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BRANCHING PROCESSES IN PERIODICALLY VARYING
ENVIRONMENT

By PETER JAGERS AND OLLE NERMAN
Chalmers University of Technology and Gothenburg University

In order to model the diurnal variation of certain cell populations we
study general one-type branching processes whose individuals reproduce in a
manner that is influenced by time in a periodic fashion. A Malthusian growth
rate is established as well as a periodically varying asymptotic composition,
over ages e.g.

1. Introduction. Besides exponential growth the asymptotic stable popu-
lation compositions, and their relation to individual reproductive behaviour,
presumably constitute the most important specific contribution of (supercritical)
branching processes to the study of actual populations. The known diurnal
variation in growth of certain cell populations [cf. 3, 5, 11] raises the question of
similar results for processes whose individuals display a reproduction which is
time dependent in a periodic manner. Hopper and Brockwell have constructed a
model of such phenomena, using random walk ideas [6]; Klein and Macdonald
studied Markov branching processes with time periodic death intensity and
reproduction law [12]. For general branching processes some heuristic arguments
were reported in [8].

This paper establishes the counterpart of exponential growth and the stable
population composition for general branching populations in periodically varying
environments. For simplicity the period is taken as 1. First, a brief formulation
of a model with time dependence is given. A functional relation for the means is
deduced, of a generalized convolution type. It is a variant of an equation in the
model of [13: Ch. 7]. Positivity and weak compactness arguments are used to
find the Malthusian parameter and an appropriate eigenfunction of an operator
corresponding to the convolution type transformation (and the Malthusian
parameter). These are then applied to reduce the asymptotics of the means of
the branching process to those of a sort of periodically state dependent renewal
sequence. The latter are caught by a result due to H. Thorisson [18].

Finally the martingale and law-of-large-numbers technique deployed in [14]
and [9] can be adapted to investigate the asymptotics of not only means but of
the branching process itself and its composition. For simplicity we contend
ourselves with a treatment requiring a reproduction variance restriction.

2. The model. With N the positive integers, N° = {0},
I = U:_o N" '
the set of (conceivable) individuals, (Q, 27) an abstract life space, and %[0, 1)
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the Borel algebra on [0, 1),
([0, 1) x @, [0, 1) x &%)
is the Ulam-Harris population space on which the process is constructed. As
usual 0 € [ is interpreted as the ancestor and x = (x,, ---, x,) € I as the x,th
child of the x,_;th child of ... the x;th child of the ancestor, and the xth
coordinate of (po, (w,; x € I)) describes x’s all life, while the first coordinate po
indicates the phase or clock at the ancestor’s birth. The life space is thus assumed
rich enough for all relevant entities to be defined on it. At least the successive
ages at childbearing
0=71,w)=7Quw)< .. =®

should always be defined for w € Q.
The point process

£(w) = Yk=1 Loy

on R* is termed the reproduction process, The age of x at her kth childbear-
ing is thus 7(k, w,) which we denote 7.(k) as a function of the basic outcome
(po, (wy; x € I)). Similarly x’s reproduction process is

&:(po, (ws; x € I)) = E(wy).
The successive birth times, o,, are defined by induction
g =0
o = a; + 7(R),

where xy = (x1, -+, %, Y1, -+, Ym) f x = (%1, -+, x,) and y = (3, -+, Ym)
(x0 = 0x = x). The clock at x’s birth, p,, is then of course (¢ mod 1 = 0)

px = (0 + po) mod 1.
The periodicity in the environment is modelled with a set of life laws
P(s, -),s €0, 1),
probability measures on (R, 27) for individuals born at s o’clock. All functions
s ~P(s,A), A€ Y

and supposed to be measurable.

