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RELATIONS BETWEEN THE s-SELFDECOMPOSABLE AND
SELFDECOMPOSABLE MEASURES!

By ZBIGNIEW J. JUREK
University of Wroclaw, Poland

The classes of the s-selfdecomposable and decomposable probability
measures are related to the limit distributions of sequences of random vari-
ables deformed by some nonlinear or linear transformations respectively.
Both are characterized in many different ways, among others as distributions
of some random integrals. In particular we get that each selfdecomposable
probability measure is s-selfdecomposable. This and other relations between
these two classes seem to be rather unexpected.

0. Introduction. The class, L, of all selfdecomposable probability measures
plays an important role in classical probability theory. It is well known that L
coincides with the class of limit distributions of normed sums of sequences of
independent random variables. Lévy (1937) characterized elements from L in
terms of their Lévy spectral function, Kubik (1962) described L as the smallest
closed semigroup containing some generators and finally Urbanik (1968), using
Choquet’s Theorem, found a general form of their characteristic functionals.
Quite recently Wolfe (1982) (on the real line) and Jurek-Vervaat (1983) (on
Banach spaces and with a completely different proof from Wolfe’s) have proved
that L coincides with probability distributions of the following random integrals

(0.1) J; e*dY(s) = j; s dY(=In s),

where Y is a D[0, »)-valued random variable with stationary independent
increments such that Y(1) has a finite logarithmic moment. Moreover from Sato-
Yamazato (1984) we obtain a characterization of the infinitesimal generators of
the Ornstein-Uhlenbeck type processes Z(t): = [4 e™* dY(s) where limit distri-
butions (t — «) coincide with the class L.

The class L is naturally connected with the linear operators T, (T,x: = rx,
r € R, x € R). Jurek (1977) introduced and examined the class, %, of
s-selfdecomposable probability measures, which in its definition uses the nonlin-
ear shrinking operators U, (U,x: = max(0, |x| — r)z/|x|, x € R, r € R*).
Recently we noticed that the class # was investigated by Medgyessy (1967) and
by O’Connor (1979a) but from a quite different point of view.

In the present paper, in Section 2, we study the class % on Banach spaces.
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Among others we prove that # coincides with probability distributions of the
following random integrals

1
0.2) J; t dY(t),

where Y is D[0, 1]-valued random variable with stationary independent incre-
ments. Moreover we examine the mapping #: Z(Y(1)) = Z([5 t dY(t)), the
problem of generators and characteristic functionals for Z. In Section 3 we collect
descriptions of L (on Banach spaces) and properties of the mapping .#: #(Y(1))
— Z(fs e* dY(s)) and in Section 4 we indicate the relations between the s-
selfdecomposable and selfdecomposable probability measures on a Banach space,
cf. formulae (0.1) and (0.2).

1. Notations and preliminaries. Let E be a real separable Banach space
with topological dual E* and Borel o-field #(E) induced by a norm | « ||. By
., *) we denote the dual pair between E* and E. Further, #(E) denotes the
topological semigroup of all Borel probability measures on E with the convolution
«*» and weak convergence “=”. Given a Borel mapping f from E into E and a
measure p € #(E), we write fu for the probability measure defined by means of
the formula

(1.1) (fu)(B) = u(f(B)) for B E€E Z(E).

If » € #(E) and for every n = 2, 3, --- there exists u, € £(E) such that
uX™ = u then p is said to be an infinitely divisible measure. The class of all
infinitely divisible measures on E will be denoted by ID(E) and sometimes briefly
by ID. Clearly ID(E) is a subsemigroup of #(E) closed in the weak topology.
Moreover, it is known (cf. [1] Chapter 3, Theorem 6.2) that A € ID(E) if and
only if

|

(1.2) Ax*) = exp{i(x*, xo) — Ya(x*, Rx*) + J; K(x*, x)M(dx) [ x* € E*.

