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EXCURSION LAWS OF MARKOV PROCESSES IN CLASSICAL
DUALITY!

By H. Kasp1

Technion, Haifa, Israel

We study excursion laws of two Markov processes X, X in duality, out of
closed, homogeneous optional sets M, M generated by a pair of dual terminal
times R and R. The duality assumptions enable one to compute the laws of
(R, Xg) using the pair of exit systems of the two processes. With this, one is
able to compute the conditional laws of the excursions, given the boundary
process. It turns out that these depend only on the values of the boundary
process at the beginning and end of the excursions. We obtain for all
x,y (x # y) the laws p*” of the excursions conditioned to start at x and end at
. Under these laws, the excursion process is a homogeneous Markov process.
It’s transition laws are computed. We use the results above to treat excursions
that straddle perfect terminal times.

1. Introduction. During recent years a considerable amount of work has
been done on excursions of Markov processes under the assumption of duality.

In [11] and [12], Getoor and Sharpe discuss the problem of excursions of dual
processes under the assumption of existence’of dual transition densities. This
assumption is stronger than the “classical” duality assumptions, in which all one
assumes is the existence of dual potential kernel densities. This assumption was
used in [11] to compute the laws P> of the excursions known to start at a point
x, end at a point y and last for 7 units of time. These results were used in [11] to
obtain the laws of excursions that straddle perfect terminal times, and in [12] to
discuss the laws of excursions that straddle general stopping times (for results in
this direction without any duality assumptions see also Pitman [24]).

In another direction the laws P**¥ were used to obtain some duality relations
between the excursion laws of a process, and the laws of the reversed excursions
of its dual [11]. This last result was later obtained without the assumption on
existence of dual densities; in [17] using a representation of the restriction of the
duality measure £ to the recurrent classes of the process, and in [23] using the
stationary auxiliary process associated with the pair of dual processes.

This last result on the reversal of excursions leads one to believe that although
the explicit representation of the laws of excursions whose length is / is possible
only if one assumes the existence of dual densities, one can say more about the
laws of excursions that start at a point x and end at y, without these strong
assumptions. Results in this direction are the main purpose of this work.

This work is organized as follows. Section 2 is devoted to the notation and
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some preliminaries. We recall some results and notation from Getoor and Sharpe
[11], Maisonneuve [19] and Jacobs [15] that will be used in the sequel. We shall
also set the notation for the use of Mitro’s [21] auxiliary stationary process, but
we shall not elaborate on its construction. For thlS we refer the reader to [21],
[22], [23], [13]. '

In Section 3 we obtain the joint Laplace transform-distribution of (R, Xg). In
Section 4 we obtain the laws of excursions that “start at x and end at y” for
x #7y. We show that under these laws the excursions known to start at x and end
at y are homogeneous strong Markov processes. The meaning of excursions that
start at x and end at y, as well as information outside the excursion, is different
from that of [11] and will be made precise in the sequel. The main tool for this
analysis is the theory of excursions via Markov additive processes as presented
in [15], [16]. Section 5 is devoted to the use of the theory developed, for excursions
straddling perfect terminal times and stopping times. Treatment here is very
similar to that of [11] and most proofs will be omitted.

Finally, it was noticed by Getoor and Sharpe [11] that when dual densities
exist, one may obtain the laws of excursions conditioned to start at x, end at y
and last / units of time via h-path transform on the time-space process stopped
at first entrance to M. The same is true in our situation. This fact was noticed
in a recent paper by Fitzsimmons [8], where h-path transforms are used to define
the laws of excursions known to start at x and end at y.

2. Notations and preliminaries. Let X, X be two standard processes in
duality relative to a o-finite measure £ on their common state space (E, &). We
assume that E is Lusinian (homeomorphic to a Borel measurable subset of a
compact metric space). In [2] E is assumed LCCB but all arguments given there
that will be needed in the sequel will apply for E Lusinian. Here & are the Borel
sets of E. Let &* be the universal completion of &. As usual, let A be a point not
in E, and &,, €% the corresponding s-algebras generated by & V {A}, &* V {A}
respectively. Let b&, & ., b& ;. denote the & measurable functions that are bounded,
positive, positive and bounded respectively. We shall use similar notations when
other g-algebras are involved. We use for simplicity the canonical realization of
the process. Namely € is the space of all functions from R, into E, that are right
continuous,-have left limits and admit A as a trap. We designate the coordinate
random variable by X;(w) = w,. We let #{ be the natural ¢-algebras of X and
F° = Vizo F . Let 5* be the universal completion of & °. We now suppose that
we have two Markov processes X and X with semigroups (P;) and (P;) defined
canonically on Q. For each x € E, the semigroup (P;) generates a measure P* on
(Q, #° and the canonical process X;(w) on (2, #°, P%) is Markov. The same is
true for (P,). We let & * be the completion of #° with respect to P*, ¥ =N, F*
where the intersection is over all probability measures on (E, &) and  is a
similar completion of F¢, in . We shall denote by %, % the corresponding
completion with respect to P instead of P. Note that we distinguish here the dual
process only by its laws (P*). We assume that (Q, &, %, X,, 0, P*) and (£, g
X,, 6., P*) are standard processes in (classical) duality relative to the o-finite
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measure £, By classical duality we mean

(i) Ux, *) < &(¢) forallx € E
(21) (i) U%x, ) < £(¢) forallx €E
(i) [ £(dy)gUf(y) = [ E@@y)f(y)U(y) for all f, g € & and
a > 0. (U* and U“ are the resolvents of X and X respectively).

Let M C R, X Q. We write M (w) for the w section of M, and when no ambiguity
is possible, we write M for M (w). We assume that M (w) is closed in R, optional
and M(6,w) N (0, ©) = (M(w) —t) N (0, ) for all ¢, a.s. Let

(2.2) R=inf{t>0:t€M} R,=R(,); D,=t+R,

Let F = {x: P*(R = 0) = 1} the points regular for R.

Let M, be the set of left endpoints of intervals contiguous to M and M, the
set of right endpoints of those intervals. We assume that M C (0, ). (Here, as
usual, ¢ = inf{t: X, = A}). The following was proved in [11].

THEOREM 2.3. Let M be a closed, homogeneous optional set contained in
(0, §). Then there exists a Borel set T' € & X & such that M and {(X_, X)EeT}
= {(t w): t>0, (Xt (w), X,(w)) € T} are indistinguishable. IfM = {(t, w):t> 0,
(X,_(w) X, (w)) € I‘} where T' = {(x, y):(y, x) € T}, then M is closed in (0, g“)
R = inf{t > 0:t € M}, and R are dual exact terminal times.

We next cite the main result of [19] on the existence of the optional exit
system. We use the notations and statement of [11].