It is then easy to see that Ionescu Tulcea’s theorem [15, page 161] guarantees
the existence of unique probability measures P,, s € [0, 1), on the basic probability
space determined by the starting phase p, = s and the requirement that for all
xel

Ps(wx €. Iwy; y € I\({x} X I)) = P(Px, ‘)-

Now, let S,, x € I, denote the ancestor shift on [0, 1) X @/, i.e. an operator
rentlering x an ancestor

Sz (00, (wy; ¥ € I)) = (px, (wry; ¥y € I)).
If o/, is the o-algebra which is generated by the lives w, of all individuals
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x € U} N*, then, for any P,, all daughter processes S, x € N"*', are independent,
given 7, and each is conditionally distributed according to the law P,_.
Similarly if X; = 0, X,, X3, - - - are the individuals numbered in an order not

contradicting their appearance
0=o0x =< Ox, = ++ -,
and %, is the o-algebra generated by wx,, wx,, - - -, wx,, then (for any P;) the
distribution of wx_,, given %, will be P(px,,,, -). Let
I(t) ={xk; o, =t < ogp <>, x €EI k E N}
denote the coming generation, the set of individuals born after ¢ but by mothers
who were already then born. Then the total population born by ¢,
=H#x €I o <t}
is a stopping time with respect to { %,} and the processes S,, x € I(t), are
conditionally independent given %, each according to the law
P(S.€ - 1%,)=P,().

For further discussions of this and similar facts, see [9].

A random characteristic x = {x(a); a € R} is a stochastic process on the
population space [0, 1) X Q, here (and usually) taken to be nonnegative and
vanishing for a < 0. The interpretation is that x (a) is the score in some sense of
the ancestor at age a, the score of other individuals x € I being

xz(a) = x(a) © S..
For examples of random characteristics we refer the reader to [7, 9]. Let it only
be pointed out here that this general definition allows the characteristic of an
individual to be influenced by the individual’s progeny and their characteristics.
The periodic branching process counted by x at time t (after the start of the
process) is ’

¥ = erl Xx(t - Ux)
and x’s x-counted daughter process is

z%‘(x) =2fe Sx = ZyEI Xy °© Sx(t — 0y ° Sx) = Zyel Xxy(t - (ny - Ux))~
This leads to the fundamental decomposition
2hu = Eo,st X:(t + u — 02) + Yeerw z%(+u—0,(x)’

where the summands in the last term are conditionally independent and distrib-
uted as 2%, v =t + u — g,, under P, , given %,. It will be used in Section 5.

3. The expected behaviour of Malthusian processes. We first consider

the expectations )
* mX, = Es[2¥]

with respect to P,, s € [0, 1). Denote by
u(s, t) = E[& ()] = Es[£([0, t])],
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the reproduction function of an individual born at s o’clock, and write
&(s, a) = E;[x(a)]

for the expected score of an a-aged individual born at the very same s o’clock.
Extend the function g periodically so that

g(s + n,a) =g(s —n,a) =g(s,a)
forne N, s€][0,1),and a € R. For x € N" then
EJ[x:(t — 02) | 1] = 8(s + 04y t — 02).
Hence, with n(x) = n < x € N”, and &/, the trivial g-algebra,
m¥ = Ej[Teer x:(t — 0x)]
= Yeer Ef[Es[x:(t — 0x) | Znw-1ll
= Yver Es[g(s + 0, t — 02)]

= J; g(s + u, t — u)E[yaul.

But
Es[yt] = :=0 Es[ZxEN" I(G,Stl] = 2:=0 /J'n(sy t) = l/(S, t)y

say, where uo(s, t) places mass one at the origin and
t
pn(s, t) = f p(s +u, t— U)pn-1(s, du),
0
for n € N. In conclusion
t
mk = f g(s +u, t — u)v(s, du)
0

and for decent g (i.e. decent x) the study of m, is reduced to that of v(s, t).
We assume that we may define operators T on L[0, 1] by

Tsf(s) = L f(s + t)e™u(s, dt)

at least for 8 large enough, f periodically continued. If there is a value « such
that the spectral radius of T is one, then « is the Malthusian parameter. The
process itself is called Malthusian if this spectral radius is also an eigenvalue
with a nonnegative and bounded eigenfunction h, vanishing only on a reproduc-
tion null set, i.e. such that if No = {s; h(s) = 0} then u(s, No — s) = 0 for all
0 < s < 1. The next section gives sufficient conditions for Malthusianness.

