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ON THE UNIMODALITY OF HIGH CONVOLUTIONS OF
DISCRETE DISTRIBUTIONS ‘
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It is shown that if {p;} is a discrete density function on the integers with
support contained in {0, 1, -- -, d}, and p, > 0, p; > 0, ps-1 > 0, pg > 0, then
there is an no such that the n-fold convolution {p;}** is unimodal for all
n = no. Examples show that this result is nearly best possible, but weaker
results are proved under less restrictive assumptions.

1. Introduction. The unimodality of distribution functions has been of
substantial interest, especially in connection with the question of whether all
class L distributions are unimodal (which was finally answered in the affirmative
by Yamazato, 1978). In view of the (at that time unproved, but widely conjectured)
unimodality of the limiting distributions of class L, A. Rényi (see Medgyessy,
1977) conjectured that something stronger ought to hold for a discrete distribution
{p;} on the integers, namely that for each such distribution there ought to be an
integer no such that the n-fold convolution {p;}* is unimodal for all n = n,.
Medgyessy (1977) extended this conjecture to continuous distribution functions.
However, the Rényi and Medgyessy conjectures are both false, as was recently
shown by Brockett and Kemperman (1982) and by Ushakov (1982). Their
counterexamples show that it is hard to guarantee unimodality even for high
convolutions of a discrete distribution if the distribution has infinite support.
However, Brockett and Kemperman conjectured that if py, p;, - - -, pa > 0 and
pr = 0 for £ < 0 and k > d, then for n = no the n-fold convolution {p;}* is
unimodal, and they proved this conjecture for d = 2. A similar question was
raised by B. McKay (unpublished). This paper proves a result stronger than that
conjectured by Brockett and Kemperman, namely that {p;}* is even strongly
unimodal.

A probability distribution { p;} on the integers is called unimodal if the sequence
{pjs1 — Dj}Z~ has exactly one change of sign. Various results about unimodal
distributions are contained in Karlin (1968) and Medgyessy (1977). A more
restrictive concept than that of unimodality is that of strong unimodality; a
discrete distribution {p;} is strongly unimodal if {p;} * {g;} is unimodal for any
unimodal discrete distribution {g;}. A strongly unimodal distribution is unimodal,
but not conversely. A discrete distribution {p;} is strongly unimodal if and only
if it is log concave; i.e., pf = pj_1pj+1 for all j € Z (see Keilson and Gerber, 1971).

We prove:

THEOREM 1. If {p;} is a discrete distribution with p;j = 0 for j < 0 and j > d,
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while po > 0, p; > 0, pa—1 > 0, pa > 0, then there exists an integer no such that for
n > no the n-fold convolution {p;}*» is strongly unimodal.

THEOREM 2. If {p;} is a discrete distribution with p; = 0 for j <0 and j > d,
while py > 0, ps > 0, and

(1.1) ged{j: pi# 0} =1,

then for any & > 0 there is an no = no(3) such that if an denotes the value of the
n-fold convolution { p;}*~ at k, then for n = ny,

2
Qpn = Ap-1,n0k+1,n

forén <k < (d— dé)n.

The greatest common divisor condition (1.1) of Theorem 2 is obviously
necessary for the conclusions of that theorem to hold (as otherwise the distribu-
tion and all multiple convolutions of it with itself are concentrated on multiples
of that greatest common divisor), but it is not sufficient to obtain the conclusions
of Theorem 1. In Section 2 we show that for any ¢ > 0, there is a distribution
satisfying the hypotheses of Theorem 2, and for which the inequalities

(1.2) Okn > Qratns  Qkiln < Qr2,n

hold for & as large as n'™* and n = ny(e).

It is possible to obtain results stronger than those of our Theorems 1 arnd 2 by
more careful analysis. For example, it can be shown that high convolutions of
distributions satisfying the hypotheses of Theorem 1 have stronger variation-
diminishing properties than that guaranteed by strong unimodality. (See Karlin,
1968, for a discussion of such properties.)

Our proofs also provide quantitative information about the distribution
{pj}*". For example, it can be deduced easily from our proofs that if the { Dj}
satisfy the conditions of Theorem 1, if K — o in such a way that nd — k — o,
and « is defined as the unique positive solution to

(1.3) e’p’(e”)/p(e*) = k/n,
where
(1.4) p(2) = Ti-o pi2’,
then ay ,, the value of {p;}*~ at k, satisfies
e **p(e®)”
(1.5) Qkn ~ '2—;2——‘/_% as n— o,
where
(1.6) B(n) = ¥(9%/9x%)log p(e”) | s=a-

Finally we mention that related results and references to many unimodality
results from combinatorial theory are contained in Odlyzko and Richmond (1982).
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The authors thank the referee for several useful comments and corrections.