THEOREM 2.4. There exists an additive functional (AF) B, of X with bounded
1-potential and a kernel *P from (E, &) into (R, 7°) such that for all positive
optional U (with respect to (%)) and all (#+ X F*), measurable f,and x € E,

(2-5) Ex 236M,;O<s<g‘ Usfs(os) = Ex L Us*PX'(fs) st-

For each x € E, *P* is o-finite, *P*({ = 0) = 0, *P*R = 0) = 0, and
*P*(1— e ®)=1,Ba.e. If x & F, then *P*(+) = P*(+)/E*(1 — e~®). The continuous
part of B is carried by F, and the discontinuous part by E(R) = E — F. For each x
the process X = {X,:t > 0} is Markov with semigroup (P;) relative to *P*; that is,
if T is an . stopping time with *P*(T = 0) = 0, then for H € bF %, H = 0 and
JEVF J=0

(2.6) *P*H - J 0 073 T < o) = *P*(H - EX1(J); T < ).

_ We use (B, *P*) for the corresponding objects of the dual process. Note that
B is not the dual additive functional of B as defined in [22], [25]. Let

2.7 *Pi(A) = *P*(R > t; X, € A),

and *P3(A) be the corresponding object of the dual process.
It was shown in [11], [20] that under the duality assumptions there exists a
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predictable exit system. Namely, there exists a predictable additive functional C
with bounded 1-potential and a kernel *Q from (E, &) into (2, #°) such that for
all positive predictable U and all (%, X . *), measurable f, and x € E,

(28) Ex ZSGM,;0<3<§' Usfs(as) = Ex JB; Us *QX'(fs) dCs

The rest of Theorem (2.4) remains valid with (C, *Q*) replacing (B, *P*) with
the only difference that the continuous part of C need not be carried by F. Let

(2.9) *Qi(A) =*@*(R>t; X; € A)

and C, *Q*, *Q7 be the corresponding objects for the dual process.

In order to apply the theory of Markov additive process to this situation (as
is our intention) one has to construct a local time and a boundary process for
the regenerative system M. This was done in considerable detail in [16]; we shall
sketch here briefly the idea. We take M, to be the perfect kernel of M. M, is
closed, homogeneous and optional. M — M, is a countable union of graphs of
stopping times. We let R, D,, M,, M., F be defined for M, in the same manner
that R, D;, M,, M,, F have been defined for M. There exists a natural additive
functional L such that

EXe™®)=E* f exp(—t)1a,(¢) dt + E* To<serr, e (1 — exp(— R(6,)))

=E"f e tdL,
Ry

(the local time of equilibrium of order 1 at M;). The set of increase of L is equal
to M. L, is continuous if, and only if, D, is quasi-left continuous. Note that L
jumps at predictable exits from M;. Let (4, K) be the predictable exit system
associated with M. It follows from (2.5) that A° (the continuous part of the NAF
A) is absolutely continuous with respect to L° (the continuous part of L). Further,
the jumps of L at the predictable exit points {T’,} are equal to A(Xr,), where

(2.11) A(x) = E¥1 — e7F).

Combining all these facts, it follows that there exists a o-finite kernel *H from
(E, &) into (2, °) such that for all positive predictable U, fE€ (% X F*), and
x€EE,

(2.10)

(212) E* 236M,;0<s<§’ Usfs(as) = E* f Us *HX.(fs) dEs
Ry

Note that the continuous part of L is concentrated on F and for x ¢ F,
*H*(*) = P*(*)/E*(1 — e7®).

In order to construct a boundary process that will be a Markov process, we
shall replace all the jumps of L by exponentially distributed random variables.
We shall also add exponentially distributed random variables at M — M.

Let To = Or>0) and {7’} -1 be stopping times with disjoint graphs that exhaust
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the jumps of L and M — M;. Let
(2.13) Azx) = E*1—e7F)
(2.14) ¢ = L + Yr=e M Xg )

where {I,} is a sequence of i.i.d. exponentially (1) distributed random variables
not depending on .# Note that if for some n, T, € M — M, is a right limit of
points in M — M,, then X, € F, and therefore A\(Xr,) = 0. One has to enlarge
the probability space to include {I,.}, in such a way that L, be adapted to the
enlarged history (.#). The measures P* on the enlarged space will be now
P* = P* x P where P is the probability measure on the space where the I,’s are
defined. One extends the definition of 6, to the enlarged space in such a way that
for any Z € # = Vo #; and any stopping time T € (.#;)

(2.15) EX(Z o 07| #,) = EX*1(Z)
(see [16] and Proposition (3.14) of [6]).

Let
(2.16) 7, =inf{t >0; L,> s} and
(2.17) Y, =X,

One can show that (Y, 7) is a quasi-left continuous Markov additive process
(MAP). For the exact statement and specific details see [16].

In order to get now the exit system for M, we define for x & F, *H*(*) on
(@, &) by

(2.18) *H*(+) = E*(*)/E*(1 — &%)

The following was proved in [3] in a different setting. We give a proof here
for the sake of completeness.

THEOREM 2.19. For all positive #, predictable U and f € ¥ %
E* ZsEM,;0<s<§' Us f(os) =E* L ) U *HX'(f) dLs

ProOF. Let L! = L, — L,. Then L! is an additive functional relative to the
shifts 6,. All one needs to show is that for all f € F%

At = EsEM,;0<sst (1 - exp(_R(os)))f(as)

and
B, = f HX(f . (1 - e~®)) dL,
(0,t]

have the same dual predictable projection on (.#). To do this we use T37 of [7]
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and (2.15).

Ex(Btﬂr - B, | #4) = Exl:(J(; ) *HX"(f - (1= e_R)) szll) ° atl-/{tjl

= FZX‘J: *H*(f - (1 — e7®)) dLL.
0,s]

Using now the definition of P* = P* X P, the fact that the expectation of the
added exponentially distributed random variables is equal to 1 and the definition
of (*H*).er, this last expression is equal to

EX,L ] *H5(f . (1 — e®)) dL% + EX Sy o, E¥n((1 — e B)f)

= E* 2u€M,;0<usa (1- exp(_R(ou)))f(ou)-

Again by definition of P* and the fact that the additive functional A doesn’t
depend on {I,}, the last expression is equal to

E* ZuGM/;kusa (1- exp(_R(ou)))f(au) = EX‘(AS) = Ex(Atﬂr - A I "lt)
This completes the proof.

From now on we shall abuse the notation by using P* for P* where no ambiguity
is possible.

REMARK 2.20. Using methods similar to those used by Glover [14] one can
show that Y is a right process. In the present situation, using the fact that £ is a
reference measure for X and arguments that lead to Lemma 2.4 of [1], it is easy
to show that L is equivalent to an .#° measurable process (.#° the uncompleted
o-algebra generated by #° and {I,}). Using now the definition of P* it can be
easily verified that x — P*(f(Y,)) is & measurable for all f € &. This in
turn implies that Y is a Borel right process. We shall denote by £° the
o-algebra generated by a-excessive (a = 0) functions with respect to Y. (In the
present situation the o-algebra generated by a-excessive functions with respect
to X is equal to &).

Define

(2.21) *Hi(A) = *H*(R > t; X, € A).

