ¢ < « and of course reversing from ¢
gives a Markov probability P with transitions p. Now if 7 < ¢ is a random time
defined on o, introduce its dual 7 = { — 7°R where R: Q, — Q is the reversal
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transformation R(Xo, - - - , X;-1) = (Xs-1, - - - , Xo). Then 7 < {'is again a random
time defined on Q, and the reader may verify that 7 is cooptional if and only if
7 is optional. Since also R°K, = 0;°R it follows that K, reversed is Markov (5)
under P iff 6; is Markov (p) under P. But by the operational characterization of
optional times quoted earlier, this is equivalent to 7 being P-a.s. to an optional
time, i.e. 7 is P-a.s. equal to a cooptional time. Thus the operational property of
K, reversed being Markov (p) is equivalent to 7 being a.s. equal to a cooptional
time. Theorem 2 will show that this result carries over to chains with infinite
lifetime, where direct time reversal is no longer possible. 0

In order to formulate Theorems 1 and 2, we shall need to change the definition
of cooptional times slightly, since we shall not be able to say anything about the
detailed structure of the sets (r = 0), (r = x). Therefore, call  a modified
cooptional time if there exists 7’ cooptional such that

(r=n) =(" =n) (n € N\{0}).
Note that 7 is modified cooptional iff the first half of (iii) holds:
(iin)* (r=n+1)=(r°0,=1) forall n€ N.

For 7 an arbitrary random time, let JJ, denote the states that may be visited
by K, on (1 < ):

J,={xE€J: Tno P(X, =x,n <7< 00) >0},

and finally define the reverse of the pre-r process as the process Z = (Z,, n € N)
given by
7 - {X,_l_,, on (n<r <o)
" A on (1 <n)U(r =)

7 The following two conditions will be needed for Theorems 1 and 2.
(1) tx) <o (x €J,),
(2) xE€dJd,, p(y,x)>0=>y€d.

Condition (1) demands that all states in J, be transient and of course ensures
that p makes sense on ¢/, X J,. Condition (2) states in a precise manner, that
using p, which is not defined everywhere, only states in J, can be reached from
J.. The condition is important because it implies the following.

LEMMA. Suppose that (1) and (2) hold. Denote by p™ the m-step transitions
determined from p on J,, Le.
P™, Y) = Sees, BV, 22, Y) (5, ¥ € J)),
and by p'™ the m-step transitions determined from p on all of J. Then
p™(x, y) = £ (y, 0)EHx) (%, y € ),
Py, A) = p(ENY) (yE ),
where p(y, A) =1 = F.es, (¥, 2), u(y) = P(Xo =y).
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The proof is very easy and is left to the reader.

We are now able to state Theorems 1 and 2. In both P is a given Markov
probability on Q. The assumption P(0 < 7 < ®©) > 0 in the two theorems is
introduced of course to make Z a nontrivial process.

THEOREM 1. (a) Suppose 7 is a random time with P(0 < 7 < ) > 0 such that
(1) and (2) hold. If the reversed pre-t process Z is Markov with transition function
p on J,, then there exists a function ¢:J — [0, 1] such that for alln = 1

3 P(r = n| %) = $(X,-1) P-as.

(b) Conversely, if P(0 < 7 < ) > 0 and (3) holds for some ¢, then (1) and (2)
are satisfied and Z is Markov with transition function p on J..

THEOREM 2. (a) Suppose that in addition to the assumptions of part (a) of
Theorem 1, it is assumed that K, and 0, are independent given X,_;, 0 < 17 < oo,
Then, if Z is Markov (p), there exists a modified cooptional time 7’ such that T =
7’ P-a.s.

(b) Conversely, if r = 7’ P-a.s. with 7’ modified cooptional, then K, and 0, are
independent given X,-;, 0 <7 < o, (1) and (2) hold and Z is Markov (p).

REMARK. For (3) to hold for some ¢ defined on oJ, it is important only what
happens on ¢J,, since obviously ¢ = 0 works on J\J..

PROOF OF THEOREM 1. (a) That Z is a Markov (p) chain on J, (with finite
lifetime) means that forn =1, xg, -+, x, € J,

P(ZO = Xoy * Zn = xn) = P(ZO = Xoy * Zn—l = xn—l)ﬁ(xn—l, xn)’
which using the definition of Z translates into

P(X1—1 = Xoy "y Xr—n—l =X, <7< OO)
(4)
=PX,_1=%0, -+, Xomp = Xp-1, B — 1 <7 < 0)p (%1, Xp).
Also as a consequence of the Markov assumption, we have that for 0 < n <k, x,,
crry Xn € J‘r .

