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LOCAL LAWS OF THE ITERATED LOGARITHM FOR
DIFFUSIONS

By R. F. Bass AND K. B. ERICKSON'
University of Washington

Suppose X; is a diffusion, reflecting at 0, with speed measure m(dx). We
show, under a mild regularity condition on m, that lim sup,oX./h™(t) = c,
a.s., where ¢ is a nonzero constant and h(t) = tml0, t]/log | log t|. The
analogue to Chung’s law of the iterated logarithm is also obtained.

1. Introduction. Let {X(t), t = 0} be a diffusion process on [0, ) on
natural scale, reflecting at 0, with speed measure m satisfying

(1.1) 0 < m{I} < « for all bounded open I C [0, ).

Under (1.1) 0 is both exit and entrance in the terminology of It6 and McKean
(1974, page 108). The purpose of this paper is to present a local version, at ¢t = 0,
of Khintchine’s and Chung’s Laws of the Iterated Logarithm. We impose a
regularity condition on m at 0 which, however, is quite mild. For g8 > 0 put

m(8) = m[0, 8] and
mg{dx} = m{Bdx}/m(B).

Then in addition to (1.1) we require that for some nonempty interval I, C (0, 1]
there is a 6, > 0, 8y > 0 such that

(1.2) mg{dx} = dodx, x € Iy, B =< fo.

In other words m must have an absolutely continuous part with a density u
satisfying Bu(8x)/m(B) = §, for all x € I,. The class of such m includes, but is
not restricted to, those of the form m{dx} = x*L(x)dx, a > —1, for some slowly
varying (at 0) L. (Note: As the reader may easily show, if m satisfies (1.2) with
I, = [a, b], b < 1, then, in fact, (1.2) is also satisfied on I, = [a, 1], (but with a
smaller 8, Bo), so for convenience we take I, = [a, 1] for some 0 <a <1.)

THEOREM 1. Let h™! be the inverse of the function
h(B8) = Bm(B)/log|log B].
Then for some constant ¢, 0 < ¢ < o,
lim sup,o+X(t)/h7(t) = ¢ as. on [X(0) = 0].
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THEOREM 2. Let g~! be the inverse of the function
g(B) = pm(B)log|log B|.
Then for some constant c¢*, 0 < ¢* < o,
lim inf,_o. X*(t)/g72(t) = ¢* a.s.on [X(0) = 0],
where X*(t) = maxo<.<:X(s).
REMARKS.
1. h and g are strictly increasing near 0, so ™! and g™! exist near 0.

2. If m{dx} = u(x)dx with 0 < u(0+) < o, then (1.2) is satisfied and we get
the usual iterated log laws:

lim s X0 _ c
5 (@ logllog ) T

%*
lim inf X* () *

(t/log|log t[)2 ~ ¢

In this case these results can be obtained immediately from the classical laws for
Brownian motion together with time char\l/ges. See McKean (1969), page 57, for
an example. One can even show that ¢ = v2/u(0+) and ¢* = («/ \/8_)/;L(0+).

3. The class of m satisfying (1.2) is not restricted to m of the form m(dx) =
x*L(x) dx, a« > —1, L slowly varying. In fact, m can even have atoms. If, however,
m is of the above form and L is sufficiently smooth, then we can determine the
constants ¢ and c¢*. See Theorems 3 and 4 of Section 5.

Our results are closely related to an open problem posed in 1965 by It6 and
McKean (Itd and McKean, 1974, page 161). The paper by Knight (1973) is also
related.

NoTATION. We will suppose throughout that X is equal to a time change of
Brownian motion. That is, let B = {B(t), t = 0; P,, x € R} be a standard Brownian
motion on (—, ) with probabilities P,(+) = P(* | B(0) = x). Let L(t, x) be the
standard local time functional and put A(¢) = [§ L(¢, x)m{dx}, A7'(¢)
= inf{s: A(s) > t}. Then

(1.3) X(t) =BA(), t=0.

See It6 and McKean (1974), Section 5. Note that A™! is discontinuous since A is
flat when B is negative, but A~ (¢) is strictly increasing and continuous at points
t = A(s) with B(s) > 0 because of (1.1).
We put
D; = inf{t: B(t) = 8}

D} = inf{t: | B(t)| = 8} = Dg A D_;.
Note that for 8 > 0,
A(Dg) = infft: X(t) = 8}.
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Note further that since {| B(t)|, t = 0; Py} is equivalent to

{B(CT!(t)), t = 0; Po}, C(t) =2 J; L(t, x) dx,

we have
]
Df =42 f L(Dg, x), B>0
0

where =, means equality in distribution with respect to P,.