Let us note here that if the process is Malthusian and s € Ny, then with h

extended periodically

0= f h(uw)e *“Du(s, du — s)
0
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implies that (prime for complement)
0 = u(s, No —s) = pu(s, Ng — 8) + u(s, No — s) = u(s, Rs).

Hence a process starting at s € Ny o’clock will exhibit (almost) no births. But
also if s & Ny u(s, No — s) = 0, and hence whenever we start (almost) no
individuals will be born at times in Ny. In other words we may restrict attention

to s such that h(s) > 0.
We shall however need an assumption which even forces inf A > 0:

The u(s, -), s € [0, 1), have a common Lebesgue continuous compo-
(3.1) nent, i.e. for some 0 < f € L'[0, ») not a.e. zero, u(s, du) = f(u) du for
all s.

If this holds e ™*“u,(s, du — s), s € [0, 1), must also have a common positive
Lebesgue component for any n large enough. But, from the eigenvalue property
of h:

h(s) = f e tIh (u)p,(s, du — s),
0

for any n € N, so that
info<s<1h(s) > 0,

as claimed. We can thus define a new kernel
(s, du) = h(s + u)e ™u(s, du)/h(s),
h extended periodically. It is straight-forward to verify that
h(s + u)e™un(s, du)/h(s) = (s, du),
it, determined from g as u, from u. Hence

h(s)e™ h(s)e*

his + 1) n=0 Mn(s, du) = hs + u) v (s, du)

V(S, du) = Z;=0 ﬂn(s9 du) =

in an obvious notation.
But, for each s € [0, 1), ii(s, -) is a distribution function on R,. We extend it

in its first argument,
na(n + s, dt) = u(s, dt)
and consider an increasing Markov chain {M,}5 on R, with increments
My — M| M, = s ~ (s, db).

The chain is a sort of renewal sequence, the increments however not i.i.d. By a
result due to Thorisson [18] renewal type theorems still hold, under Condition
3.1. Indeed, by Theorem 4 in 18] (or by Harris recurrence arguments) the
Markov chain {M, mod 1} has a unique invariant distribution, A say, on [0, 1)
which we scale to

T = N7,
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where v is the expected ergodic step length of {M,,},

Y= f f (1 = g(s, u)) dul(ds).
0 0

The measure = is then periodically extended to all R. Provided v < o, it is then
a consequence of [18, Theorem 6] that v(s,n +r—s+ -) r€]|0, 1), converges
towards 7 (r + -), as n — o, in the strong sense of convergence in total variation
on any finite interval. Hence e *™*"~*)y(s, n + r — s + du) will tend in the same
sense towards

h(s)e®w(r + du)/h(r + u).
Further the key-renewal-type theorem [18, Theorem 10] (and the facts that
inf,h(s) > 0 and sup,h(s) < ) implies that
h(s)e™
h(r — u)
as n — o, provided sup,e™g(r — u, u) < and e *“g(r — u, u) = 0, as u — .

For the proofs in Section 5 we shall need some uniformity in these conver-
gences to be guaranteed by the condition:

(-]
e_a(n+r_8)m§,n+r—s d f g(r - u, u) 1r(r - du),
0

(3.2) There is a distribution function F on [0, ) such that 1 — (s, u) =1 —
F(u) for all s and u, and such that

J; (1 - F(u)) du < o,

If this is also satisfied, then the total variation convergence on any fixed
interval of e *"*"9y(s, n + r — s + du) towards its limit is indeed uniform in
" s€[0,1) (and also in r € [0, 1)), [18, Theorem 7(a’)]. Hence if x has bounded
support and g is bounded the convergence of e™*™*"~9mX __ towards its limit is

uniform in s € [0, 1) (andin r € [0, 1)).