P(Xk—l = X0, ** Xk—n—l =Xn, T = k)

(5) .
= P(X-r—l = Xoy * X‘r—n—l = Xn, N <7< oo)f(k_n)(xny A)’

where f™(x, A) is the probability that a Markov chain with transitions p and
state space J, U {A}, given that it starts at x € J, dies (reaches A for the first
time) at time m = 1. Since we are assuming that (1) and (2) hold, the lemma
applies and a simple computation gives

f™(x, A) = Yyes, D™, y)D(y, A)

=t x)PXp1=2%) (m=1,x€J,).

(6)
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From (4) and (5) it follows that
P(Xk—l = Xo, * Xk—n—l = Xn, T = k)f(k_n+l)(xn—la A)
= P(Xk—l = Xoy * Xk—n = Xp-1, T = k)f(k—n)(xn, A)ﬁ(xn—ly xn),

namely use (5) as it stands and with n replaced by n — 1 to reduce this to (4).

Suppose now that P(X,—; = %o, -+, Xk—n-1 = %,) > 0. In particular then
P(Xy-p-1= %) > 0, P(Xp—p = %n-1) > 0, p(x,, 2,—1) >.0, and (6) enables us to
write (7) as

P(r = k| Xp—1 = %0, -+ Xp-n-1 = %z)
= P(r = k| X1 = X0, -+ +; Xbn = Xn-1)-
Fixing k and letting n, x,, - - - , x, € J, vary, it follows that
(8) P(r = k| 1) = P(1 = k| Xp-1)

P-as.on (X; € J,, 0 < j < k). Because of (2), this set equals (X-, € J,) P-as.
and since both sides of (8) vanish on (Xu—1 & J,), (8) holds P-a.s. everywhere on
Q. To obtain the stronger conclusion (3) note that for k= 2,7 = 1, xo, %1 € J

P(Xy_1 = %o, Xp—z = %1, 7 = R)f(x0, A)
= P(X,_1 = %, 7 = 2)f* V(x1, A)P (o, %1)

because this reduces to (4) using (5) for n = 1 and forn =0, k = Z Think of x,
as fixed and suppose that k = 2, # > 1 are chosen so that P(Xx-1 = %) > 0,
P(X,_, = x) > 0. Then choose x; so that P(Xs-1 = %o, Xs—2 = x1) > 0 and use
(6), (8) to reduce (9) to

P(r = k| Xp—1 = %) = P(r = 2| Xo1 = x0);

" in other words, for each x € J,, the conditional probability P(r = k| Xi-1 = x)
does not depend on k so we may write

P(r =k|Xp1) = ¢ (Xe-1),

with ¢ = 0 on J\J,, and (3) follows.
(b) With ¢ given so that (3) holds, we get for n €N, x, - -+ , x, € J,

P(ZO = Xo, * -y Zn = xn) = 27:=n+1 P(Xk—l = X0y * Xk—n—l =,xn9 T = k)
= E;:=n+l P(Xg-1= %o, -+ Xpmn-1 = Xn) ¢ (x0)
= £(x,)P™( Xy = %p—1, - -+, Xn = %0)¢(%0).

Now, if x € J, it is possible to find n, xo, -+ - , Xn—1 € J;, %, = x so that this
probability is > 0. Choosing & so that the kth term in the sums is > 0, it emerges
that P*(X; = X1, -+ , Xn = %) >0, ¢(xo) > 0, wherefore (10) forces £(x) =
£(x;) < oo. It is then immediate that Z is Markov (p).

It remains to establish (2). Introducing the potential kernel (which may be o)

u(x, y) = 2:=0 P(")(x, y) (x9 Yy € J)’

(7

C)

(10)
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it is easy to deduce from (3) that
P(n <71 <o|A) = Up(X.),
where U is the potential operator:
Uf(x) = Yyes ulx, ¥)f(y),
in particular U¢ < 0. But then z € J. iff )
0<¥r-0 PXpn=2,n<7<x) =¢{2)Us(2),

i.e. iff Ug(z) > 0. Therefore, if x € J,, y € J with p(y, x) > 0 it follows that

Yoo PXp=y,n<7<0) =230 PXpo=5Xprm=2,n+1<7 <)