We occasionally suppress the 0 in Py, Eo. For a process, Y, [Y, < f(s),s | 0] is
the set of w for which there is an sy(w) > 0 such that Y,(w) < f(s) forall0 <s =<
so(w). i.0. means infinitely often. w.p.1 means the same as a.s.

2. Probability estimates for A(Dg). In this section we establish the
following:

PROPOSITION 1. Assume m satisfies (1.1). Then there are positive constants
¢1> 0, ¢z < o such that

(2.1) P[A(Dg) = 2] < exp(—c12/8m(B)), 2/Bm(B) =1,
(2.2) P[A(Dg) =< 2] = exp(—cm(B)/2), Bm(B)/z = 1.

PROPOSITION 2. Assume m satisfies (1.1) and (1.2). (i) For any q,0 =g <1,
there is a constant cz > 0 such that

(2.3) P[A(Dg) — A(Dgg) = 2] = exp(—csz/Bm(B))

for all 8 sufficiently small, z/8m(B) = 1. (ii) There is a constant ¢, < © such that
for B sufficiently small

(2.4) P[A(Dg) = 2] = exp(—csfm(B)/2), Bm(B)/z = 1.

PROOF OF PROPOSITION 1. From the Brownian scaling property one sees
that

(205) {L(Dﬂ’ x)’ O0=x=< ﬁ’ PO} =d {ﬁL(Dla x/ﬁ)’ O=x= ﬁ; PO}'

Hence
(2.6) A(Dg) =4 Bm(B) J; L(D,, x)m; {dx}.

Applying the Ray-Knight theorem, (It6 and McKean, 1974, page 66, 11d), the
Kolmogorov inequality for submartingales, and the fact that ms[0, 1] = 1, we get

1
P[A(Dg) = 2] = P[J; Z(1 — x)’mg {dx} = 2z/ﬁm(ﬁ)]

< P[maxo<,<1exp(kZ(s)?) = exp(2kz/pm(B))]

< (E ¢"")exp(~2kz/m(B))
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where {Z(s); 0 = s = 1} is the radial part of a 2-dimensional Brownian motion.
For k > 0 sufficiently small the last written expectation is finite and (2.1) follows.
PRrOOF OF (2.2). Computing as above we obtain
P[A(D;) =< 2] = P[maxos,<1Z(s)* < 22/8m(B)]
= P[D; = 1%, o« = (2/8m(B))"?,

where D} =, inf{t:| B,| = a}. To get the last inequality, recall that Z2 may be
thought of as the sum of squares of two independent 1-dimensional Brownian
motions. Now (2.2) is evident since

P[D} = 1] = exp(—=?%/8a?)
for all « sufficiently small. See Feller (1971), page 342.
PROOF OF PROPOSITION 2. Let a be as in (1.2). We may suppose a < ¢ < 1.
Then
A(Dg) — A(Dg,)

B Bq
= f L(Dg, x)m {dx} + f (L(Dg, x) — L(Dgq, x))m {dx}
Bq 0

B8 1
> f L(Dg, x)m {dx} =4 Bm(B) J; L(D,, y)ms {dy}

Bq

1 1—q
= 8oBm(B) J; L(Dy, y) dy =4 608m(B) fo L(D:—q, y) dy

1
=4 88m(B)(1 — q)? J; L(Ds, y) dy =4 %b0(1 — q)*#m(B)D7.

Recall that =, means equality in distribution with respect to P,, Wiener measure
on paths starting at 0. In the third distributional equality from the last we have
used the strong Markov property, the translation invariance property, and the
fact that local time at y > q is zero until time D,. It follows that

P[A(Dg) — A(Dg,) = 2] = P[DY = \] = exp(—n2)\/8)
for A = [2/8m(B)][*2d0(1 — q)2]™* sufficiently large. Thus we obtain (2.3).

PROOF OF (2.4). As in the preceding calculation we obtain
1
P[A(Dg) = 2] = P[2 f L(D,, x) dx < 2z/ﬁm(,6)6o] = P[D? < ¢],

where ¢ = (2/m(8))(60(1 — @)?/2)~ . But for small ¢ we have
P[Df < ¢] < 4P[B; > ¢ %] = O(exp(—1/2¢)),
and (2.4) follows.
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3. Proof of Theorem 1.