4. Conditions for Malthusianness. Malthusianness as defined is a prop-
erty of the operators

Tsf(s) = fo f(s + t)e ™ u(s, dt) = J; f@®)e P Du(s, dt — s)

on L*[0, 1), the integral defined by periodic extension of f € L*[0, 1). The
classical result on the spectral theory of such positive integral operators is
Jentzsch’s theorem [4, 17]. We shall apply a modern form of it, which makes it
possible to relax somewhat the requirements of continuity in s and boundedness
of the kernel [17, page 337].

The assumptions we make use of are the following:

(4.1) The process is supercritical in the sense that there is a 8 > 0 such that T}
is well defined and its spectral radius r(T}) is finite but not less than one.
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(4.2) The convolved u, (s, - —s) are absolutely continuous with respect to some
finite measure u, for n = some ny.

Bno (s, du — s) = K(s, u)u(du).
(For simplicity in the argumentation below we always assume ny = 1.)

(4.3) The kernel K should be jointly measurable in its two arguments. It should
be LI u] bounded for some q € (1, «]:

sup, f K(s, t)%u(dt) < oo.
0

By use of weak separability it then follows that T is a compact operator [1],
[17, p. 337], since by (4.3) and Hélder’s inequality Ts maps LP[u] into L~
1/p + 1/q = 1. Hence [10, page 185], its spectrum may accumulate only in the
origin. Since

r(Ts) < suposs<1 f e P9y (s, dt — s)

0
[ b 1/p J’ o 1/q
< sup, - f e P u(dt)(  sup, f K, t)m(dn} :
[Jo ] e

limg_r(Ts) = 0. Moreover r(Ts) does not increase in 3 and a Holder argument
again applies to show that the map 8 ~ T} is continuous in the strong operator
topology. Hence [10, page 213] the spectrum varies continuously with 3 and so
does the spectral radius. We have proved

LEMMA 4.1. Under Conditions (4.1-3) a Malthusian parameter o > 0 exists.

To be meticulously precise about Jentzsch’s theorem we should exhibit T, as
an integral operator on [0, 1). Writing

pa(dt) = Trzo e u(n + dt)
for t € [0, 1) and
(s, t) = o e IK (s, n + t)uls, n + dt)/u.(dt);

in the sense of a Radon-Nikodym derivative, we see however that

T.f(s) = J; f(t)e 9 u(s, dt — s)
= J; f(t) o e (s, n + dt — s)

_ f £ s, Opalde).

There are then only two conditions to be checked in order to conclude from [17,
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page 337] that the spectral radius r(T,) = 1 is an eigenvalue with a unique
normalized a.e. [u,.] strictly positive eigenfunction h, namely that some power of
T, is compact—which we already know—and the following communication prop-
erty: if S C [0, 1) and S’ denotes its complement in the unit interval, then
1e(S)ua(S’) > 0 implies that

J;J;, (s, )ua(ds)pa(dt) > 0,
or, in terms of the original measures, that:
if
X (S +n))(Zn u(S"+n)) >0
(4.4) then also

f u(s, S +j—s)u(ds +k)>0
s
at least for one pair j, k from N.

Note that this trivially holds if u(s, -) have a common Lebesgue continuous
component (Condition (3.1)). In conclusion we have proved

THEOREM 4.2. Under Conditions (4.1-4) the process is Malthusian.

5. Convergence of the processes. In this section we shall consider a
periodic Malthusian branching process with parameter « > 0 and eigenfunction
h. We assume conditions (3.1), (3.2) and

(5.1) SUPo<s<1 Var, [ f e“’”fo(du)] < o,
0

Recall from Section 3 that info<;<12(s) > 0 and norm h to satisfy supo<s<1h(s)
=1.
With
"l/x = h(ﬂx)e_w‘, x € Iy
Rn = IPO + Ez=l ((E;;l ¢Xu) - ‘I/Xk)y n = 07 17 27 o

turns out to constitute a martingale with respect to {%,}, under any P, s €
[0, 1). This is a consequence of the eigenfunction property of h and the fact that
conditionally on %, ox_,, and px ,, = (s + ox,,,) mod 1 are both known while
the daughter process of X,.; obeys the law P, :