Here \ denotes the characteristic functional of \, xo € E, R is a Gaussian
convariance operator, K is the functions on E* X E given by

(1.3) K(x*, x) = exp i(x*, x) — 1 — i(x*, x)15(x),

(15 denoting the indicator function of the unit ball B = {x € E: | x| = 1}), and
M a o-finite measure on E which is finite on the complement of every neigh-
bourhood of 0 and M({0}) = 0; in the case of a Hilbert space the function K is
usually expressed slightly differently. Since the representation (1.2) is unique we
write A = [xo, R, M], if A is of the form (1.2). For X = [xo, R, M] and t € R"
(positive reals), by A** we mean the infinitely divisible measure [txo, tR, tM]. The
measure M in (1.2) is called a Lévy measure of X and the function

(1.4) Lu(A, r): = —M({x € E\{0}: x/l x| € A, [ x| > r})

a Lévy spectral function associated with M. Here r € R* and A is a Borel subset
of the unit sphere S= {x E E: || x || = 1}. £(X) denotes the probability distribution
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of a random variable (rv) X and EX its expected value (Bochner integral).
Further, Dg[a, b] denotes the set of E-valued functions on [a, b] that are right-
continuous on [a, b), and have left-hand limits on (a, b]. We may assume that
they are continuous at b; cf. [2] page 109 and [19] page 232. Further, Dg[a, ») is
defined as in [15]. For a given Dgl[a, b]-valued rv Y and a real valued function f
with bounded variation we define the random integral [, f(t) dY(t, w) by formal
integration by parts for each fixed w, i.e.

(1.5) J(; " f(t) dY(t, w): = f(b)Y(b) — f(a)Y(a) — J(; " Y(t, ) df(?).

The integrals on (a, ) are defined as limits in probability as b — oo.
The following easily follows from our pathwise definition of the random
integral.

LEMMA 1.1. If Y is a Dgla, bl-valued rv with stationary independent incre-
ments, Y(0) = 0 a.s. and f has bounded variation in [a, b] then

(a) fz( I , @ dY)(x*) = exp f( ,, 1o Z(YQ))(f(H)x*)] dt,

*s
(b) .‘Z( J: y f(t) dY(¢, w)) = 5’( J: ; f(t) dY(st, w)> for each s € R*.

We end this introductory section with a weak convergence of measures theorem
and a theorem on Lévy measures.

THEOREM 1.2. Let A,, A be linear bounded operators on E and A,, — A in the
strong operator topology, i.e., A,x — Ax for all x € E. Further, let p,, p € ID(E),
Cn, ¢ € R* and p, = p and ¢, — c. Then

Anpr = Ap™.

PRrOOF. Since the strong convergence of operators in E preserves the weak
convergence of measures (cf. [5] Proposition 1.1) it is enough to show that p}x°
=> p*°. To this end let us choose Dg[0, ®)-valued rv’s Y,, Y with stationary
independent increments such that Y,(0) = 0 a.s., Y(0) = 0 a.s., and Z(Y,(1)) =
pny Z(Y(1)) = p, cf. [3] Theorem 14.20. Further let 7. be the natural projection
from Dg[0, ») to E defined as usual #.y: = y(c). It is easy to see that =, is
continuous at y if and only if y is continuous at ¢, cf. [2] page 121, provided that
Dg[0, ») is endowed with the Skorohod topology. Theorem 2.7 in [21] implies
that Y, = Y in Dg[0, »). Since P{w: Y(c, w) # Y(c—,-w)} = 0 we infer from
Theorem 5.5 in [2] that (7., Y,) = Z(x.Y). But Z(x.Y) = Z(Y(c)) = p*,
which completes the proof.

THEOREM 1.3. Let G be a positive Borel measure on E such that G({0}) = 0
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and
(1.6) G'A) = J: | G(t™'A) dt for all A € Z(E\{0}).
0,1

Then G’ is a Lévy measure if and only if G is also.

PROOF. The sufficiency. Let Y be a Dg[0, 1]-valued rv with stationary
independent increments such that G is a Lévy measure of #(Y(1)). Then from
Lemma 1.1(a) we get that G’ is the Lévy measure of Z([,1; t dY(t)).