We let L, 7, *H, *H, be the corresponding objects for the dual process.
Turning now to the excursions of X outside of M. Let t be a jump time of
7.(w). Define

]X‘rt_+a(w) §< Ty — T

(2'22) eS(t’ w) - X-rt(w)~ S§$ =Ty — Ty

This process takes values in V, the collection of all functions from [0, «) into
E U {A}, that are right continuous, have left limits and are absorbed at first
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entrance to M U [{, ©). We let 7" be the o-algebra on V induced by the coordinate
mappings. Let .% be the right continuous complete history generated by Y, %
the right continuous complete history generated by (Y, 7), and & the right
continuous complete history generated by (Y, 7, e). Completions are taken with
respect to % = {P*: u finite measure on (E, &)}.

The following were proved in [15], under some additional assumptions and
carry to our case without any changes.

THEOREM 2.23. There exists a regular version of P’(* | Z) on & = V0 &,
which is further independent of y € E.

Let {U;} be the jump times of 7. For each j, U; is an ., stopping time.

THEOREM 2.24. The random functions {ey;} are conditionally independent
given %.

Let {I(x)}.cxz be the Motoo derivative of Leb(M N [0, t)) with respect to L:.
The following is a direct consequence of the quasi-left continuity of 7, results on
MAP’s [4], and the results of [15], [16].

(2.25) ro=A,+ 72+ 7L
where

@) A, = [3UY.) du.
(i) 7¢ and 7£ are conditionally independent given 7.
(iii) Let P,(+) = P*(+| %), then under P,, 7¢ is a pure jump, stochastically
continuous process. In particular, it has no jump times that coincide with
the jump times of Y.
(iv) If Ujis a jump time of 7/, then Yy # Yy,- .

Let u be the random counting measure on (R4 X V, %, X 7) so that for
a<bAEZ
ulla, b] X A] = number of u € [a, ]

(2.26)
such that 7,# 7. and e(u, w) € A.

The decomposition of 7, in (2.24) splits p into two random measures.
(2.27) w=put+pl

Here u? counts the excursions that are due to the jumps of 79 whereas u’
counts those excursions that are due to the jumps of 7/.

Combining the results of [15] and computations carried in [16], we have the
following:

THEOREM 2.28. The random measures u' and u® are independent additive
random measures over (Q, €, P.). Further, u® is a Poisson random measure with



EXCURSIONS OF MARKOV PROCESSES IN DUALITY 499
mean measure M, given by

(2:29) M,([0,t) XT) = J{; ) *HY“(T N {Xg = Y,(w)}) ds.

As for the u/ part, the existence of a conditional law of eu;, given Yy, and
Yu;-, (where Yy, # Yuy;-) was proved in [15]. We shall deal w1th this part in
Section 4. Since this result i is stated in [15] in a form which is not convenient
for our use, and also for the sake of completeness, we shall prove this result again
in Section 4.

We end this section with a brief description of the auxiliary stationary process,
associated with the two processes X and X. This is brought for notational
purposes only. For a more detailed treatment of the subject we refer the reader
to [21], [22], [23], [13].

Let (2, F(—o, ), Q, P7, P*, Z) be the auxiliary process associated with the
pair of processes X, X. @, is the space of paths from R into E U A U A=E,
which admit a random birth time { and a random death time §, that are r.c.LL
on ({, ¢) and Z is the coordinate process. Z,(w) = A for t < ¢ and Zi(w) = A
for t = ¢. Shift operators 0,, killing and birthing operators k, and k, are given by

(2.30) ° 0,(w) = Zpss(w)
(2.31) Z, o k(w) = Z(w) for t<s, A if t=s
(2.32) Z, o ky(w) =Z(w) if t>s A if t=<s.
On Q2 we define g-algebras

) =olZuuel

for every interval I. When completed with respect to the o-finite measure @, the
0 superscript is omitted. Define

(2.33) 2,=24y,6:92—>Q sothat Z,..(w) = Z(fw).
Define mappings =, 7: @ — Q by

(234)  (1w)=Z(w) if Zow) EE,t=0, and A otherwise.
(2.35) (7w); = Zy(w) if Zow) EE,t=0, and A otherwise.

We let P* and P* be probability measures on F%0, ©) and F°(—, 0), respec-
tively, that embed P* and P*. Namely for any F € #°

(2.36) P*(F o 7) = P¥F) and similarly for P~
The measure @ was shown in [21] to be characterized by
(2.37) Q(Fomo8, - Forog, = f £(dx) PX(F) P*(F)

for all positive F, € 9 and ¢t € R. It is clear from (2.37) that Q is shift
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invariant, i.e., 0,Q = Q for all u € R. We let &, the optional g-algebra, be the
o-algebra on @ X R generated by processes adapted to & (—o,t] which are Q a.e.
right continuous. & the co-optional o-algebra generated by processes adapted to
Fs, ©) which are @ a.e. left continuous. & the predictable o-algebra generated
by processes adapted to & (—o, s] that are @ a.e. left continuous. & the co-
predictable g-algebra generated by processes adapted to F[s, ) that are Q a.e.
right continuous.

Let A be an AF of X, one may regard A as a homogeneous random measure k
on (R., #.). The homogeneous embedding A of A is defined by

(2.38) A(w, C) = supsepk(nl,0, C —s) forall CE %

and similarly for an AF A of X with # replacing = in (2.38).
To define M for Z we let

(2.39) M = {(t, @): (Z—(w), Z:(w)) ET} (T as defined in (2.3))
(2.40) D,(w) = inf{s > t: s € M(w)}; Z:(w) = sup{s < t: s € M(w)}.

Let M, and M, be the set of left and right endpoints of intervals contiguous
to M contained in (f, ¢). For Z, excursions from M can be considered in either
dlrectlon of time. To get a co- -exit system we may consider an exit system for the
process Z, replacing T' by T in (2.39). Following [23], we obtain the optional exit
system for Z by defining for F € ¥°, x € E,

*P*(F o 1) = *P*(F); this defines a measure on (2, %[0, ©)).

(2.41)
B = the homogeneous embedding of B.

Similarly we define the predictable exit system (*Q*, C). It was shown in [23]
that for all positive W € 4, H € 5[0, )

(2.42) Q Xsem, W,H(6,) = Q L W*P%(H) dB.

Similar results hold for the predictable exit system with Z € & replacing W € ¢
in (2.42).
Define M,, M, D,, 7, for M in the same manner that M,, M,, D;, /; were
Qeﬁned for M. Note that s € M, if, and only if, s € M,. We further define i
B, *Q*, C for the co-exit system in the same manner that the corresponding
objects *P*, B, *Q*, C were defined for the exit system. The proof of the following
lemma on time reversal follows along lines similar to those of (4.8) of [23], using
the shift invariance of @, and it is therefore omitted.

LEMMA 2.43. For F € (£ X &), H € °[0, »)
Q ZO<8<1;8€M, F(Zs—, ZDO ° os)H(kDo ° 08)

(2.44) N A
= Q So<e<sisest, F(Zp, © 05, Z-)H(p © kp, © 8,)



EXCURSIONS OF MARKOV PROCESSES IN DUALITY 501

where p: @ — Q is defined by
Zpy: 0<t<Dy<oo

(2.45) Z(p © kp,) = l@ t i 0
A otherwise.