Es[Rn+1 - Rnl -%t] = Es[z;;l ‘pX"-p‘jl -%z] - ¢Xu+1
= f h(s + ox,,, + u)e ™ Xdu(s + ox,,,, du) — ¥x,,,
()

= e *Xp+1h(px,,,) — ¥x,,, = 0.
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The total population y, at time ¢t is a stopping time with respect to { %} for
each fixed t. Thanks to the Optional Sampling Theorem

fw} = {Ry,}

is therefore a nonnegative supermartingale in continuous time with respect to
{ '%'t}' :

Now recall the definition of I(t), the coming generation at t. It is directly
verified that

Wy = ZxEI(t) ¢x-

Observe also that on {y; + o} R, and w; both eventually vanish, so that almost
surely the limits
R, = lim, R,

and
We = lim; W,

must be equal.

THEOREM 5.1. For any P;, s € [0, 1), {w,} is an L*-convergent martingale,
{we > 0} = {y; — ®} a.s. and P,(we> 0) = P,(y; — ®) > 0.

PROOF. The first part of the theorem follows from the L2-convergence of
{R.} which in its turn is a consequence of

lim,,_,Var,[R,] < oo,
to be shown now:
Var,[R,] = E,[Y}= Vars[Rj+1 — R;| %]
= E,[3] e % (s + ox,,)],

where
v(s) = Varxltjo~°° h(s + u)e""‘“go(du)}.
Hence
lim,_,Var,[R,] = ES[J;W e 2y (s + u)ydu} = j:o e 2 (s + u)v(s, du),

which due to (5.1) is convergent together with

f e~ (s, du),
0
since h is bounded.

« But from the asymptotics of ‘V(S, -) (Section 3) and inf h(s) >0

sup;e " *u (s, t) < .
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Consider now the second claim of the theorem. By the definitions of {w,} and
{v:} obviously

{we > 0} C {y, — ).

Denote by we(x) = lim,_.w; © S, x € I, the limit of the “daughter martingale”
of x, and observe that, on {y, — o},

Woo > wm(X")e—aa‘xu
for all n. Hence
Ps({ww > O} U {yt +> Oo} | %1) = Ps(woo(Xn+l) > OI %1)
= Es[P,,XM(ww > 0)] = inf, P,(w. > 0).
But by Levy’s theorem the first of these terms must tend to the indicator function

of {we > 0} U {y, +> o}. Therefore if we can prove that inf,P,(w. > 0) > 0, it
follows that

P,(we>0 or y,+ o) =1

and consequently that {w. > 0} = {y, — o} a.s., as claimed.
To prove that info<,<;Ps(w- > 0) is not zero we need

LEMMA 5.2. For some ¢ > 0 and n € N there exists to each s € [0, 1) an
is € {1, - -+, n} such that the distribution of p; under P(s, -) has an absolutely
continuous component with density at least ¢, on a set B, with Lebesgue measure
at least e.

PROOF OF THE LEMMA. By (3.1) there is an ¢ > 0 and a set A with positive
« Lebesgue measure, say 6 > 0, such that, for all s € [0, 1), u(s, du) = ¢ 14(u) du.
This A can be chosen bounded. Let ¢ be an upper bound of A.

The Malthusianess of the process implies that

SUPo<s<1 j(; i e ™u(s, du) <

and hence that supsu(s, ¢) < . Condition (5.1) yields—in the notation £(c) =
£([0, c])—that ,

Suposs<1 Es[£2(c)] < .
Since

£(c) = Zita Lpa(r (@),
and 1y, (7 (i) = 0if £(c) </, it holds for any n € N and s € [0, 1) that

Ei[Tisn 1oa(7(0))] = E[Zisn loalr(i)); £(c) > n]
< E,[£(s); £(s) > n] < suposr<1 E,[£%(c))/n.
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Thus we can choose n to render

Es[2i>n 1[0,c] (T (I'))] < 86/2

for all s.
Let f:(s, u) denote the density of the Lebesgue continuous part. of the distri-
bution of 7 (i) under P(s, -),i € Nand s € [0, 1). Then foru € A

Y fils,u) = ¢
and so
35/2 > Es[2i>n 1[O,c] (T (l))]

Zj; Yisn fils, u) duZJ;(e—Z?ﬂ fi(s, u))*du.