The necessity. Note that G’ and G are both finite or infinite measure and
finite measures are Lévy ones. G is a Lévy measure, if and only if, its symmetri-
zation also is and the symmetrization of G’ corresponds to the symmetrization
of G. Finally Lévy measures are finite on every complement of zero in E. Therefore
we may assume and do that G’ is symmetric and concentrated on the unit ball B
in E. Consequently G is also concentrated on B. )

Let my(A:=GAN{xEE: (n+1)'<|lx|=n')forn=1,2, -.- and
m/, corresponds to m, by (1.6). Let (¢{;) be independent E-valued rv’s such that
2 =1[0,0, mt] and S, = ¥ k. From Theorem 4.7, page 119 in [1] we have
Z(8,) = [0, 0, G’] as n — o, and Ito-Nisio Theorem (cf. [1] page 105, Theorem
2.10) gives that the series Y5, {4 converges a.s., say to the E-valued rv S and G’
is its Lévy measure. Since G’ has a bounded support S has all moments, in
particular E | S| < =, cf. for example [10] Theorem 1. Further, from the Lévy
inequality we have P{sup, || S» | > t} < 2P{|| S || > t} and hence E(sup, || S.|) =
2F || S || Finally, Hoffmann-Jgrgensen Theorem (cf. [1] page 106, Theorem 2.11)
gives S, — S in L,(E). Now let ({,) be independent E-valued rv’s such that #(¢,)
= [0, 0, m,] and T, = Yr-; {- To prove that G is a Lévy measure we shall show
that

1.7) E|| Toot = Too1 || < 2E || Syt — Ska | for n> k.

In terms of measures it means that

(1.8) J; x|l e(G | lx:n"<||x||sk"})(dx) =2 L [l e(G'| lx:n'l<||x||sk‘1])(dx),
where p | 4 denotes the restriction of a measure u to a set A and for finite measure
ponE

e(p): = e B Tio p**/k! = [x,, 0, p]

with x, = fy.1=1 xp(dx). If p and p’ are connected by (1.6) then p(E) = p’(E) and
forye E

1
1
f||x+yllp’(dx)=ff ltx + vl dtp(dx)Ef ”—x+y
E E <o E || 2

p(dx).
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Hence we get for k € N

f 1l (o")**(dx) =f f I + %2 + - + 2l p"(dx1) - -+ p’(dixi)
E E E

zéfllxllp*”(dx).
E

and this gives the following inequality

—

(1.9 2 L | xlle(p’)(dx) = L Il x | e(p)(dx).

Thus, (1.9) with (1.7) implies that the series Y., {& converges, say to the E-
valued rv T, in L,(E). The Ito-Nisio Theorem implies that also .Z(T,) = #(T)
=[0, 0, G] as n — », i.e., G is a Lévy measure, which completes the proof.

REMARK 1.4. The sufficiency in Theorem 1.3 can also be proved arguing as
in the necessity. Note that if p is symmetric and a finite measure then

L Iyl p(dy) = J; I a(x + y) + Y2y — x) | p(dy) = L I+ ¥l pdy)

and hence for 0 <t < 1 and x € E we have

Llltx+yllp(dy)Stj;llx+yllp(dy)+(l—t)LIIyllp(dy)

= f I+ v p(dy).
E

Finally, for k€ N

f lxll (p")**(dx) = f Il Il p**(dxx),
E E

and consequently

fIIxIIe(p')(dx)SfIIxIIe(p)(dx).
E E

REMARK 1.5. In the case of a Hilbert space Theorem 1.3 is obvious because
G’ and G both integrate || x || 2 over the unit ball.

2. The class . For arbitrary r € R* we define transformations 7. and U.
from E onto E by means of the formulas:
(2.1) T.x:=rx
and
(2.2) Ux: = max(0, | x| — r)x/|lx||, U0=0.
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The set {U,: r € R*} forms a one-parameter semigroup of nonlinear operations
on E called the shrinking operations (for short: s-operations). An infinitely
divisible measure v = [a, R, M] is said to be s-selfdecomposable if

(2.3) M=UM forall reR*.
The class of all s-selfdecomposable measures on E will be denoted by Z(E) or
simply by Z.

REMARK 2.1. In the case of a Hilbert space H the class Z(H) coincides with
the class of limit distributions of the following sequences

U b+ Uk + --- + U ks + ay,

where (£,) are H-valued independent rv’s and the triangular array (U,.)), j = 1,
--.,n;n=1,2, ... is infinitesimal, cf. [4] Theorem 5.1.