2. Examples and elementary proofs. In this section we show that under
the hypotheses of Theorem 2, its conclusions cannot be strengthened signifi-
cantly. We also prove Theorem 1 for 0 < k < n'* and dn — n'* < k < dn,

provided n is large enough.
To show that Theorem 2 is nearly best possible, consider the distribution

Po=pP2=pm=%, pj=0 for j#0,2,m,

where m is an odd integer = 3. Then condition (1.1) is satisfied. We will show
that for this distribution, (1.2) holds for k < n'™¥™ if n is large enough. This
result can also be proved by a more elementary argument that uses estimates of
multinomial coefficients, but we prefer to use the analytic proof given below,
since it introduces the techniques which we find necessary to use in later sections.

The value of the n-fold convolution {p;}*~ at the integer k is 3™"a;,, where ay,,
is the coefficient of 2* in p(2)", p(2) = 1 + 22 + z™. Now ay, is given by

1
2.1) Qn = = p(2)"z7* 1 de,
27t Jiz)=r

where r > 0 is any constant. Choose r = kV2(2n — k)2, 0 < k < n. Then, on
|z| =r, for k < n, we have

p2)=1+22+00™ = (1 + 2%)(1 + 0(r™)),
and so for nr™ = O(1), say, which we assume from now on,
p(2)"=(1+2)"1 + 0(r™)" = (1 + 2%)*(1 + O(nr™)).
Therefore for nr™ = 0(1),

1 1+ 2z 1dz + O(nr""”‘l f |1+ 22| dz) .
lz|=r

2.2 p =
2.2) o, 2wt Jz)=r

Now the first integral above is just the coefficient of z* in (1 + 2?)*, which equals
(z}2) if k is even and 0 otherwise. On the other hand,

(2.3) JI‘ |1+ 2%|"dz =0(r(1 + r®)") = O(r exp<-§>>.
z|=r
If h = [k/2] (the greatest integer < k/2), then the last term in (2.2) is
O(n®m72pm=12(ne/h) exp(—9h?/(10n))).
But h! ~ (2wh)¥?(h/e)" as h — o, so for large h,
<n>_n(n—1) .. (n—h+1)

h h!

W h ’ . h _ 2
> e %) 122t (1= L) = 2oony2( ) exp( =2 ).
h j=0 n h 3n
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Therefore the quantity in (2.3) is

oo O el 2)

This is o((})) as n — o« if h = O(n'"%™), (which guarantees nr™ = 0O(1)), and so
in that range

a2h—2,n > a2h—l,na a2h—1,n < a2h,n’

which shows that the sequence oscillates in that range.
We next prove Theorem 1 for k very small. Suppose that po, p; > 0,

p(Z) = 27=0 pfzj’

and we are interested in the value a, , of the n-fold convolution {p;}*" at k. Then
ax,» is again given by (2.1). This time we choose r = pop7'k(n — k). On | z| =r,
asn— o, k= o(vn),

p(2) = po + p1z + O(k®n7?),

p(2)" = (po + p12)*(1 + O(k®n71)),

1
Gn = 5= e (po + p12)"27 %1 dz + O(kzn'l J;I- | po + p1z || z| %1 dz)

= <Z>p3‘kp’f + O(k**n*~'pg~*pke*).

Now for n — », k = o(vn),

k k
(’,:) = (1 + o(1)) % > (ck)-1/2<—’,‘f> ,

for some constant ¢ > 0, so
app, = (Z)pb""pf(l + O(k%?n7Y)).

Hence if k = 0(n?*"), then a} , > ax—1 nQx+1,. for large n, which is the desired result.
(By a more careful analysis, the range of values of k for which this inequality
holds can be extended.) Note that in this part of the proof we did not use the
fact that pg—; > 0.

To conclude this section, we only have to consider-the range dn — n'* < k <
dn. However, this range corresponds to the range 0 < k < n'/* for the n-fold
convolution of the distribution p¥ = p,_j, 0 < j < d, and so is covered by the
preceding discussion. (Note that this part of the proof uses ps_; > 0 but not
p1>0.)
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3. Main part of the proofs of Theorems 1 and 2. In view of the pre-
ceding results, it will suffice to prove that a%, = az—1 ,ar+1,, holds for n'/* < k <
dn — n'* under the conditions of Theorem 1, and for én < k < (d — 8)n under
the conditions of Theorem 2. From Cauchy’s theorem we have

1
(3.1) Qhn = 7 p(2)"27* dz,

21!' i |z|=e*
where « is any constant. We can write this as

(3.2) Apn = % —ak f exp(n log p(e**?) — ikg) dé.

Eq. (3.2) now defines a; , as a real function of the real variable k for any fixed
value of «. (There is a mistake in Odlyzko and Richmond (1982) on this point in
the proof of Theorem 2 of that paper, but it is easily corrected along the lines
used in this paper.) It is immediate from the definition that as a function of k,
ar = ag(a) € C*(—o, ). To prove our results it suffices to show that

(3.3) ak = ap-10pn

for k in the appropriate ranges. To prove (3.3) for k = ko, we choose a = a(ko) by

(3.4) e°p’(e”)/p(e®) = ko/n,
and, defining a; = a;,, by (3.2) with « defined by (3.4), show that
(3.5) (02/0k?)log a;, < 0

fork € [ko— 1, ko + 1].
To prove (3.5) with the « given by (3.4), we define for m = 0, 1, and 2,

I = f 0™exp(n log p(e**?) — ikf) do.

