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SYNONYMITY, GENERALIZED MARTINGALES,
AND SUBFILTRATIONS

By DouGLAs N. HOOVER!

Queen’s University

Aldous recently introduced the notion of synonymity of stochastic proc-
esses, a notion of equivalence for processes on a stochastic basis which
generalizes the notion of “having the same distribution”. We show that
generalized martingale properties, such as the semimartingale property, are
preserved under synonymity, and that synonymous semimartingales have
decompositions with the same distribution law. A variation of our method
yields a relatively elementary proof of the theorem of Stricker that semimar-
tingale remains a semimartingale with respect to any subfiltration to which
it is adapted.

1. Introduction. Let @ = (Q, F, P, F.):cr+ be a stochastic base, i.e. a
complete probability space endowed with a filtration (F,).cr+—an increasing,
right continuous family of o-fields such that F, contains all nullsets of P. We
regard a stochastic process X on such a space Q as a family (X;).cr+ together
with the underlying filtration: thus we write X = (X;, Fi)icr+. Aldous [1]
introduced the relation “X and Y are synonymous” as a notion of “sameness” for
stochastic processes taken in this sense. Synonymity is similar to having the
same probability law, but takes into account part of the relation between the
random variables and the filtration.

DEFINITION 1.1. Let (X;, F\):cr+ be a stochastic process on a stochastic base
Q and let (Y,, G,);cr+ be another process on a possibly different different base.
* Wesay X =; Y (“X and Y are synonymous”) iff for any n € N, t;, - - -, t,, u,
-+, u, =0, and ¢, ¢y, - - -, ¢, bounded Borel functions R* — R,

E[(b(E[d’l(Xup ] Xu,,) I Ftlly ) E[(bn(Xul, ) Xu,,) I Ft,,])]
= E[¢(E[¢1(Yu1’ ) Yu,.) Ithl’ R E[d’n(Yula Tty Yu,,) I Gt,,])]

We have elected to follow the notation of Hoover and Keisler [4] in denoting
synonymity by =;. As is also done in that paper, we will write X =, Y to indicate
that X and Y have the same probability law.

The definition of synonymity needs no assumptions about the sample path
properties of the processes involved. But when X is an rcll process (one whose
sample paths are right continuous with left limits), there is a process associated
with X whose probability law determines the synonymity type of X.
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704 DOUGLAS N. HOOVER

For each n let C, be a countable set of continuous functions R" — [0, 1]
sufficient to generate the Borel functions.

DEFINITION 1.2. Let X be a stochastic process. m; X is the R*-valued mar-
tingale given by

miX, = (B[¢Xuyy -+, Xu) |F): ¢ € Coy s, -+, un EQ nEN). [

PROPOSITION 1.3 ([4], Theorem 2.18). Let X and Y be rcll processes. Then
X51 Y lff le = le. 0

This follows easily by the right continuity of the sample paths of X and Y,
and the dominated convergence theorem.

We have assumed that X is real valued, but the construction of m;X will go
through just as well for an rcll process X taking values in any Polish (complete
separable metric) space. Thus we may proceed to define m; X = m;(m;X) and in
general

My X = ml(mnX)°
Let us say
X=Y iff m,X=m,Y,

4

and
X=Y iff X=,Y forall n.

The relations =, and = can be defined for processes which are not rcll, but it is
not quite as simple.

In [4], Hoover and Keisler show that the relations =, grow strictly stronger
as n increases, and give constructions which can be used to show that on certain
very rich spaces almost all properties of stochastic processes must be preserved
by the = relation (by “preserved” we mean that if X = Y and X has a property
P then Y must have it also). We believe that the step from =, to =; is the most
important of the infinitely many steps from =, to = and that most of the more
interesting and more concrete properties of stochastic processes must be pre-
served by synonymity. The main result of this paper verifies that this is indeed
true of generalized martingale properties.

In the sequel, we will write just (F,) instead of (F).cr+ and we will write (m; X,)
to indicate the natural filtration of m; X. We will also say that a random variable
or process is X- (or m;X-) measureable to indicate that it is a measureable
function of X (or m; X).