THEOREM 2.2. The following conditions for a Lévy measure M are equivalent:
(a) M=UM,foralreRt; ’

(b) foreach A € B(S) the Lévy spectral function Ly has right and left derivatives
with respect to r such that dLy(A, r)/dr is nonincreasing on R™;

(c) thereis a unique measure F on E\{0} such that for each ¢ >0 [=. || x | F(dx)
< » and M(A) = [§ (U,F)(A) dt, for all A € B(E\{0});

d M=cTMforall0<c<];

(e) M(A) = [} (T.G)(A) dt for all A € #(E\{0}), where G is a unique Lévy
measure connected with F in (c) by formula G(A) = [4 | x | F(dx).

PROOF. Proposition 3.1 in [9] gives (a) « (b) and Theorem 2 in [6] gives
(a) < (c). Since (b) is equivalent to the statement that for fixed A € #(S) the

function r — Ly(A, r) is concave, it is easy to check that (b) & (d), cf. [7] or
[17]. To prove that (c) < (e) we show that for all A € Z(E\{0})

o 1
(2.4) |iJ; (U.F)(A) dt=J; (T:G)(A) dt] iff [G(A)=J;||x||F(fx)].

Putting A = (B;r): = {x € E: x/| x|| €B, | x|| > r}, (B € &(S), r € R"), into
the left-hand equality in (2.4) we get

f F((B; s)) ds = rf G((B; s))/s* ds,

and taking the right derivative with respect to r we obtain

G(B; r)) = f F((B; s)) ds + rF({B; r))

= f s dF((B, 5)) = L.,) %1 Fdo).
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Hence G(A) = [4 | x| F(dx) for all A € #(E\{0}). Conversely, taking into
account the last equality for A = (B; r) we have

1
j; (T:G)((B; r)) dt

=—J; ftk,de((B;s» dt=£ fosl(,,w)(st)dtdF«B;s))

= —j; J; 1¢,w)(w) du dF((B; s)) = —J; J; Lo.y(w) dF((B; s)) du

=f F((B; u)) du=J; (U:F)((B; r)) dt.

This shows that (2.4) holds true and Theorem 1.3 gives that G is a Lévy measure,
which completes the proof of Theorem 2.2.

COROLLARY 2.3. A measure u € Z(E) if and only if, for every 0 < ¢ <1 there
exists u. € ID(E) such that
(2.5) n = Tc#*c * e

ProoF. From (1.2) we infer that (2.5) is equivalent to the condition

M = c¢T:M for every 0 < ¢ < 1. Hence and from Theorem 2.2 we get that
u € Z(E) which completes the proof.

COROLLARY 2.4. #%(E) with convolution and weak topology forms a closed
subsemigroup of ID(E).

THEOREM 2.5. A measure u € #(E) if and only if, there exists a sequence (v,)
C ID(E) such that

AT T SRR . oL LV JEN

Proor. Sufficiency. Let us denote
pn: = Tl K v3% K oo J prm*in,

For every 0 < ¢ < 1 we choose a sequence (m,) of natural numbers such that
m, < n and m,/n — c. From the equality

(26) Pn = m,,/np:,nmn/n * Tl/n(V;nm_,','rl * e K V:n)*l/n’

and Theorem 1.2 and Theorem 2.1 in [19], page 58, we infer that the second
factor in (2.6) converges, say to u.. Consequently we get u = Tou™ * p, i.e., p is
s-selfdecomposable.

Necessity. Suppose for every 0 < c¢ < 1, u = T,u*® * yu, for some p. € ID(E).
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Putting Vii = WUy Vg = Tk#(k-l)/h for k = 2 we have l/rl * V;Z * A V:"
= T,u*" because Tip** = Ti1pn**® P % vi* whenever k = 2. Therefore u =
Tyt % - % vy™)*"which completes the proof.

For v € ID(E) there is a Dg[0, 1]-valued rv Y with stationary independent
increments such that Y(0) = 0 a.s. and .#(Y(1)) = ». Let us define the mapping
# from ID(E) into itself by means of the formula

1
(2.7) S = .‘Z(J; t dY(t)) .

If v =[a, R, M] and #v = [a’, R’, M’] then from Lemma 1.1 we get

(2.8) R’ =R,
(2.9) M'(A) = 5 (T:M)(A) dt for A € B(E\{0}),
(2.10) a = 1 a+ f t f xM(dx) dt.