= £(y)p(y, x)Us(x) > 0,

sothaty € J..0

PrROOF OF THEOREM 2. (a) The additional assumption implies that (see

Lemmas 3.12 and 5.5 of BDC) there exists F,,_.1 € “,_;forn=1and G € &
such that

(11) (r=n)=F,_1(0,-1 € G) P-as.
for n = 1, whence
(12) P(r = n| 1) = 1p,_ h(Xn-1)
with h(x) = P*G. Introducing H = {h > 0} it is readily checked that
P(Fp—1, 0p-1 € G) = P(Fy—1, Xu-1 € H, 0,-1 € G),
so we may and shall assume that F,—, C (X,-; € H) P-a.s. But then (12) implies
D, = (P(r =n|F) >0) = Fp1.
From Theorem 1(a) we know that (3) holds so that also
D, = (¢(Xp-1) > 0).
Thus F,—; = (¢(X,-1) > 0) P-a.s. and inserting this in (11) gives
(r =n) = (-1 € G’) P-as.

where G’ = (¢(Xo) > 0)G. But for n € N\{0}, the sets (r = n) are mutually
disjoint, hence ignoring a P-null set, so are the sets (6,-; € G’), wherefore it
follows that if 7’ is the cooptional time

v/ =supin = 1:0,-, € G'},"

we have (1 = n) = (1’ = n) P-a.s. for n € N\{0}, which is exactly to say that 7
is P-a.s. equal to a modified cooptional time.

(b) Find 7” cooptional so that (' = n) = (+” = n) for n € N\{0}. From
Section 5 of BDC it is known that 7” is a regular death time for P, in particular
K, and 6, are independent given X,-_;, 0 < 7”7 < o, But of course then the same
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conditional independence holds with 7” replaced by 7. To complete the proof,
merely observe that

P(r=n|%) = P(r' =n| Fut) = P(17001 = 1| Fomy) = PX1(s7 = 1),
1.e. (3) holds. Now apply Theorem 1(b). O

EXAMPLE. We shall present a Markov probability P and a random time 7
such that (3) holds but 7 is not P-a.s. equal to a modified cooptional time.

The state space is J = {x, y, a} and P is determined by some initial distribution
with P(X, = a) < 1 and the transition matrix

Xy a
x| % YU %
y|lY% % 1/2:| ’
al0 0 1

Define 7 by
(r=1)=Xi=x0=2)
(r=n)=(e=n+2) (n=2)

and 7 = 0 otherwise, where ¢ = inf{n = 0:X,, = a} is the time to absorption in a.

Since the sets (r = n) and (7°6,,_; = 1) for n = 2 are different with respect to
P, there is no modified cooptional 7’ such that 7 = 7’ P-a.s. On the other hand
(3) is satisfied because

PX1(g = 3) = ()2 % =% on (X,-; € {x, y})

P(r=n| %) = {0 s

" for n =2, and

PX(X,=x,06=2)=%-Y% =% on (X € {x,y})
—3 G —3 ’ ’
Pr =11%) {0 on (Xo=a). 0
We shall now discuss what are the characteristic properties of the forward
killed process K,, when 7 is cooptional. Before stating Theorem 3, we need the

following definition. .
Let p be a (in general substochastic) transition function on J, let J’ C J and
let g be a (substochastic) transition function on J”.

DEFINITION. The pair (g, J’) is an h-transform of p if there exists a
p-excessive bounded function h:J — [0, ) with h > 0 on J’ and h = 0
on {x € NJ’: Yyes u(y, x) > 0} such that

q(x,y) = h7'(&)p(x, y)h(y) (x,y € J’).

REMARKS. Normally one would allow h to be unbounded, but in this paper
we shall only encounter bounded excessive functions. Recall that & is p-excessive
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if
Yyes P(x, Y)h(y) = h(x) (x €J).

The set where h is demanded to vanish is of course the collection of states outside
J’, that may be reached from J’ using p-transitions.

If 7 is a random time, denote by J% the state space for K, under the given Markov
probability P:

={xE€J: Ym0 P(X,=x,7>n) >0}

THEOREM 3. Suppose 7 is a regular death time for P and let q be the transition
function for K.. Then (q, J7) is an h-transform of p if and only if there exists
H C J, v’ cooptional such that P-a.s.

(13) r=n)=Xo€H,7"=n) (1<n=<w),
and if this holds one may choose h(x) = P*(r’ > 0).