The fact that F € (£ X &), implies that the expressions in (2.44) do not contain
contributions of excursions of infinite length. This is essential for the result to
hold.

We end this section with results on Revuz measures from [13] adapted to our
situation.

Let A be an additive functional, v, its Revuz measure and »$ the measure

satisfying
(2.46) E* f e f(X,-, X;) dA; = f u*(x, ¥)f (y, 2)vi(dy, dz)
R, EXE

(u*(x, y) are the a potential densities with respect to £). Then

1
(2.47) va(f) = Q fo f(Z.-) dA,

. 1
(2.48) Vﬁ (f)=Q f f(Ze, Z;) dA,

recall that A is integrable (o-integrable) if v4 is finite (o-finite), (this also implies
that »§ is finite (o-finite)).

3. Exit and co-exit systems and the joint law of (R, Xz). This section
is devoted to the computation of the joint Laplace-transform and distribution of
(R, Xg).

In what follows we shall adopt the “one hat” notation of Getoor and Sharpe.
Namely Ey(f (Xy); R > t) will stand for Ey(f (Xt), R>t) and similarly for all
other expressions involving objects that correspond to the dual process. For
FeF’fge & let

(3.1) EAF)= f £(dx)f (x)E*(F) and EX(F) = f £(dx)g(x) E*(F).
We start with the following:
THEOREM 3.2. For each g € &,

(3:3) E*(e™g(Xp)) = J; 5 v(dy, dz)g(y)*pa(z, x)

where *p,(z, x) are the derivatives of

(3.4) n:(f) = j; e *PH(f) dt

with respect to &, and v§ is as defined in (2.48) for B defined in (2.5).
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PrOOF. We start with the basic duality relation [2]:
(3.5) Ef(e™R0g(Xg)) = E«e™ U (Xz)) f,8€E &.
Let f € &, be zero on F(= Reg(R )), then using (3.5)
El(e™0’g(Xz)) = E* f eML(0)f (X,) dt
R,

+

(3.6) .
+ E¢ Ysem, >0 e'“( f e ™Mf(X.) du) o §,.

0
Using the fact that ¢ (FAF) = 0, it follows that the first summand in (3.6) drops

out. As for the second summand using the optional exit system it is easy to see
that it is equal to

(3.7 E¢ f e"“[f . e M*P (X, dx)f(x) du] dB,

+

and by (2.50) this expression is equal to

f £(dx)g(x)uM(x, y)vE(dy, dz) f e ™M*P,(z, dx)f(x) du
(3.8) EXEXE Ry XE

- | veomsan, dz)f e*P,(2, dx)f (x) du.
EXE RyXE

We note that the measure [, e“*P,(z,*) du is, for each 2, A\-excessive for the
process X killed at R. It therefore follows that there exists a density
*px(2, x) of this measure with respect to £, so that for each z, x — *p\(z, x) is
A-co-excessive (for X killed at R). It follows that

(39) EN(e™U(X3g)) = fE @, dz) Ug(y) fE *pa(2, x)f (x)£(dx).

Therefore £ a.e. on E — F,

(3.10) Ex(e?*0g(XR)) = fE . v (dy, dz) Ug(y)*pa(z, x)

and since both sides of (3.10) are \-excessive for X killed at R, they coincide on
allxe E—F. )

Using now the resolvent equation for U, (3.10) implies that for all « > 0,
x€EE-F

(3.11) E¥e*U%%g(X3R)) = fE . vi(dy, dz) U%g(y)*pa(z, x).

The function 1 is A:excessive for X and therefore there exists a sequence of
functions h, so that Uh, increase to 1z. Using the Monotone Convergence



EXCURSIONS OF MARKOV PROCESSES IN DUALITY 503

Theorem and (3.10) it follows that for all x € E — F'

(3.12) E*(e™F) = fE . v (dy, d2)*pi(z, x).

This implies that the measure

(3.13) 7(4) = J; . v§(dy, dz)*pa(z, x)

is finite. Let g € b%, be continuous, then g(x) = lim,_..aU%(x) and by the
Dominated Convergence Theorem and (3.11)

(3.14) E¥(e™Fg(XR)) = L . vi(dy, dz)*p(z, x)8(y).

It now follows from the Monotone Class Theorem that (3.14) holds for all
8 E b

REMARK 3.15. Between submission and revision of this paper, P. J Fitzsim-
mons has proved that for K € (£ X &),

E¥(e ™K (Xg-, Xg)) = f f vé(dy, d2)k(z, y)*pa(z, x).

Repeating the same arguments that led to (3.14), we obtain

THEOREM 3.16. Letg € & and \ = 0, then

(3.17) E¥(e™Pg(Xg)) = f ve(dy)g(y)*qx(y, x)

where *q\(y, x) is the density of [ e ™™*Q.( ¥, *) du with respect to £. For each y,
x — *qx(y, x) is N\-co-excessive for the process X killed at R.

Our next objective is to show that A — *p)(x, y) are Laplace transforms of
measures on (R,, %, ). Unlike the case where dual densities exist, these measures
are not in general absolutely continuous with respect to the Lebesgue measure.
This absolute continuity was the main tool for the analysis carried in [11], which
unfortunately doesn’t carry to the present situation. However, the joint distri-
bution of (R, Xz) in terms of the exit and co-exit systems has an interest of its
own.

Let u}(x, y) be the densities of Uk(x, *) = E* [§ e™“1(.)(X.) du with respect
to £(°). x — uk(x, y) is A-excessive for the process X killed at R and is therefore,
an increasing limit of U%h,(x). Using the resolvent equation for u%(x, y) we see
that for each y,

ug(x, y) =lim, o Ugh,(x) h, € bZ

Hence for fixed (x, y), A = u}(x, y) is a limit of Laplace transforms, and it is
therefore a Laplace transform of a measure on (R, %,).
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Now

f e M*P,(x, f) du = lim,o*P*(R > t; e MUXX,, [))

Ry

= lim,_ L *PYR > t; e Mup(Xy, y)f (¥))E(dy).

Using the fact that x — uk(x, y) is A-excessive for X killed at R, it is easy to
show that

t — *P*R > t; e Mup(X,, ¥))

increases as t decreases, and thus, using the Monotone Convergence Theorem

L £(dy)*pa(x, Mf(y) = fm N e ™M*Pi(f) du

= f £(dy)f ()]imeo*P*(R > ¢; e™Muk(Xe, ¥)).

Hence *py(x, y) = lim, c*P*(R > t; e ™uj(X,, y)) for £ a.e. y. Since both are
A-co-excessive for X killed at R they are equal for all y € E — F. On the other
hand *P*(R > t; e u}k(X,, y)) is a Laplace transform of a measure on (R, .%,)
and hence so is *p,(x, y) as a limit of Laplace transforms.

It therefore follows that

THEOREM 3.18.

PR €dr, Xg € dy) = f v$(dy, dz)*p(dr, 2, x)
where *p\(z, x) = [r, e *p(dr, 2, x).