2 0 1<||x|=t7!

THEOREM 2.6. The mapping 7 is a continuous isomorphism between semi-
groups ID(E) and % (E). Moreover we have

(@) F(u*)=(Fu)* forc ERY,
(b) _#(Vu) = V(_£u) for a bounded linear operator V on E.

Proor. For fixed x* € E* let us put
g.(s): = log(_(#7)(sx*) for s € R.

From Lemma 1.1 we have

gux(s) = s7! f log ¥(rx*) dr, g+(0) =0
0

and hence

log #(sx*) = g.*(s) + sdg.*(s)/ds.
Consequently
(2.11) p(x*) = () (x*)exp d(log(_£v) "(sx*))/ds | =1

and this implies that _# is one-to-one. The formulas #(u % ») = #(u) * £(v)
and (a) follow from (2.8)-(2.10). Further, _# is onto Z(E) because of Theorem
2.2 ((a) & (e)) and the formula (2.9). The equality

V(#v) = V.‘Z(J; tdY(t)) = .‘Z(J; td(VY(t))) = _#(W)

gives the property (b). It remains to show the continuity of % Suppose v,, v €
ID(E) and v, = ». As in the proof of the Theorem 1.2 we can choose Dg[0, 1]-
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valued rv’s Y, and Y with stationary independent increments such that Y,(0) =
Y(0) = 0 as., Z2(Y,(1)) = v,, Z(Y(1)) = v and Y, = Y in Dg[0, 1]. Since the
functional

o(y) = J; tdy(t): = y(1) — J; ¥(t) dt, y € Dgl0, 1],

is continuous in the Skorohod topology (cf. [2] page 121) we get Z(¢(Y,)) =
Z(¢(Y)) i.e. £v, = Fv which completes the proof.

Recall that u is a stable measure on E if u is Guassian, i.e., u = [a, R, 0] or
u=[a, 0, M] and

(2.12) M(A) = f f 14(tx)t~P*V dt~y(dx),
s Jo
where 0 < p < 2 and 7 is a finite Borel measure on the unit sphere S.
THEOREM 2.7. A measure £ (v) is stable if and only if v is also.

ProOF. The sufficiency is obvious because of (2.8) and (2.9). Further, if #v
is Gaussian measure then so is v. Suppose _#v is stable with the exponent 0 < p
< 2. Taking into account the fact that M’ has the form (2.9) and (2.12)
simultaneously we get that its Lévy spectral function Ly (cf. (1.4)) satisfies the
equations

LA, 1) =r f Lu(A, s)/s* ds = A=

Hence we obtain
—Lu(A,r) = (p+ Dv(A)r®/p
i.e., M is of the form (2.12) which completes the proof.

We will say that u € ID(E) is _#-invariant if #u = u*° % §, for some ¢ € R*
andx € E.

THEOREM 2.8. A measure u is #-invariant if and only if u is a stable one.
PrROOF. It is easy to check that stable measures are _#-invariant with ¢ =
1/(p + 1). Conversely, if [a, R, M] is #-invariant then R’ = cR and M’ = cM.

Hence and from (2.8) we have ¢ = s whenever R # 0. Moreover using the Lévy
spectral functions of M’ and cM we obtain

(2.13) r f Ly(A, s)/s?ds = cLy(A, r) for r€R* and A € %(S).

Taking the right derivatives in (2.13) we get
(¢ — 1)/cLp(A, r) = rdLy(A, r)/dr
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and hence
—Lu(A, r) = y(A)r 0k

where v(4) = 0 and (1 — ¢)/c > 0. Consequently M is a Lévy measure of a stable
one with the exponent p = (1 — c¢)/c and this implies ¢ > ¥5. Therefore,
_#-invariant measure v is a Gaussian if ¢ = % or stable measure with the exponent
p = (1 — c¢)/c if ¢ > V5. Thus the theorem is completely proved.

The next theorem gives a characterization of s-selfdecomposable measures in
terms of their characteristic functionals, cf. [7] Theorem 2.1. It is a simple
consequence of Theorem 2.2 ((a) < (e)).