STEP 1. Let h be strictly increasing near 0 with £(0+) = 0. Then
3.1) P[X(t) = h7'(t), i.0. t | 0] = P[A(Dg) < h(B) i.0. B ] O].

PROOF. Each side of (3.1) is either 0 or 1 by Blumenthal’s 0 — 1 law. Suppose
first that R.S. (3.1) = 1. But for 8> 0, 8 = X(A(Dg)). (Recall that X = B°A™!
and that, because m charges every open interval on (0, ©), A™(s) is continuous
and strictly increasing at times s = A(Dg).) It follows that P[h™(A(Dy)) =<
X(A(Dy)) ic0. 8| 0] =1 = L.S. (3.1) = 1. Now suppose R.S. (3.1) = 0. Then
P[A(Dg) > h(B), 8| 0] = 1 = P[8 > B*(A7*(h(B))), B | 0] = 1 = P[X*(t) <
h7'(¢),t] 0]=1=L.S.(3.1) =0.

From now on, h(B) = Bm(B8)/log log(1/8).

STEP 2. Put 8, = exp(—n"), v > 1. Then
(3.2) P[A(Dg,) = O(h(B,)) i.0.] = 1.

Proor. First note that,
h(ﬁn) - (Bn/ﬁrwl)
Bn+1m(Br+1) —  log n”

for some ¢ > 0 and all n = 2. Writing W, = A(Dg,) and applying (2.1) we have
for any ¢ > 0

Seg P[Woai1 > eh(B,)] = Y-z exp(—cie exp(cn”™')) < oo,

= exp(cn™™?)

and thus
(3.3) lim sup W,.1/h(B,) =0 as.
From (2.2) we obtain
2 P[W, — Woi < Eh(B,)] = X P[W,. < kh(B,)]
= ¥ exp(—(c2v/k)log n) = »

for k > yc;. By the strong Markov property of Brownian motion and the fact
that B(D;s) = 8, the process 8 — A(Dg), the first passage time process for X, has
independent increments. Hence, by Borel-Cantelli,

(3.4) P[W, — W,_; < kh(B8,) i.0.] = 1.
Clearly (3.3) and (3.4) imply (3.2).

REMARK. Note that what the preceding actually shows is that
lim infs_,A(Dg)/h(B) < c; as.
with c; as in (2.2). We have not used (1.2).
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STEP 3. For some ¢ < 1 and all k > ¢ sufficiently small we have

(3.5) Y n-1 P[A(D;s) < kh(B) for some 8 € [¢™*}, ¢")] < .

ProoOF. Writing p, for the last written probability and applying (2.4) we

obtain
o m(qn+1)
Pn < P[A(Dg+1) < kh(q™)] < exp| —k'csq log(nr) - g |

r =log(1/q) > 0. But for a < ¢ < 1, a as in (1.2), we have
m(g"") = m[q"a, q"q] = du(q — a)m(q").
Hence
Pn=0(n), \=cib0q(q — a)/k,

and (3.5) follows for k sufficiently small.
Suppose k > 0, and let k; = min(k/2, 1), k; = max(2k, 1). Then

(3.6) h(k18) < kh(B) =< h(kzf)

for all 8 sufficiently small. From Steps 2 and 3 it follows that for some constants
0 <k, < ky < », we have P[A(Dg) < h(ky8) i.0.,, 8| 0] =1 but

\ P[A(Dg) =< h(k:B) i.0., 8] 0] = 0.
Hence by Step 1,
P[X(t) = h™'(¢)/ke 10, ¢t | 0] =1
and '
P[X(¢) = h™'(t)/ks 1.0, t | 0] = 0.
But w.p.1 lim sup X(¢)/h~(t) must be a constant. This completes the proof.

4. Proof of Theorem 2. As the proof of Theorem 2 is so similar to that of
Theorem 1, we will leave many of the details to the reader.

STEP 1. Let g be strictly increasing, g(0+) = 0. Then

41) P[X*(t) < g7'(¢) i.0,, t | 0] = P[A(Dg) = g(B) i.0., B 0]
' =0 or 1.
PrRoOF. This is left to the reader.
From now on, g(8) = 8m(8)log log(1/8).