We now specialize to thg case where R is the hitting time of a Borel Set B, for
which {¢: X, € B} and {t: X, € B} are perfect and unbounded. Let L be the local
time of equilibrium of order 1 at B, namely the predictable additive functional
whose potential is given by E*(e%). Let {T),} be the predictable exit points from
B and {l{(x)}.epr the Motoo Sierjvatives of [.,eb(M N [0, t)) with respect to L° (the
continuous part of L). Let L, {{(x)} and {T',} be the corresponding objects of the
dual process.

We then have

(3.19) E*(e™®) = E* f e (I(X,) + *H*(1 — e7®)) dL,

+

where *H has been defined in Section 2. It now follows that

(3.20) E*(e™®) = L ul(x, y)(I(y) + *H*(1 — e ®))v.(dy).
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The measure
(3.21) w(dy) = vo(dy) (U(y) + *H’(1 — e7%))

was identified in [11] as the 1-capacitary measure of the set B. Define #(dy) for
the dual process by

(3.22) #(dy) = vi(dy)([(y) + *H’(1 — e7F)).

Note that by tAhe dpﬁnition of |, *H, f, *H, I(y) + *H’(1 — e ®) =1, v, a.e. and
similarly for [, *H. It therefore follows ghat vy = m, vi = #. The following
statement connects 7 and © when M and M are unbounded.

THEOREM 3.23. Suppose that {t: X, € B} and {t: X, € B} are perfect and
unbounded, then

(3.24) w(dx) = #(dx){(x) + J; #(dy)*H*((1 — e™®)1ixpean)-

Proor. Using the auxiliary process Z we note that

[ x@or

(3.25) 1
=Q J; F(Z)1m(t) dt + Q Yeem,0cs<t f(Zo-) (1 — 7DD,

The assumptions on the unboundedness of M implies that inf{t: t € M) = —ox,
sup{t: t € M} = + @ a.e. We can therefore use (2.43) to show that the right side

of (3.25) is equal to

1
Q fo fZ)1a(t) dt + Q Teemn,ococt (1 — €20)f(Zp,)) © 0,
(3.26) = f p1(dx) (F () [(x) + *H*((1 — e ®)f(Xg)))

= f #(dx) (f(2) [(x) + *HX(1 = e™)f(Xz))).
Note that

=(E) = fE #(dx) (I(x) + *A*((1 — e ®)15(XR)))
3.27)
= 7#(E) as is well known.

We end this section with the following theorem that connects the 1-capacitary
measures of R with first entrance results for the dual process. Its proof is identical
to that of Theorem (3.2) and is therefore omitted.
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THEOREM 3.28.

(3.29) E’E(e""'g(XR))=f7r(dx)g(x)<l(x)+f e M*H*(R>t, 15(X,)) dt).

Ry

In particular
(3.30) PYR € dt, Xg € dx) = n(dx)*H*(R > t, 15(X,)) dt.

Note that this result doesn’t require unboundedness of M or M. By adding to C
the Lebesgue measure of M and adjusting {*@*},cz we can prove a result like
(3.30) without the perfectness assumptions. It is interesting when compared with
last exit results of [10]; see also [11] for a similar result when dual densities exist.

4. Conditioned excursions. In this section we return to the exit system
defined by (2.14), (2.18). We let Y, = X, , and (Q, #, #1, Y;, 7., 0;, P*) be the
Markov additive process (MAP) defined in Section 2 and [16]; Y is the boundary
process. Let (%), (%;), (£;) be as defined in Section 2.

Our purpose is to study the laws of the excursions conditioned on ;7. Let u be
the random measure that counts the excursions as defined in Section 2. Then by
(2.27) and the discussion following it, u is a sum of two conditionally (%)
independent measures. The first one is a Poisson random measure that counts
the excursions that correspond to jumps of 7 that are not jump times of Y. This
measure has been completely characterized by its mean measure given in (2.29).
The other part u counts excursions that correspond to jumps of 7 that are also
jumps of Y. Let

(4.1) D = {(s, w): 75(w) # To—(w), Yi(w) # Y,_(w), Yi(w) € E}.

Then D C Uy, [T,] where {T',} are the jump times of Y. We note that a jump of
Y need not always correspond to an excursion. We shall deal in this section with
the conditional laws of er; given 7.

It follows from (2.20) that Y is a Borel right process and we can use the results
of [1]. We further note that since Y is quasi-left continuous (in the usual topology
of E) a stopping time T for which Yr € E a.s. on {0 < T < oo} is totally
inaccessible, if and only if Yr- # Yr [9] (Y- is the left limit of Y in the usual
topology). Using this and Lemma 3.3 of [1], there exists a strictly positive
h € & X & so that

(4.2) A; = Yo<s=t Liyzy,h(Ye-, Y,)

has finite 1-Potential. Further any quasi-left continuous additive functional of Y
is of the form

(4.3) Yo<sst Liy=v, )f(Ye-, Ys) with fE&* X &
Let T € Z; using (2.23) define
(4~4) A{‘ = E.(ZOQSt;sED ll‘(es) | '%)~
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Using the Markov property of (Y, 7, e) it is easy to show (see e.g., [4]) that
(4~5) A{ = E.(20<sst;s€D 1r(es) I %)

Hence A, is an additive functional of (%), whose jump times are totally
inaccessible. It now follows from (4.3) that there exists a positive function
Fr € & X & so that

(4~6) A{ = 20<sst FI‘(Ys—, Ys)~

By the special structure of V one can choose Fr so that for each (x, y) T' —
Fr(x, y) is a measure on (V, 7) (see e.g. [19]). (Recall that the existence of F
was proved in [15] using different techniques.) Note that AT need not always be
a finite AF but for h defined in (4.2) AT . h is a finite additive functional. Let

(4~7) B(es) =Ts T Ts—
and
(4.8) Fo = F[ﬂ>0].

Note that for each T, defined above, I' — Fr(Y7,-, Yr,) gives the conditional
law of the excursion er, given 7. {8(er,) = 0} is the event that the length of the
excursion that had occurred at T, is 0 or equivalently that the jump of Y at
T, was not “caused” by an excursion. Therefore if Fo(x, y) > 0, T —
Fr(Yr,-, Y1,)/Fo(Yr,-, Y1,) is the conditional law of the excursion er, given %
and {B(er,) > 0}. In view of (2.24) one is justified calling Fr(x, y)/Fo(x, y) the
law of the excursion that starts at x and ends at y. To abbreviate the notations
we let

(4.9) F(x, y) = Fr(x, y)/Fo(x, y) (by convention 0/0 = 0).

Our objective now is to compute F(x, y) using the exit systems defined in
Section 2.

Repeating the derivations of Section 4 of [16], one can show that the dual
predictable projection of Al with respect to (%) is equal to

t
(4.10) f *HY(sp € T; Xz # Y,) ds
0
where the stopping operators s, are defined by
X)) t<u
(4.11) Xi(syw) = lXu(w) u=t
For each T € 7" and x € E, define the measure u}(¢) on (E, &£*) by
(4.12) ui(A) =*H*(sg €T, Xp € A — {x}),
and for each x € E define the measure \* on (E, &) by
(4.13) N(A) = *H*(Xr € A — {x}).