THEOREM 2.9. A complex valued function ¢ on E* is a characteristic functional
of a s-selfdecomposable measure if and only if there exists a unique measure
v = [a, R, M] € ID(E) such that

1
o(x*) = exp J; log #(tx*) dt

- 1o 1) —1 o pex
—exp{z<x,2a> 6(x,Rx)

expix, ) — 1, 1. 4 \
¥ L\to; [ i(x*, x) 1 =3 ix™, 2)1p(x) M(dx)l .

Generators for the semigroup #Z(E) of s-selfdecomposable are given in the
following. :

THEOREM 2.10. %(E) is the smallest closed subsemigroup of ID(E) containing
all Gaussian measures and all measures of the form [a, 0, N, g,.], where a, 8 € R*,
z€ Sand

Nogo(A) = J; J; La(tx)Bo:(dx), A € B(E\{0}).

PROOF. Note that (2.9) gives

(E1]
(cax),(A) = m LJ; ]-A(tz)ax/llxl(dz)’

where ¢ € R* and x € E\{0}. Further, all measures of the form [a, 0, cé,] (a € E,
¢ € R, x € E\{0}) and all Gaussian ones generate the whole class ID(E) taking
their finite convolutions and weak limits, cf. [1] Chapter III, Theorem 4.7. Since
# is a continuous isomorphism between ID(E) and #(E) we infer that the
Theorem 2.10 holds true.

REMARK 2.1. The generators of the class Z described in Theorem 2.10 are
simpler than those from Theorem 3.1 in [9] and the above proof is completely
different from that in [9].
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3. The class L. One of the main aims of the present paper is to indicate
relations between the class, %, of s-selfdecomposable measures and the class, L,
of selfdecomposable ones. Therefore, in this section we collect properties of L
analogous to that of % proved in Section 2. Recall that an infinitely divisible
measure [a, R, M] is called selfdecomposable if

3.1) M=TM for 0<c<l.
The mappings T, ¢ € R*, defined in (2.1) form a one-parameter group of linear
continuous operators on E.

REMARK 3.1. The class L coincides with the class of limit distributions of
the sequences
Tc,,(£l + .-+ gn) + Qp,

where (£,) are E-valued independent rv’s and the triangular array (T &), j = 1,
2, ---,n;n=1,2, ... is infinitesimal. In case (£,) are identically distributed we
obtain the class of stable measures; cf. [13] Theorem 2.5, [5] Theorem 3.1.

THEOREM 3.2. The following conditions for a Lévy measure M, are equivalent:
(a) M=T.Mfor0<c<l;

(b) foreach A € &(S) the Lévy spectral function Ly has right and left derivatives
with respect to r such that rdLy(A, r)/dr is nonincreasing on R*;

(c) there is a unique Lévy measure F such that [j.>1 log(1l + || x || )F(dx) < o
and

M) = J; (TeF)(A) dt for all A € B(E\{0}).

This is a particular case (@ = I) of the results from [6]. Further, from Theorem
3.2(c) or from [13] Theorem 2.5 we have

COROLLARY 3.3. A measure u € L(E) if and only if for every 0 < ¢ < 1 there
exists u. € ID(E) such that
r= Tc# x .
From Theorem 3.2(c) we also have

COROLLARY 3.4. There are no selfdecomposable measures with nonzero finite
Lévy measures.

COROLLARY 3.5. L(E) with convolution and weak convergence forms a closed
subsemigroup of ID(E).

Let IDg(E): = {u € ID: fglog(1 + || x || )u(dx) < o} and for » € ID,,, put

(3.2) S = .7( j; et dY(t)) :
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where Y is Dz[0, ®)-valued rv with stationary independent increments such that
Y(0) = 0 a.s. and .Z(Y(1)) = »; cf. [11] Theorem 2.3. If » = [a, R, M] and .#v =
[a° R®, M°] then we have

(3.3) R° = %R,
(3.4) M%(4) = fo (T~M)A) dt for A € B(ENO)),
(3.5) a®=a+ f e f xM(dx) dt.

0 1<| x| <e*

Further, we have the following connection between L and IDy,, proved in [11]
Lemma 4.2.

THEOREM 3.6. The mapping .# is an isomorphism between the semigroups
ID\,, and L.