REMARKS. If (13) holds, 7 is a regular death time for P, see Theorem 5.2 and
the preceding remark of BDC or the statement following (4.1) of [1]. By the
characterization in BDC, a regular death time is “cooptional before terminal”,
see also the introduction to Sharpe [3]. The paper [3] is the basic reference for
results on regular death times for general Markov processes in continuous time.

Proor. The easier part consists in showing that (13) implies that (g, J7)
is an h-transform. Define g(x) = P*(+’ > 0). If x € J?, find n so that
P(X,=x, 7> n) >0 and deduce from

PX,=x,7>n)=PX, € H, X, =x, 7'°0, > 0)
that g(x) > 0. Next, let A, denote the part of J\J; which can be reached from
J7 by p-transitions:
A, = {x € NJT: Yyes= uly, x) > 0}.

If x € A, find y € J?, n such that p™(y, x) > 0. Also find m so that

P(X,,=y,7>m)>0. Then look at
P(Xm =Y, Xmin =%, 7>m + n) = P(Xo € H, Xn = y)p"™(y, x)g(x).

Since x & J7, the left side is 0. But the choice of m forces P(Xo € H, X,, = y)

>0, hence g(x) =
Thus g >0onJ7,g=0o0nA,, and it only remains to show that g is excessive,
which follows from '

g(x) = P*(v' > 0) = P¥(s' > 1) = P*s’°0 > 0) = P*g(X1),

and to observe that q(x, y) =g (x)p(x, y)g(y) for x,y € J.
For the converse, let 7 be a regular death time for P, such that with g the
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transition function for K., (g, J7) is an h-transform of p. By Theorem 5.2 of
BDC and the remark preceding it, there exists HC J, VC J X J and F € &

such that P-a.s. 7 = 7yyr, where
(thvr=n)=Xo€EH,7vr=n) (1=n=<m),

with 7vp “cooptional before terminal”; i.e. Tyr= sup{l = n < 7v: 0,1 € F}, 7v
denoting the terminal time inf{n = 1: (X,-1, X,,) € V}. Furthermore, writing g(x)
= P*(1yp> 0), Ve= (JXJ)\V, '

(14) q(x, y) = 1y:(x, y)g ' (x)p(x, ¥)g(y) (x,y € J7)

and g > 0 and J7. The purpose of the arguments below is to show that with g an
h-transform, the “terminal part” of 7 does not appear.

As above, we let A, denote the states in J\J7 that may be reached from J7
using p-transitions.

By assumption there exists h bounded and p-excessive with A > 0 on J7,
h =0 on A, such that

(15) q(x, y) = h7'(x)p(x, y)h(y) (x,y €J7).

We shall first show that without loss of generality it may be assumed that
(16) HcCJ7y,

a7 {p>0} N (J7 X J7) C VN (J7 X J7),

(18) FC (X, €J?).

To establish (16), define H* = H N Jy. For 1 = n < o, (rgvr = n) C
(ryve= n) because H’ C H. But the opposite inclusion holds since

P((tgvr = n)\(rgvi = n)) = PXo &€ J7, 7=n) =0

using that 7 = 74y P-a.s. and the definition of J7.

As for (17), from (15) we see that x, y € J7, p(x, y) > 0 forces g(x, y) > 0, so
that by (14) also (x,y) € V.

Defining F’ = F(X, € J7), clearly Tyvs < Thvr and since

(rave < Tavr) C Upar (72 0, 0,00 € F\F') C Uy (7 2 1, Xomy € INJT)

P-a.s., where by the definition of J;, the last event has P-measure 0, we get
Tave = Tyvr P-a.s. and (18) is proved.
To complete the proof, assume that (16)-(18) hold, introduce

v’/ = supin = 1:6,_, € F},
and define a random time 7, by
(r, = n)'= Xo€ H, 7' =n).