It follows from (4.2) and (4.5) that for all x, except possibly on a set of potential
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0 with respect to the Y process, \* is a o-finite measure on (E, &). This, of course,
implies that so is uf.

Repeating now the derivations carried in Section 4 of [16], using results of [1],
[16] it is easy to show that if Fy(x, y) > 0, F%(x, y) is the derivative of u% with
respect to \* (see also the appendix for more details). The duality assumptions
and the results of the previous section enable us to compute the finite dimensional
distributions of the excursions conditioned to start at x and end at y, explicitly,
in terms of the exit and co-exit systems. This unfortunately cannot be done in
general, and in this respect our results extend those given in [15], [16].

Let U,(v) = v, be the coordinate mapping on V. Suppose that Fy(x, y) > 0, we
shall compute F2(x, y) for T of the form [J%, 14(U,) forA; €&y € A;,0<ty
<ty .- =<t,.

Let A € & then

N(A) =*H(Xgr € A — {x}) = lim,o*H*(R > t; Xp € A — {x})
= lim, o*H*(R > t; P*(Xz € A — {x}))

= limt_m*H"<R >t J; | ]*éo(z, Xt)ve(dz)>

= lim, o f " ve(d2)*H*(R > t; *qo(z, X:)),
A—{x
where *§,(z, x) are defined for the dual process in the same manner that
*qx(2, x) were defined for the original process. Note that x — §o(z, x) is for
each z, excessive for X killed at R. It therefore follows that t — *H*(R > ¢;

*Qo(2, X)) increases as t — 0 to a limit that we shall denote by *q(z, x). Using
the Monotone Convergence Theorem, it follows that for A € &

(4.14) N(A) = J;_‘ | ve(dz)*q(z, x).

The fact that \* is o-finite L a.e. implies that for L a.e. x, *q(z, x) < © vg a.e.
We next turn to uf(A). Let

(4.15) Q:(x,B)=P(R>t; X;€B), Be&.

Then for T as above

pr(A) = J; J; *Hi(dy1) Qe (y1, dy2) -+ Qe—t, ,(Yn—1, dVs)
1 n

° f *éO(z’ yn)V(:'(dz)
A—{x}

and therefore for I" as above

(4.16) F%(x’ y) = J;l te J;” *Hfl(dyl)Qtz—tl(yl, dys)
o Qb (Yn-1, @Yn)*Go(y, ¥u) (*q(y, )74
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REMARK 4.17. Let (B, K° be the Levy system for the jumps of Y. For each
Trez;Ae&let

Kix, T'x A) = J; K°(x, dy)Fr(x, y).
It follows from (4.6) that (B, K) is the Levy system for the jumps of 7 that are
also jumps of Y, and excursions induced by them. Let
H(x, ' X A) =*H*sp €T, Xp € A — {x})

then it follows from (4.10) that (¢, H) is also a Levy system for the jumps of 7
that are also jumps of Y, and excursions induced by them. This implies that

{Ye # Yo, Fo(Y,-, Ys) >0, *q(Y,, Y,-) = 0 or oo}

is evanescent, and we may define Fo(x, y) = 0 if *q(y, x) & (0, ») without
affecting (4.6). Further using (4.6) and (4.10) we see that {x: va{y: Fo(x, y) = 0,
*q(y, x) > 0} > 0} has potential 0 with respect to Y.

For each x, y we now define .

(4.18) P*/(T') = F¥(x, y).

P*Y s, for all (x, y), either a probability measure, or is equal to 0. If p*” is not
0 then under P*” the finite dimensional distributions of (U,)., are given by

Px’y(Utl € dyt, ] Ut,. € dyn)
= H,(x, dy1) Qs+, (¥1, dy2) -+ Q. ,(¥n—1, AVa)*Go(¥, yn)(*q(y, x))7.

Equivalently if P*” is not 0, then under P*?, (U,);>o is a homogeneous Markov
process with entrance laws

(4.19)

(4.20) n¥¥(dz) = *H_fidz_)ﬁi’M
q(y, x)

and transition function
Q:(2, du)*Go(y, u)
*éO(y, Z) )
Further, using the convention 0/0 = 0, we can use remark (4.17) to show that for

vé a.e. y, the finite dimensional distributions of P*” are given by (4.16), for L a.e.
x

(4.21) Ki(z, du) =

We have thus proved

THEOREM 4.22. For every (x,y) € E X E x #y, there exists a measure P>’ on
(V, 7) so that

(i) P*” is either a probability measure or is equal to 0.

(ii) (x,y) — P*¥(T') is & X & measurable for each T € 7.

(iii) Except for a set of L potential 0, for v¢ a.e. y, under P*’, (U,)o is a
homogeneous Markov process, with entrance laws and transition function
given by (4.20) and (4.21) respectively. If P* doesn’t satisfy the above it is
equal to 0.
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(iv) If T is a jump time of Y, then with the convention 0/0 = 0

E*(f(er) | %)
E*(B(er) > 0|%)

and a.s. on {T € D}, 0 < Fo(Yr_, Yr) < 0, 0 < *q(Yr, Y1) < oo.

= PYr-Y1(f) (8 defined in (4.7))

(4.23)

Note on Proof. The only thing which we have yet to prove is (ii). Note that
(x, y) = P* is &° X & measurable. The proof that one may choose Fr(x, y) so as
to make them & X & measurable is deferred to the Appendix.

REMARK 4.24. As noted by Fitzsimmons in [8] and by Getoor and Sharpe in
[11], (4.21) (or its time space analogue that appears in [11]) implies that
conditioned to start at x and end at y (start at x, end at y and have length /# in
[11]), the excursion process is obtained from the original process killed at R (or
its time space analogue in [11]) by an h-path transform. Fitzsimmons constructed
the measures P*” using (4.20) (4.21) and the theory of h-path transforms rather
than giving them the interpretation we have. This, of course, makes (x, y) — P*’
& X & measurable automatically.

LEMMA 4.25 For F € 5% let *H{(F) = *H*(F; Xp # x), then for L a.e. x

(4.26) *Hi(F © kg - Y(Xgr)) = *HI(P***(F)y(Xr))
(for each t, k; is the killing operator at time t).

Proor. It is enough to prove the lemma for
F=f(X) - (X)) fiE b&.
Then
*Hi(F © kg - ¢(Xr))
= *Hi(lp>ey1(Xy,) -« - flXe)¥ (X))
(4.27)
= L L L\lx} *Hi(dy1) Qe-t,(y1, dy2) -+ Qpy—ty(Yr-1, dy)fi(y1)
<o fel(yr)*Qo(u, ye)¥ (w)ve(du).

Using the definition of P> and remark (4.17), the right-hand side of (4.27) is for
L a.e. x equal to

] P*(F)*q(u, x)y (u)ve(du) = *H{(P***(F)y(Xg)).