“ In this paper we will show:

(1) That for an rcll process X the optional, predictable, dual optional, and

dual predictable projections are m; X-measureable;
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(2) That the law of m; X determines whether X is a semimartingale, special
semimartingale, or local martingale;

(3) That for any semimartingale X one can always find a decomposition which
is m; X-measureable; when X is special this may be taken to be the canonical

decomposition.
(4) We will use a variant of the characterization of semimartingales used to

prove (2) and (3) in order to give a more direct proof of Stricker’s theorem that
any semimartingale X = (X,, F,).er+ remains a semimartingale with respect to
any subfiltration (G;) of (F,) with respect to which X remains adapted. This
proof is elementary to the extent that the only advanced results it uses are the
facts that every quasimartingale is a semimartingale and that for any semimar-
tingale

Sicnt (Xivim — Xin)? = [X, X

in probability. The fundamental ideas are about the same as Stricker’s, but use
of Girsanov’s Theorem for semimartingales is avoided.

2. Projections. This section contains some technical results about syno-
nymity and projections of processes which will come into our main result.

DEFINITION 2.1. The total variation process of an rcll process A is the
increasing real valued process var(4) given by

Var(A)t = limn—»oo Ei<nt IA(i+1)/n - Ai/n I . O

LEMMA 2.2. Let A and A’ be processes of integrable variation.

(a) If A’ is optional, then A’ is the dual optional projection of A iff E[Ao | Fo] =
A and for every bounded martingale M,

E[J:MdA]=E[J:MdA’].

(b) If A’ is predictable, then A’ is the dual predictable projection of A iff
E[A.| Fo] = A{ and for every bounded martingale M,

E[J: M, dAs] = E[J: M, dA;].

PrOOF. (a) (=) is trivial because martingales are optional. () It suffices

to show that
EU of JA] = EU of dA’]

whenever f is the characteristic function of a measureable rectangle [s, t] X F,
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s, t € R+, F € F. Let M be the martingale generated by F. Then °f = I;; M, so

E[f“fdA]=E:J:MdA]—E[J:MdA]
= E:J: M dA’] - E[J:‘M dA’] (by hypothesis)’
= Ef "fdA’].

The proof of (b) is similar, but the process M;_ replaces M. [

PROPOSITION 2.3. (a) Let Y be a bounded process which is X-measureable.
Then the optional and predictable projections of Y with respect to (F;) and (m;X.)
are respectively the same.

(b) If A is an rcll F(X)-measureable process of integrable variation, then the
dual optional and dual predictable projections with respect to (F.) and (m,X.) are
respectively the same.

ProOF. Part (a) is a simple observation which follows by examination of the
proof of the existence of these projections (Dellacherie [2], Theorem V-14). (b)
is almost as easy. Consider the case of dual optional projections, letting A° denote
that with respect to (F;), A’ that with respect to (m,X;). We may assume that A,
= 0, since

A =E[A|Fo] + (A, — Ap)°, and A/ = E[A|F] + (A: — Ao)’".
By Lemma 2.2, it will suffice to show that for any bounded (F;)-martingale M

and t € R+,
t t
E[f M, dAs’] = E[f M, dAs] .
0 0

Let M’ denote the (m,X;)-martingale M = E[M..| m,X;]. By right continuity of
M, and the dominated convergence theorem,

t
E[J; M, dAé] = iMoo B[ icnt Ms1jm(Airrjmy — Aim)]

= limn_on[Zi<nt M, (i+1/n)E[A(i+l/n) - Ai/n | F (i+1/n)]]
= liMpeo E[Si<nt E[Ms1/m | mi Xiriyml(Agsym — Ain)l,

since E[Au+im) — Ain| Firym] and Agiym — Ayn are myX-measureable. But
M{s1my = E[Msijm | miXrym), so by right continuity of m and dominated
convergence again, this is )

t t
= E[f M; dAs] = E[f M; dAs’],
0 0
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by definition of A’. Retracing one’s steps with A’ in place of A shows that

t t
E[f M; dAs] = E[f M; dAs'] )
0 0

which is what we had to prove. A similar argument using the left continuous
modification M,_ of M proves the corresponding fact about dual predictable
projections (cf. Rao [6] or Doleans [3]).0

We apply- this fact about dual predictable projections to give in a spirit similar
to 2.3 an absolute version of the theorem that a process is of locally integrable
variation iff it has a generalized dual predictable projection (Meyer [5], Theorem
IV-12). If A is a process of finite variation, then we let A* and A~ be the unique
nonnegative increasing processes with A = A* — A™, and var(4) = A* + A™.

LEMMA 2.4. A finite variation process A is of locally integrable variation iff
limy_w(var(4) A N)?(t, w)
exists and is finite for almost all (t, w). If this is the case, then
(2.1) A° = limy_.(A* A N)? — (A~ A N)?

has an rcll version which is the unique predictable process of finite variation such
that A — A€ is a local martingale null at zero.