REMARK 3.7. The continuity of .# for E = R? is proved in [20] Theorem 6.1
(taking @ = I) and partial results for E = H are given in [11] Section 6.

Since stable measures have finite logarithmic moment they can be transformed
by the mapping .#. Moreover, they are characterized as follows.

THEOREM 3.8. A measure u is stable if and only if u is also.

The proof is analogous to that of Theorem 2.7. Finally, defining the
#-invariance similarly to that of _# we have the following fact; cf. [11] Theorem
5.1.

THEOREM 3.9. A measure u is #-invariant if and only if u is a stable one.

Finally we shall give characterization of the class L in terms of a characteristic
functional, cf. [11] Theorem 4.3.

THEOREM 3.10. A complex valued function ¢ on E* is a characteristic func-
tional of a selfdecomposable measure if and only if there is a unique measure
v = [a, R, M] € ID,o such that

1 LY
(b(x*) = exp .I; M ds

S

= exp{i(x*, a) — i (x*, Rx*)

1 . * _
+ f (f exp is(x™, x) =1 i(x*, x)lg(x))M(dx)},
E\{o} \vo s

Let us note that the first equality for E = R was briefly mentioned in [22],
page 898 without specifying the moment condition for ».
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4. Relations between  and L. Although the notions of s-selfdecompos-
ability and selfdecomposability are defined by nonlinear and linear operators
respectively, from Theorems 2.2(b) and 3.2(b) or from Corollaries 2.3 and 3.3 we
have the following inclusion.

COROLLARY 4.1. Each selfdecomposable measure is also s-selfdecomposable.

From the equality

1 -
le \ log || x|| M’ (dx) = J; f log(tu) dLp(S, u) dt
x[|>1 t71
3 1
= f f log(tu) dt dLp(S, u)
1 u-l

- J||:c||>1 log || || M(dx) — *Il;x||>l (1 = [l xI7)M(dx)

and Theorem 2 in [10] we infer that
(4.1) p €IDy, ifandonlyif _#u € IDyy,.

This allows us to define #(.#u) and .#(#u) for u € ID,,,. Moreover, using the
formulae (2.8)-(2.10) and (3.3)-(3.5) we get the following corollary.

COROLLARY 4.2. The mappings .¥ and # commute (on ID\,) and if u =
[a, R, M] and .#(#u) = [a”, R™, M"] then

o 1
R~ = 1 R, M~(A) = J; J; (Te-sM)(A) ds dt  for A € F(E\{0})

6
f f f xM(dx) dt ds.
1<l xl=(ts)?

Further, let us note that for A € #(S) and r € R*

Lu-(A, 1) = f f Ii”-(:;’—u)du ds

" (u — r)Lu(A, u)
u2

and

l\’)ll—l

du = LMo(A, r) - LM'(A’ r)1

ie. M~ = M° — M’. Similarly we have a~ = a® — a’. Therefore, we have proved
the following fact.

COROLLARY43 If[a, R, M]EIDlogandJ(j'[a,R M]) =[a",R™, M~] then
a"=a’—a’,R"=R°-R', M~ =M°-



s-SELFDECOMPOSABLE MEASURES 605

As a consequence of the proofs of Theorems 2.7, 2.8, 3.8, and 3.9 we get

COROLLARY 4.4. A measure u € IDyog is .# - #-invariant or # - #-invariant
if any only if u is a stable measure.

Finally we shall show when s-selfdecomposable measures are selfdecomposable
ones.

THEOREM 4.5. A measure Zv is selfdecomposable if and only if there is u €
IDyoq such that v = (Fp)*u.

ProoF. The sufficiency follows from Corollary 4.3. Conversely, suppose that

Fv=_pwherev=[a, R, M], p=[b, T, N] and p € IDy,,. Hence we have R’ =
T°, M’ = N° and o’ = b°. The first equality gives R = T° + T and the second one

gives
. f LM<::, 9) 4o = f LN(?, 9 4

for all r € R* and A € #(S). After taking the right derivatives we get
Ly(A, r) = f L:l,s) ds + Ly(A, 1),

i.e., M = N°+ N. Finally, the third equality implies

4.2) a=b+ [b + 2( J; e'gn(e’) dt — J; tgm(t™) dt)],

where the vector valued function gg(u) (Q is a Lévy measure and u > 1) is defined
by the formula

8q(u): = f xQ(dx).
I<||xllsu

To complete the proof we have to show that the expression in the square brackets
in (4.2) is equal to b° or equivalently that

© 1
f e ‘gn(e’) dt = 2 f tem(t™) dt
0 0

whenever M = N° + N. To see this it is enough to note that

1 1
[ gt ae = [ (——t)gN(t-l> dt,
o o \2

which can be easily derived, by some computation, from (3.4). Therefore, we have
proved [a, R, M] = [b°, T°, N°] % [b, T, N1, which completes the proof.