E\{x]

We let P*” be the conditional excursions laws that correspond to the dual
process. Our next objective is to connect P*” and P*” via time reversal. We shall
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assume from now on that M (and therefore M) are almost surely perfect. In this
case L is the local time of equilibrium of order 1 at M and

(4.28) =C,+ Leb(M N (0, t)), L.=C. + Leb(M N (0, t)).

Recall from Section 3, that ! and [ are the ‘Motoo derivatives of the Lebesgue
measures of M and M with respect to L and L respectively.
We define the following operation on V

where for each v, L(v) is the absorption time at M.
Our next objective is to prove the following.

THEOREM 4.30. Assume that M and M are almost surely perfect then pP* =
P Y ve X vé a.e.

REMARK 4.31. The assumption that M and M are perfect is essential for this
result. For, in order to be interpreted as the conditional laws of excursions given
%, P*¥ were defined using a mixture of optional and predictable exit systems.
Time reversal results as (4.30) can hold only if one either uses a predictable exit
system, and then the points (x, y) correspond to the state of the process before
the beginning of an excursion and at absorption, respectively, or using an optional
exit system and then (x, y) correspond to the state of the process at the beginning
of an excursion and before absorption, respectively. (For the latter see [11], [8].)

PrOOF. First note that

(4.32) ve(dx) = (1 — Ux)we(dx), veldx) = (1 — [(x))vi(dx)

and v, a.e. l(x) = 1 implies that *H*(1 — e™®) = 0 and therefore *q(y, x) = 0 for
all y. As before we shall use 0/0 = 0.
Let f, g € &,. Taking H = 1 in (2.44) and using (2.47), it is easy to see that

yﬁfmwmmq%&me@o

= Q Z3EM/;0<8<1 g(Zs—)f(ZDo ° s)
= Q 28&M{‘k8<1 f(ZAs—)g(ZAA ° A‘s)

f f uc(dx)g(x) "4, l(y )) f(ve(dy)

where *§(x, y) are defined via the co-exit system in the same manner that
*q(y, x) were defined using the exit system. It therefore follows that

(4.33)

*q(y, x) _ *qx, y)
1=l 1-1)

(4-34) ve X vé a.e.
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Let0<s1<ss<...-<spandfy, fz - fn € &:. It follows again from (2.43) that

[ vetan ED R > 0 i(X) -+ FiX) o, XD re(@)f ()
(4.35) *

= J [ et L B> i K - e )

Hence v¢ a.e.
—g(x) *ITx . *3
ve(dx) -1 H*(R > s,; f1(X5) -+ fo(Xs,)*Go(y, X))
(4.36)

=100y H® >80 iXwowi) -+ ol Xiw-s-)g(Xr)):

By (4.16) and (4.17) and the definition of P”* (with the obvious changes of
notations to account for the dual objects), it follows that »c X »¢ a.e.

P (L > s, ilU-sy-) -+ faUig=sy-)
(4.37) _HHR > s, A(X) - fr(X)* 0, X)) 1= 1)
*4(x, y) 1-Ux)"
It now follows from (4.37), (4.34) and (4.17) that with the convention 0/0 = 0,
P*HL > sn, iUd-op-) -+ fulU-s-))
= P*)(L > s;, fi(Uy) - fa(Uy)) ve X ve ae.

Finally note that for B € &* X &* with »¢c X ve(B) = 0, the set {(t, w): t €
D(w), (Y;-(w), Y:(w)) € B} is evanescent. Note also that the vc X »¢ negligible
set in (4.30) depends on T' € 7, but using the fact that 7" is countably generated,
may be chosen independent of T' € 7.

5. On excursions straddling terminal times. Although the meaning of
P*¥ defined in the previous sections as the laws of excursions conditioned to
start at x and end at y, is significantly different from that of P>/~ given in [11],
they play the same role as the latter, in the analysis of excursions that straddle
exact perfect terminal times. The methods and the proofs are very similar, and
in most cases will be omitted.

Let T be an exact terminal time, T' = « if T = {. We may assume that T is
the hitting time of a set J € & X & by (X-, X) (see [11]). Let

(5.1) G=Gr=supls<T,s € M}
(5.2) D=D;=inf{s>T,s € M}.
For J defined above let

*H*(F; 0<T<R, (Xo-, Xo) €J)
*H*(0<T<R, (Xo-, Xo) €J)

where by convention 0/0 = 0 and *H*(X,- # x) = 0. We assume from now on

(5.3) *Hx(FI 0< T< R, (XO—’ XO) e J) =
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that M is perfect. In this case (4.28) holds. The more general case could be carried
out too, but one needs to deal with M, (the perfect kernel of M) and M — M,
separately. The following is an obvious extension to the predictable case of
Proposition 13.4 of [11].
PROPOSITION 5.4. For positive predictable Z, F € b7 * and f € b&*
(i) EXZef (Xg)F° 05, 0<G<T<Y)
= E* [0 Z*H*(f (Xo)F; (Xo-, Xo) € J, 0 < T <R) dL,.
(i) 0 <*HX-((Xo-, X)) &€ J;0<T<R)<was.on{0<G<T<{).
(iii) EX(ZgF °05;0<G<T<Y¢)
= E*(Zg*H*-(F| (Xo-, Xo) € J,0< T<R)G<T<Y).
(iv) Let *Hi{(F) = *H*(F; Xg # x) then
E*(ZgF ° 06, Xp # X6-, 0<G<T<Y)
= EX(Zg*H(F | (Xo-, Xo) € J,0 < T<R);
Xp#Xe-,0<G<T<Y),
where

*Hi(F; (Xo-, Xo) €J,0<T<R)
*Hi((Xo-, Xo) € J,0< T<R)

when the denominator is positive and finite and is equal to 0 otherwise.
(v) Let *H3(F) = *H*(F; Xg = x) then
EXZgF ° 0g; Xp = X6-,0<G<T<Y)
= E*(Zg*H}*(F| (Xo-, Xo) &€ J,0 < T < R);
Xp=Xe-,0<G<T<Y)

(6.5) *Hi(F|(Xo-, Xo) €J,0<T<R) =

where as before

3(F; (Xo—, Xo) €J,0<T<R)
*H3(Xo-, Xo) € J,0< T <R)

when the denominator is positive and finite and is equal to 0 otherwise.

Hi(F|(Xo-, Xo) € J,0<T<R) =

PRrROOF. The proof is almost identical to the one given in [11], once we notice
that for Z positive predictable
EYMZGF ° 0; 0 < G<T<Y)
(5.6) o |
= E* Ysem, 1o,11()Z:F (0:)1((x,_, x,60))¢7,0<T(60,)<R(0,))

Note that X, that appears in this theorem is the beginning of the excursion.
Note also that [0, T') that appears in [11] with the optional exit system is not
predictable. We therefore need the extra condition (X,-, X,(6,)) & J.
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We now recall the definitions of - and %p. W is in F- if W € & and for
every measure u there exists a predictable process (Z;);=o with Z = Zg, P* as.
on {G< o). HE %pif HE F and for each u there exists H € & with H= H ° 0p,
P* as. on {D < o).

For each F € 7 let

P> (F; (x, Up)) € J,0< T <L)
P ((x, Up) € J,0< T <L)

if the denominator is positive, and 0 if the denominator is equal to 0. (L defined
below 4.29).