If now 4 is the Lebesgue measure of
fu € A; X fils, u) = ¢/3)
it follows that 4 < 36/4. In other words
A, ={u € A; XL fi(s, u) > ¢/3}
must have a Lebesgue measure at least §/4. But
A, C UL {u € A; fi(s, u) > ¢/3n}
so that at least one of the sets in this union has Lebesgue measure not less than
6/4n. The short final step from bearing age to clock is left to the reader. O
The proof of the theorem is now completed by
Py(we > 0) = Py(we(is) > 0, 0, < ®) = E [P, (ws > 0); 0;, < ®]

= f P,(w. > 0) du.
Bﬂ

But, by the L2-convergence of {w;}, P(w.» > 0) > 0 for all 0 < s < 1. Since
B, has Lebesgue measure = ¢ the integrals must have a strictly positive lower
bound. O

THEOREM 5.3. Suppose that x is a characteristic such that

sups.Es[x (a)] < o,
and
sup,E,[x(a)] — 0,

as a — o, Then, forr, s € [0, 1),
e X s = Weo f E._.[x(Ww)le™“x(r — du)/h(r — u)
0
in L'(Py), as n — oo,

Before the proof we give a consequence of this and Theorem 5.1 on the
composition of the total population
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COROLLARY 5.4. If x satisfies the conditions of Theorem 5.3, then, for r,
s€|[0,1),
Zhar—s _ J§ Er-ulx@)le™x (r = du)/h(r — u)
Yn+r—s J-r)o e—auﬂ,(r - du)/h(r - u)

in P,-probability on {y; — »}, as n — oo,

PROOF OF THE THEOREM. Fix sandr €0, 1). Let
x‘(a) = (x(a) A ¢)lpqla),
where 0 < ¢ < . From Section 3 we know that
lim,_oE,[| ety gmalntr—s) X sl ]

= limn—me_a(n*.r_‘?)m,z‘,n-ﬁ-r—s - limn—»ooe_a(n+r_8)m.;<,n+r—s

= fo E,_.[x(@) — (x(w) A ¢)lpq(u)lh(s)e ™ x(r — du)/h(r — u).

This is also the expected absolute difference between the suggested limits of
e mtr=slx o and e ™*"92X, .. Since it can be made arbitrarily small by
choice of ¢ large, it is enough to prove the proposed convergence for all
e—a(n+r_3)z;(;:-r—s,c< o,

By the already shown common Lebesgue component of u(s, -) 0 < s<1,itis
straightforward to dominate »: )

v(s,t) = U(t), 0=ss<1, t>0,

where U(t) is the renewal function of a renewal sequence with increments
distributed as a mixture of an atom at zero and the common Lebesgue component
of (s, -). Hence it follows that

sup, E,[ y:] = sup,v (s, t) < o,

for any fixed ¢ < oo,
Arguing as in the proof of Theorem 3.2 in [9] one can prove that

Var[y:] = J; t v(s + u, t — wr(s, du)
where '
u(s, t) = Vars[ J; t v(s+u, t— u)£0(du)] .
But then, since »(s + u, t — u) < v(s + u, t),
; Var[y,] = J; t (Supyv(s’, £))*Var,[£(t)]v(s, du)

< (supyw(s’, t))*supy Vary[£&(t)] < oo,

as a consequence of (5.1) and the fact that supo<;<iv(s, t) < o. Hence
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SUpPo<s<1Es[ y?] < ®, and accordingly also
SUPy=SUPo=s<1Var[2X ] < ¢? suposs<i Es[y?] < oo,

for all t < co,
Recall the fundamental decomposition given in Section 2. For x°and u > ¢ it
takes the form