PrROOF. (=) Let T be a stopping time such that var(A)r is integrable. Then
(var(A7))? = limpy_.(var(A)” A N)* = limy_.(var(A A N)?)T
~ exists and is a finite process, and
(A)" = (AT)? = limn_e((A")" A N)? = ((A)" A N)P
= limy_((A* A N)P)T — ((A~ A N)P)T.
If var(A) is locally integrable, we let T tend to infinity and see that A° is finite
a.s. and has an rcll version given by (2.2). Since A" — (AT)” is a martingale, we

also find that A — A° is a local martingale when A° is as in (2.1).
(<) Let us define the predictable, increasing process (var(A))‘ by

(2.3) (var(A))® = limy_«(var(A) A N)?

(rcll version). By Meyer [5], Theorem IV-12, if (var(A))¢ is finite, then it is locally
integrable. It will suffice, then, to show that whenever T is a stopping time, if
(var(A))% is integrable, then so is var(4)r. But

(2.2)

T
E[var(A)7] = limN_,wE[ J(; d(var(A) A N ),]

T
= limN_,wE[f d(var(A) A N)’t’] = E[var(A)7].
0
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The second equality follows since Ij 1) is predictable, the others by monotone
convergence. [

COROLLARY 2.5. Let A be an F(X)-measureable process. Then A is of (F,)-
locally integrable variation iff A is of (m,X,)-locally integrable variation. When A
is of locally integrable variation with respect to either filtration, and A° is the
process given by (2.1), A — A° is both an (F;) and an (m, X,)-local martingale.

PrROOF. The process var(A)‘ given by (2.3) is the same whether defined with
respect to (F¢) or (m;X;). By Lemma 2.4, this proves the first part. A¢is also the
same whether defined with respect to (F,) or (m;X,), so the second part also
follows. O

3. Synonymity and semimartingales.

DEFINITION 3.1. Let X be an rcll process.
(i) For each n € N, the process X" is given by
X7 = Yi<nt E[Xir1/m) — Xin | Finl.
Thus
var(X"): = Ticnt | E[Xsiym = Xign | Fin] |-

(ii) An integrable process X is a quasimartingale iff there exists a constant C
such that whenever 0 < tp < t; < --. <t,,

Eiﬁn IE[Xt,'+1 - Xt,' I Ft,‘] | = C' D

LEMMA 3.2. A uniformly integrable process X is a quasimartingale iff
E[var(X™),] is bounded uniformly in n and t.

PrROOF. The forward direction is obvious. To prove the converse, let 0 < ¢,
< ... <t and ¢ > 0 be given. By uniform integrability and right continuity of
X, choose n and ip < - - - < i, such that for j < k, E[| X;, — Xi/n|] <e/k. Then

E[Y | E[X,,, — Xy | Fe]|]
< B[S | EX,n = Xyn| Fygnl |1 + 2
= E[Y; E[Yi<ii,, | E[X ym = Xt/r{ | Finl | | Fignll + 2¢
(by Jensen’s inequality)
= E[Yi<i, | E[Xi+1m — Xin | Fin] 1] + 26 = C + 2¢
for the constant C that bounds var(X"),.O

The following characterization of bounded semimartingales will make it easy
to show that the semimartingale property of X is determined by the law of m; X.
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THEOREM 3.3. Let X be a bounded rcll process. X is a semimartingale iff for
every t there is a strictly positive random variable N such that, for all n € N,

E[N var(X")] = 1.
PROOF. (=) Observe first of all that since X is a bounded semimartingale, it
is a local quasimartingale. Let T,,, m € N, be a sequence of stopping times such

that T, — » and X"~ is a quasimartingale. Choose an increasing sequence of
constants K,,, m € N, such that for each m,

E[var((X™)")] + 1 < K,,.
Define N = N, by
N=(K,+2C)"'2™ on Tp,<t=T, (withT,=0),
where C bounds | X |, and let T, denote the stopping time
(3.1) Tr = inf{i/n: i/n = T,}.
Then, for each m, )
E[var((X™)"), — var((X")™»))] = E[Xrn=@+1n El| Xr,, = X | | Fisn]]

3.2
82) < E[|Xr, — Xm|] >0 in L

by right continuity of X, since | X7, — X | is bounded by 2C. Now,
E[N.var(X").] < ¥m Ellr,_, 1,)(t)Nvar(X")7, ]
< ¥n Ellr,_ 7, () N(var(X™)™)., + 2C)]

=3, (K. +20)'27™K,, + 2C) < 1.

(<) Given t, choose N satisfying the hypothesis and let N, = E[N | F]. Define
stopping times T,,, m € N by
(3.3) T, = min(¢, inf{s | 1/N, = m}).