STEP 2. Fix q, a < q < 1. Then for all k> 0 sufficiently small
4.2) P[A(Dg) = kg(gq™) i0] = 1.
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Proor. Put W, = A(D,). Then W, = W, — W,,,, and (see proof of (3.4))
it suffices to show that

(4.3) 2 P[W, — Wpy1 > kg(q™)] =
for £ > 0 small. But
P[W, — W1 > kg(q™)] = exp(—cskg(g")/q"m(q™))
= exp(—csk log nr), r = |log q|
by (2.3). This yields (4.3) for small k.

STEP 3. For k& sufficiently large.
(4.4) Y -1 P[A(Ds) = kg(B) for some 8 € [¢"*, ¢")] < .

PRrROOF. If p, denotes the last written probability, then by (2.1)

< n+ —c1kg(q™")
Pn = P[A(Dq") > kg(q 1)] = exP|: qnm(qn) :l
< exp(—ci1kq(q — a)dolog(n + 1)r).

and (4.4) is clear for k large. (For the last inequality see proof of (3.5).)

STEP 4. From Step 3 it follows that
P[A(Dg) = kg(B) i0.,, 3| 0] =0
for k large. This, Step 2, Step 1 and the analogue for g of (3.6) yield the conclusion.

5. Refinements. In this section we will obtain, under stronger hypotheses,
more precise results than those stated in Theorems 1 and 2. Our proof is entirely
different as well.

Let X be as before but with speed measure

(5.1) midx} = x*L(x)dx, x>0, a> -1,

where L is continuously differentiable on (0, 1] and satisfies
o al(x)

(5.2) lim,_,o+ o) 0.

It follows from (5.2) that L is slowly varying at 0:

(5.3) lime s 29 2 1 forall ¢> 0,

L(x)
Define u by

1 x 2
(5.4) u(x) = Z( J; Vs®L(s) dx)
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and let Y be given by
(5.5) Y, = u(X,).
Calculating the local generator of Y, we get

GYf(y) = limeo[Ecfou(X:) — fou(x)]/t = (G*(fou))(x)
e =¥ () + (Z—I; + v(y)>f’(y), x=u(y), ¥>0,
where « is a continuous function which satisfies
(5.7 lim,_o+v(y) = 0.

Since u = 0, P[Y, = 0 for all ¢] = 1, and it is then standard that there exists a
Brownian motion B, such that Y, satisfies

(5.8) dY, = 2(Y, V 0)Y%dB, + (v + v(Y.))dt, Yo = u(xo)
for t = T, = inf{s: Y, = 1}, where v = (a + 1)/(a + 2). See Ikeda and Watanabe
(1982).

We now have

THEOREM 3. Suppose (5.1) and (5.2) hold. Then

X, _ .
u~'(2t log|log t|) ’

(5.9) lim sup;_,o a.s.

PrROOF. For |B| <v=(a+ 1)/(a+ 2), let Z be the solution to
(5.10) dZ% = 2(Z% V 0)'2dB, + (v + B)dt, Z§ =0,

where B, is the Brownian motion of (5.8). By Ikeda and Watanabe (1981), pages
221-225, the solution to (5.10) is unique, Zf = 0 for all ¢, and (Z%)"? is a Bessel
process of index » + 8 reflecting at 0. By a localization argument and a comparison
theorem for the solutions of stochastic differential equations (Ikeda and Wata-
nabe, 1981, page 352).

Z;*<Y, <Z; as.,

for ¢ sufficiently small, |e| < (a + 1)/(a + 2). (5.9) follows since u is strictly
increasing and
lim sup,.oZ%/2t log|log t| =1
for all 8 sufficiently small by Shiga and Watanabe (1973).
Recall that * means maximum.

THEOREM 4. Suppose (5.1) and (5.2) hold. Let v = (a + 1)/(a + 2), let p, be
the first positive zero of the Bessel function J,;-1, and let d, = p%/2. Then
X¥ _
u~t(d,t/log | log t|)

(5.11) lim inf, o 1, a.s.
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Proor. By Wichura (1973), if (Z9)"/2 is a Bessel process of index », reflecting
at 0, then
(Z9)*
d,t/log |logt |

(An alternate way to obtain (5.12) is to use the proof of Theorem 2, paying
careful attention to the constants. The needed estimates follow from Bass and
Erickson (1983), Remark 3.3, by a scale change.)

The proof of Theorem 4 now follows the proof of Theorem 3, using the fact
that v — d, is continuous.

It would be interesting to find the local law of the iterated logarithm for the
process Y of (5.8) when » = 0 and v satisfies (5.7). This corresponds to the case
where « = —1 in (5.1) with m(0, 1) < o,

(5.12) lim inf, =1, as.
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