28u = Duogme X5t + U — 02) + Taer 25u-0,(2) = Seero 2¥u—0, (%),
since x°(a) = 0 for a > ¢. Hence, u still > ¢,
Var,[e™2¥%.] %] = Teerw,o=eru € 2 Var 250, (x) | Z,]
< Yierv,o=tu € 2 ISUPo<y <y 0zs<1 Var [2 ]
< e erl(t),.r,suu e_a(tﬂ—q’)h(l?x)e_w’
- SUPos w'su0ss<1 VaLs[2] ]/infosy <1 h(s')
< e, SuPo<u <u,0=s<1 Vars[2X]/infocy <1 A (s’).
Further
Es[z%‘-:ul %,] = Ysele) m,’f:,t-o-u—.f,,
so that we can conclude that
E,[(e™“ 2%, — Seery MK tru-s,)?] = E[Var ez | £,]] — 0,

ast— oo,
By this our task has been reduced to proving

. . — ;. - c
llmj—»oo hmn—)ooEs“ e alntjtr=s) erl(n) m;’f,,n+j+r—s—¢,
- wy, f E, .[x‘W)le™x(r — du)/h(r — u)|] = 0.
0
We write , for the coefficient of w, here and recall from Section 3 (the remark
at the end) that the convergence
- j y— c
e alntjtr-s ”’)m;)f,,n+j+r—s—a,/ h(px) —> Kr
is uniform in s, as n +j + r — s — o, — . Hence in
e—a(n+j+r—s) erl(n) m;’)‘x,n+j+r—s—a, — KrWn
- — 7. — c
= erl(n),«r,sn+j/2 € w"h(Px){e ontitr=s q’)m,’f,,n+j+r—s—w,/ h(px) - Kr}
— P I+ pr—s— c
+ 2x€l(n),v,>n+j/2 e ““h(l)x){e alntjtrs qx)m;‘x,n+j+r—s—¢x/h(px) - Kr}y

for any ¢ > 0, the first sum can be made smaller than ¢ w, by choice of j large,
whereas the second is smaller than some constant times

Yx€ln),o>n+i/2 € “*h(py).

Since E [w,] = h(s) remains bounded, it is enough to show that the expectation
of the latter sum tends to a limit, as n — oo, which then decreases to zero, as
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Jj— . But
Seetmoontiz € *h(ps) = e™ "2},
where ¢; is the characteristic
¢(a) = e f e™h(po + w)ko(du).
a+j/2
From Section 3

E[e™"z}]

- J; E,_.[?;(a)]h(s)e™**x (s — da)/h(s — a)

= fo (f e h(s —a+ u)u(s — a, du))h(s)w(s — da)/h(s — a)

+j/2

= h(s) f (f (s — a, du))w(s — du)
0 a+j/2

= h(s) J:o (1 - i(s — a, a + j/2))7(s — da),
as n — o, Since
h(s) = Ei[w,] = Ei[z7] = h(s) J:o (@ — i(s — @, @))w(s — da)
dominated convergence, as j — =, yields the required convergence to zero. 0
6. A remark on application. We have found that the asymptotic size of

a x-counted population as compared to the total population born is

J3 e “g(r — u, u)aw(r — du)/h(r — u)
J3 e™x(r — du)/h(r — u)
at r o’clock, g(s, u) = E;[x(u)]. But 7= and h may be difficult to estimate. Let us

instead assume that the total population has been followed for some time and
known to be of the form e*@(t) at large times ¢ and ¢t mod 1 o’clock, say. Then

t

e*r(dv)/h(v).

e p(t) = wwe"‘J; e~x(t — du)/h(t — u) = we f

Assuming that ¢ is differentiable implies that
(a®(t) + ¢'(t)) dt = wer(dt)/h(t),
which yields the approximate expression
5 eg(r — u, u)(aP(r —u) + ¢'(r — u)) du
Jo e a®(r—u) +¢'(r—u)) du

for the ratio considered. This is given in [8] together with some cell kinetic
illustrations.
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