Since N is positive, N, is never zero, so T,, — ®. We claim that X"~ is a
quasimartingale. Since X is bounded and T,, < t, by Lemma 3.2 it suffices to
show that, for each m, E[var((X7~)"),] is bounded uniformly in n. By (3.2), to
show this it suffices to show that E[var(X")r,] is bounded uniformly in n. But
since Ny, > 1/m for s < T,

Elvar((X™")1,)e] = m Yicnr,, E[Nin| E[XGr1/m) — Xisn | Finl |]
< m Sicnt E[Nin| E[X+1/m) — Xin | Firal |1
= mE[N var(X")] =m. 0O

COROLLARY 3.4. (i) A process X is an (F;)-semimartingale iff it is an (m, X;)-
semimartingale. When either statement holds, X has a decomposition X = A + M
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where A is a process of finite variation and M is both an (F.)- and an (myX,)-local
martingale.

(i) X is an (F,)-special semimartingale iff it is an (m,X,)-special semimartin-
gale, and when either statement holds, the canonical decomposition of X (that is,
the unique one with A predictable and A, = 0) with respect to each filtration is the
same.

(ili) X is an (F)-local martingale iff it is an (m,X;)-local martingale.

ProOF. We will begin by arguing that (i) holds when X is bounded and
reduce the other cases to this case. Since var(X™) is the same with respect to
(F,) and (m, X)), it follows immediately by Theorem 3.3 that if X is a bounded
(m,X;)-semimartingale, it is also an (F,)-semimartingale. Furthermore, since
var(X™) is m; X-measureable, for any positive random variable N, E[N | m, X] is

positive and
E[N var(X™),] = E[E[N | m; X]var(X™)],

so the converse also holds. Now suppose X is bounded (m; X,)-semimartingale.
Let N be as in Theorem 3.3, let N, be the (m;X;)-martingale generated by N,
and let T, m € N, be as in (3.1). For each m, X" is a quasimartingale (with
respect to either (F,) or (m,X,)). By Rao [7], its canonical compensator A"~ with
respect to (F,) is given by

Al = limp (X )7
in o(L*, L™) (the topology induced on L! by its duality with L* = the weak
topology on L?'). By (3.2)
lim, o | (X7 — (X™I»| =0 in L.
Hence
= lim,_.(X")/» in (L', L®).

The same argument shows that the canonical (m;X;)-compensator of X~ is this
same limit, since X" is the same with respect to both (F;) and (m;X;). Thus
X" has the same canonical decomposition with respect to (F,) and (m,X,). The
same is true of X because the canonical compensator A of X is simply the unique
process A such that for each m, A7 is the canonical compensator of X~

Having completed this long preliminary, we can prove the three statements of
the theorem quite quickly. To prove (i), let V be the process

V = 2;S<g-|AX|>1; AXS (including AX() = X())

Then X — V has bounded jumps, and V is of finite varlatlon If U, m€EN,is
the sequence of stopping times

U, =‘inf{t: X-V),=mj,
then for each m, (X — V)Ur is bounded and X-measureable. The foregoing proof

works for any X-measureable process, hence, for each m, (X — V)Un is an (F,)-
semimartingale iff it is an (m,;X,)-semimartingale, hence the same is true of X.
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If (X — V)Un=BY» + LU is a simultaneous (F,) and (m,; X,)-decomposition of
(X — V)Un then X = (B + V) + L is a simultaneous decomposition of X.

(ii) X is a special semimartingale iff V is locally integrable. By Corollary 2.5,
this property is the same with respect to both (F;) and (m;X,), and the unique
predictable process V? such that V — VP” is a local martingale is the same for
each filtration. The proof for the bounded case shows that the process B in (i) is
the canonical compensator of X — V, hence if A =B + VP — Xpand M = X, +
L+ (V- VP), then X = A + M is the canonical decomposition of X, good for
both filtrations.

(iii) This follows from (ii), because a local martingale is just a special semi-
martingale whose canonical compensator is the zero process. O

COROLLARY 3.5. Suppose X =, Y. Then if X is a semimartingale, so is Y, and
there are decompositions X = A + M and Y = B + L such that (A, M) =, (B, L).
If X is a special semimartingale, then so is Y, and if (A, M) is the canonical
decomposition of X, then (B, L) can be taken to be the canonical decomposition of
Y. If X is a local martingale, so is Y.