Note that J, and J, are real, whereas ¢/; is purely imaginary. Inequality (3.5) is
equivalent to

(3.6) Jods > J3.

Since o/ is purely imaginary, (3.6) will follow if we show J, > 0, J, > 0. To prove
(3.6), we estimate the J,,. We first consider p(z) that satisfies the conditions of
Theorem 1, i.e., deg p(2) = d, po, P1, Pa-1, Pa > 0. It is also sufficient to consider
n'/* < ko < 3dn/4, since the range k, > 3dn/4 can be treated by considering the

polynomial z%p(1/z2).
Define, for any k € [k — 1, ko + 1],
3.7) 0o = n/30k~12,

Since ko < 3dn/4, a < c for some constant c, and so for 8 € [0y, 21 — 6,],

| p(e**?) | < | po + pre**?| + Y&, pje’™.
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But
| po + pre“*?|% = p3 + 2pop1e“cos 6 + pie®
= (po + p1e®)® + 2pop.e*(cos 6 — 1)
< (po + p1e?)?(1 — c’e®6)”
for some constant ¢’ > 0, and so
(3.8) | p(e**”) | < p(e*)exp(—c”e*63)

for some ¢” > 0. Therefore if

()
(3.9 JE = f 0™exp(n log p(e**®) — ikf) db,
then
(3.10) JIm = JE + O(p(e*)"exp(—c”ne*93)).

Next, we consider J%. Since 8, — 0 as n — o, for | | < 6, we have

(3.11) log p(e**?) = log p(e®) + ife” pre) _ 0%6 + 0(]013y),

p(e®)
where
2
(3.12) B = B(ko) = 2 %% ~—— log p(e”) L
d® .
(3.13) v = y(ko) = maxg =y, | 73 log p(e®™)
y y=0

Since po > 0, p; > 0, and « is bounded above, Be™®, ye™ € (a1, az) for some
constants a;, az, 0 < a; < a; < . Therefore, by (3.4) and (3.11),

o
JEpe®)™ = J:o 0™exp(—nb?B8 + O(n| 6 |%y) + i(ko — k)8) db.

By (3.4), yn/k € (a{, a3) for some constants a1, a3, 0 <a; < a; < %, s0
n181% = 0(16|n'")

in | 0| < 6. Hence

6o
Jrple?)™ = f_ . f™exp(—nB6* + O(| 6| n'/*®)) df

0

b 0
= f 0™exp(—nB6?) df + O< f n'1%| g | ™*exp(—np6?) d0>
—6, 6

~Y%

c,,.(nﬁ )—(m+1)/2 + O(nl/lﬁ(nﬁ )—(m+2)/2)’

where ¢; = 0 (since the integrand is odd), ¢o = 72, ¢, = w/2/2. Therefore J, > 0,
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Jy > 0, and (3.6) holds for n sufficiently large, n/* < k < 3dn/4, and this
completes the proof of Theorem 1.

The estimates of the J,, obtained above yield easily the estimates for the
coefficients ay , that were mentioned in the Introduction.

The proof of Theorem 2 is very similar, and will not be presented in detail.
The major difference is that « is bounded below as well as above, and so an
estimate like (3.8) can be obtained (under the assumptions of Theorem 2) even
when p; = 0. To see this we first show that if (1.1) holds then for large n, for
each 0 satisfying 6y < | 0| < 7 (6, defined by (3.7) as before) there is at least one
Jj with p; > 0 such that the inequality

(3.14) cos(0j) < 1 — 0%/4

holds. If there were no such j, then for each j > 0 with p; # 0 there would be an
integer m; # 0 such that | m;| <j and

|0] - 27rmj| < fp.
But then
[0 — 27m;/j | < 60/j < 6o

for all j > 0 with p; # 0, and so if n is sufficiently large (and 6n < k < (d — é)n)
then

(3.15) |mij—mii| <%
for all i > 0, j > 0 with p; # 0, p; # 0. But (3.15) means that
mij = mji

for all i > 0, j > 0 with p; # 0, p; # 0. If j, denotes the smallest j > 0 for which p;
# 0, then for each i > 0 with p; # 0 we have

(316) 1= mijo/m,-o.

Now |m;| < j, so if D is the greatest common divisor of j, and m;, then
Jo/D # 1, and by (3.16), jo/D divides all i > 0 with p; # 0, which contradicts (1.1).
Hence we have shown that (3.14) holds for every 0, 6, < | 6 | < 7, and some j with
Dj # 0.

Once (3.14) is established, an estimate of the form (3.8) is easily obtained for
0p < | 0| < 7. Theorem 2 then follows. easily from the estimates for J, obtained

in the proof of Theorem 1.
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