COROLLARY 4.6. Let v € ID and p € IDy,. Then v = #p if and only if
v = _%p % p. In other words # ' (.#p) = #p % p.
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A probability measure u is said to be s-stable if p is Gaussian or u = [a, 0, M]
and

(4.3) M(A)=J;j; la(tx)e™ dty(dx) for A € F(E\{0}),

where 0 < o < ® and « is a finite Borel measure on the unit sphere S in E. Of
course, M in (4.3) is finite. Further let us note that s-stable measures are also
s-selfdecomposable.

REMARK 4.7. In the case of a Hilbert space the class of all s-stable measures
coincides with the limit distributions of the sequences described in Remark 2.1
when the (¢£,)’s are identically distributed; cf. [4] Theorem 8.1.

Corollary 3.4 implies the following statement.

COROLLARY 4.8. A measure is stable and s-stable simultaneously if and only
if it is Gaussian. )

REMARK 4.9. Non-Gaussian s-stable measures are not _#-invariant, cf. Theo-
rems 2.8, 3.9, and also the analogue of Theorem 2.7 does not hold for them, cf.
Theorem 3.8.

5. Final remarks.

5.1. The measures [a, R, M] € Z(R) with symmetric Lévy spectral function
were investigated by Medgyessy (1967). He proved that all of them are unimodal
at zero. Corollary 4.1 with Theorem 2.2(b) implies that selfdecomposable meas-
ures with symmetric Lévy measures are also unimodal. Yamazato (1978) proved
that all measures from the class L(IR) are unimodal.

5.2. s-selfdecomposable measures were described as some limit distributions
by O’Connor (1979) and Jurek (1977). The first proved Theorem 2.5 for E = R,
with a completely different proof from ours, and the second the characterization
mentioned in Remark 2.1 for E = H.

5.3. Using an extreme-point method Urbanik (1968) characterized the class
L(R) in terms of characteristic functions, cf. Theorem 3.10. The idea of Urbanik’s
proof was exploited many times by himself and other authors. In particular,
Jurek (1977) describes characteristic functionals of measures from % (H) finding
extreme points of some compact convex set, cf. Theorem 2.9. An alternative
method of proofs avoiding the extreme-point one, is given in Jurek (1982a).

5.4. Random integral representations of some limit distributions were intro-
duced by Wolfe (1982) and by Jurek and Vervaat (1983). They characterized in
this manner the selfdecomposable measures on IR and E respectively, cf. Theorem
3.6. The integral representation of measures from % (H) is given in Jurek (1982b)
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and from Urbanik’s classes L,, in Jurek (1983a). Let us note that the classes
investigated by O’Connor (1979b, Theorem 1) also admit random integral rep-
resentation. It is enough to choose an appropriate time scale deformation in the
Dg[0, 1]-valued process with stationary independent increments, cf. (0.1). All the
above suggest the following hypothesis:

Each class of limit distributions, derived from sequences of independent random
variables, is the image of some subset of ID by some mapping defined as a random
integral.

Note also that from the integral representation, the description in terms of
characteristic functionals easily follows, cf. Remark 5.3.

5.5. Generators for the class L(R) were found by Kubik (1962) and for L(H)
and Z(H) by Jurek (1983b). The proofs are based on theorems concerning the
convergence of infinitely divisible measures. The idea of using the mapping 7,
in finding generators for #(E) is new; cf. Theorem 2.10. It may have further
applications for classes of limit distributions for which the hypothesis in Remark
5.4 holds true.

Acknowledgement. With a great pleasure I wish to thank Professor
S. Kwapien for his invaluable suggestions for the proof of the necessity of
Theorem 1.3.
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