We shall show that 7, = 75vr P-a.s. Clearly 7yvr < 7, and P-a.s. using (16)
and the definition of A,

(twvr<m) CC
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where, writing B,=J7 U A,,
C = (XO € Hy Ty < @, Tloo-rv > 0’ p(X7V—19 X-rv) > 0’ (er—ly XTV) € B7 X B7)'

To see that PC = 0, consider (x, y) € V with (x, y) € B, X B,,"p(x, y) > 0.
Then (x, y) € J7 X J7 is impossible by (17). Also, since h is excessive and = 0
on A,, from A, only transitions to {h = 0} can occur, so (x, y) € A, X JZ is
impossible. Therefore necessarily y € A,, but then

P’ (' >0) =P’ U%, (0, E F) =0

because of (18) and the fact that J7 cannot be reached from A,, and an application
of the strong Markov property now gives PC = 0.0

REMARK. In the theorem we considered h-transforms for excessive h vanish-
ing on A,. It would be nicer of course, if only h vanishing on all of J\J? were
needed, but that is not possible: if 7 satisfies (13), as we have seen g(x) =
P*(7’ > 0) is excessive. But the function g’ defined by g’(x) = g(x) on J* U
{g¢=0}and =0 on C,=J\(JT U {g = 0}) need not be excessive since it may be
possible to have p-transitions from C, into J5. 0

REMARK. For the theorem to be true, it is essential that in the definition of
h-transforms only h which are p-excessive on all of J are considered: Let L C J
and introduce

7 =infin = 0:X, € L}.

In general 7 certainly does not satisfy (13) P-a.s. But 7 is a regular death time
for P with, obviously, J7 C J\L, so the transitions for K, become

q(x,y) =plx,y) (x,y €J7),

which looks exactly as an h-transform with A (x) = 1,=(x). The point is of course,
that 1,= is excessive on all of oJ iff p-transitions from J\J7 to J; are impossible
in which case P-a.s.

T =supin = 1:X,-; € J\L}

in agreement with the theorem.

REMARK. With Theorem 3 in mind, a natural question to ask is whether all
h-transforms (for bounded k) can be obtained by killing at cooptional times. The
answer is no. To see this consider the example following the proof of Theorem 2.
The important point now is that the state space is finite and that there is an
absorbing state which is reached with certainty, since, as is easily seen, this
implies that there is a countable collection ¥ of # -measurable sets, such that
forx € dJ, F € & P*F > 0is possible only if F € ¥. Consequently, if FE ¥\ ¥,
P(,-, € F) =0 for all n = 1 and supjn = 1:0,-, € F} = 0 P-as., i.e. up to
P-equivalence there are only countably many cooptional times. But it is readily
verified that even after normalizing with h(x) =1, h(a) = 0, there are uncountably
many bounded, excessive h.
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REMARK. If 7 is given by (13) with 7’ cooptional of course the transition
functions for K, and K, are the same: only the initial laws for the two killed
processes are different. But while K, reversed has transitions p, the transitions
for K, reversed are

ﬁH(x’ y) = EH(y)p(y’ x)f;}l(x) (x9 y € J7)?

where £4(2) = Yn-0 P(Xo € H, X, = z). Using Theorem 2 and the fact that =
does not have the homogeneity property (iii)* of all modified cooptional times, it
is not difficult to see that py = pgon J, X J, iff £x = £ on J,.

Although somewhat out of line with the main context of this paper, we shall
conclude with a discussion of birth times that preserve the original transition
function p without having the conditional independence property demanded of
regular birth times.

THEOREM 4. (a) Suppose 7 is a random time with P(r < ) > 0 such that
given 1 within (7 < ), the post-t process 0, is Markov (p). Then
19) P(r=n|0,)=P(r=n|X,) (n€N).
(b) Conversely, if P(r < ) > 0 and (19) holds, then given 1 within (r < ®), 0. is
Markov (p).

ProOOF. That 6, given 7 is Markov (p) amounts to saying that

PX, =%, -, Xetm = Xm, 7= 1)
= P(X, = %o, -+ Xetm-1 = Zm-1, 7 = N)P(Xm-1, Xm)
foralln=0,m=1,x, -+, xn € J. Rewriting the left as
P(X, = %0, -+, Xntm = %m)P(r = n| X, = %0, -+, Xotm = Xm),

and the right in a similar fashion, it is clear that
P(r=n|X,, -+, Xpsm) = P(r =n| Xy, -+, Xntm-1),
and (19) follows. The converse is just as easy. 0
REMARK. There does not appear to be any reasonable characterization of the
 that makes 6, Markov (p) without conditioning on the value of =. If (19) holds,

then certainly 0,is Markov (p), but the converse is not true: consider the example
from page 439 of BDC,

T = inf{n = 1:(Xn, crey Xn+k) = (XO, <o ’ Xk)}'
As pointed out there, if P is recurrent, 0, is Markov (p). But it is easy to see that
(19) does not hold in general. [0
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