PrOOF. The proof of Corollary 3.4(i) gives a measureable function h such
that when X is a semimartingale, h(m;X) = (A, M) is a decomposition of X. To
prove the first statement in the Corollary, just let (B, L) = h(m,Y). Likewise,
the proof of 3.4(ii) gives a measureable function g such that, when X and Y are
special semimartingales, g(m,X) = (A, M) and g(m,Y) = (B, L) are the canonical
decompositions of X and Y. If X =, Y, then m; X =, m,Y, and this proves the
second statement. If X is a local martingale, then, by the foregoing, Y is a special
semimartingale whose canonical compensator is the zero process, hence a local
martingale. 0

4. Proof of a theorem of Stricker. By making an easy modification of
our characterization of bounded semimartingales (Theorem 3.3) we get a proof
of the main theorem of Stricker [8] (Corollary 4.2 below). -

THEOREM 4.1. Let X be a bounded process such that, for some subsequence
nm of N, there is a constant C such that for all m

Y (Xirisn,y — Xim,)* < C.

Then X is a semimartingale iff for each t there is a positive, bounded random
variable N such that for some constant K

E[Yi<n: | EIN(X(i+1/my — Xia) | Fisnl |1 = K.

ProoF. Given t, choose N, and, as before, let N, = E[N | F,]. Observe that
E[N(Xs1/my — Xisn) | Fia)-
= E[Ni/n(X(i+1/n) - Xi/n) l Fi/n] + E[(N(i+1/n) - Ni/n)(X(H-l/n) - i/n) | Fi/n]~
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Hence
E[Yicnt N | E[(XG+1/m) — Xim) | Fisnl 1]
= E[Yi<nt | El(NGr1/n) = Nipn)(Xirrsmy — Xisn) | Fira] |]
< E[Yi<nt | EIN(XG41/m) — Xisn) | Fisnl |1
< E[Yi<nt N | E[(Xs1/m) — Xim) | Fin] 1]
+ E[Yi<nt | ElNGr1/m) — Niyn)(Xiriymy — Xiga) | Fipal | ]

Thus, by Theorem 3.3, to prove this Theorem, it suffices to bound the last term
above. But

E[¥i<n: | E[(NG+1/m) — Nin)(Xisrmy — Xign) | Fisn] 1]
=< Yi<nt E[| (Ng+1/m — Nifn)(Xiir1/my — Xign) 1]
< (Zicnt ElXasiym = Xim)DV*(Zi<ne El(Ns1/my — Nigm)*DV2
<= C2|N|: < o,

the first two inequalities following by Jensen and Cauchy-Schwartz, respectively,
and the last inequality holding when n = n,, is an element of the subsequence in
the hypothesis. But because X and N are bounded and X is right continuous, the
bound for arbitrarily large n implies it for all n (the proof is similar to that of
Lemma 3.2).0 ,

COROLLARY 4.2 (Stricker’s Theorem). If X is an (F.)-semimartingale, and
(G:) is a subfiltration of (F,) such that X is (G;)-adapted, then X is a (G)-
semimartingale.

PROOF. Suppose that X satisfies the hypothesis of Theorem 4.1. Observe
that, by Jensen’s inequality, for any n, N and ¢,

E[Yi<nt | EIN(X(i+1/m — Xisn) | Gim] 1] -
< E[Yicnt El| EINX s+ — Xim) | Finl | | Gignl]

= E[Yicnt | EIN(X(is1/my = Xisn) | Fiml |1

Thus, by Theorem 4.1, if X is an (F,)-semimartingale, then it is also a (G;)-
semimartingale. The remainder of the proof, then, consists merely in reducing
the general case to this one. First, by replacing X with X — V, where V is as in
Theorem 3.3, we may take X, and the jumps of X to be uniformly bounded by 1.
If we let

T, =inf{t: | X;| + [X, X].> n},

then both X”» and [X”, X™"] are bounded by n + 1. Since the T,’s are all F(X)-
measureable, and X is a semimartingale iff each X7~ is, we may assume that X
and [X, X] are bounded. Now by Meyer [5], Theorem VI-4,

[X, X]m = lim,,_,w 2 (X(i+l/n) - i/n)2 in probability.
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Choose a subsequence n,, of N such that for each m,
(4.1) P(I S Kismg = Xim ) = [X, X]u| > 277) < 277,
and let
Uy = inff{t: for some m, Ficn: (X(s1/ny — Xim,)? > k}.
Then, by (4.1), U, — = a.s., and
> (X(l{il/nm) - X}/]ﬁmy sk+2|X|3

Thus X satisfies the hypothesis of Theorem 4.1, and hence the Corollary holds
for each X" But, X is a semimartingale iff for each k, XU is a semimartingale,
so the result follows for X. 0O
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