The following is the main result of this section. With Lemma (4.25) and
Proposition (5.4) at hand the proof of its first part is identical to that of Theorem
13.7 of [11] and it is therefore omitted. We shall give a proof of its second part.

(5.7) P>(F|(x, Up) € J,0<T<L)=

THEOREM 5.8

(i) Lt A={0<G<T,D — G < x} and F € 7 positive. Then almost surely
on A N {Xe- # Xp}, 0 < P*~*p((Xg, Uy) € J,0< T <L) < 0, and

E*(F ° sg © 0 | Fo-, Fap) = P*-*2(F|(Xo-, Uo) € J; 0 < T < L).

(ii) Let A be as in (i), then almost surely on A N {Xg- = Xp},
0 < *H¥e-((Xo—, Xo) € J,0< T <R) <  and for F € 7 positive

E*(F © sg © 0g | Fo-, Fop) = *HE(F © sp|(Xo-, Xo) € J,0< T <R).

PROOF OF (ii). Let No = {x: *H5((Xo-, Xo) € J, 0 < T < R) = o} then
1=>P(Xg-E€ No, 0<G<T<¢, Xo- = Xp)

- J; b In,(X,)*HF*((Xo-, Xo) € J, 0 < T < R) dL,.
0,

But the integrand on the right side is either zero or infinity, and therefore
P*(Xg- €E No, 0<G<T<{, Xg- = Xp) =0.

The same argument with Ny = {x: *H35((Xo-, Xo) € J, 0 < T' < R) = 0} shows
that P*(Xg- € Ny, 0 < G<T< ¢, Xo_ = XD) = 0.
Let F € 7; Y € & be positive. Then

*H3(F o sgp - Y © Og; (Xo-, Xo) € J,0< T<R < )
= *H%(F © sg; (Xo-, Xo) € J, 0 < T < R < ®E**(Y))
= E*(Y)*H3(F © sg; (Xo-, Xo) € J,0 < T <R).
Note that for x € E, H}(R = ) = 0 because Xz = A on {R = «}. Now let
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(Z:):=0 be a predictable process and Y € b5 %,
E"(ZgF °8g° 0G Yo 00; AN {X(,'_ = XD})

*H¥e-(F o sgp; (Xo-, Xo) € J,0< T<R)
*H¥o-((Xo-, Xo) & J,0<T<R)

= E“<Zg E*-(Y); AN {Xg-= XD}>

= E*(Z¢*HZ~(F ° s | (Xo-, Xo) € J,0 < T< R)E**-(Y); AN {Xe-= Xp})
= E*[Zg*HZ%(F ° s | (Xo-, Xo) € J,0 < T<R)E*>(Y); AN {Xo-=Xp]

= E*[Z¢*H$% (Fosg | (Xo-, Xo) € J,0< T<R)Y(0p); AN {Xo- = Xp}]
where the last equality follows by the strong Markov property at D.

REMARK 5.9. The same methods can now be applied to treat excursions that
straddle (%) stopping times in the same manner it was done in [12]. As this is
very similar to the treatment above and proofs in [12], we shall not elaborate on
the matter. )

APPENDIX

The objective of this appendix is to show that the measures Fr(x, y) defined
in Section 4, can be chosen so that (x, y) — Fr(x, y) are & X & measurable and
when Fy(x, y) > 0, then F(x, y) is the derivative of the measure p§ with respect
to A%, defined in Section 4.

We shall split the construction of Fr into two parts. We first deal with points
xEPF.

Let h be the function defined in (4.2) and f € 7;. Define

(A1) Ci = Yo=t Lyyey,h(Ys, Yy)
(A.2) Di = E*(Ts=t vy, f(e)R(Ys, Y,) | 7).

Let C; and D{ be the dual predictable projections of C and D' respectively
(with respect to (#)). Since Y is quasi-left continuous, both C and D/ are CAF’s
of Y, and for each t, C, < Df. Hence

L, L
(A.3) J; 17(Ys) dﬁfsj; 1#(Y,) dC,

and using the time change s = L,

(A.4) J; 1p(X,) dDf o L, < J; 17(X;) dC ° L.

Since the jumps of L are concentrated on {X € F¢} both sides of (A.4) define
CAF’s of X. (The condition of 17(X,) further implies that they do not depend on
{I.} defined in Section 2.) Since £ is a reference measure for X, there exists a
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function Nf € &, so that

(A.5) j; 1#(X,) dDf o Ly = j; 17(X,)N/(X,) dC © L,.

Therefore for u = 7, and after a time change we obtain

L, L,
(A.6) J; 15(Y;) dDf = J; 17(Y,)N'(Y,) dC..

Now again, since all jumps of L are concentrated on {X € F*}, it follows that

t L, t
(A7) J;]-F(Ys) dD§=J; 17(Ys) d17§=£ 15(Y,)N/(Y,) dC..

Let (B, K°) be the Levy system for the jumps of Y. One may take here
B = C defined above. Further using the argument that led to the fact that
17-Nf € &, it is easy to see that 1 - K° is a kernel from (E, &) into (E, &). Let

(A.8) N={x:*H*(1 —e®); X,#x) >0}, then NEZ °

It follows from the proof of Theorem 4.2 of [1], (4.10), and reasoning similar to
what has led to N/ € &, that there exists a function f, € & so that

(A.9) f Inar(Ys) ds = f 17(Ys) f1(Ys) dB,
) )

and that there exists a function Fy € & X & so that for each x, Ff(x, y) is a density
of 1x(x) fi(x)*H*(f(sg), Xr € A — {x}) with respect to K°(x, A). One may, of
course, define Fy(x, y) = 0 for all y if f;(x) = 0. This, using a classical argument,
defines a kernel 1z(x)Fr(x, y) from & X & into (V, 7°) such that for all f € 7,
1r(x)Fy(x, y) = 1p(x)Fy(x, y), K® a.e. Now if 15(x)Fo(x, y) = 1p(x)Fig>0;(x, ¥) > 0,
(4.16) follows from the above, and the computations of Section 4.

We now turn to points in F°. We start with the following.

LEMMA A.10. {(¢, w): Xi-(w) € F°, Xi(w) € F} N (M — M,) is evanescent.

PROOF. Since M, is the set of right endpoints of intervals contiguous to M, and
M is closed and optional, it follows from [7] that M — M, is predictable. Let (A,
K) be the Lévy system for the jumps of X, and h € &, then

E* ¥, e 1y-m,(8)1ix,_er, x,erh(X;)

=F° J; e—‘li‘c(Xs)].M-Mr(s) J;K(Xs, dy)h(y) dA, =0

because A is a CAF and {(s, w): X;(w) € F°, s € M(w) — M,(w)} has countable
sections.

Having established this lemma, it follows that all jumps of Y from x € F* are
“caused” by excursions. Further, since points in F*, are holding points for Y it
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follows from the construction of Fy in [1] that in this case

(A11) 1p(x)Fr(x, y) is the derivative of 1p(x)E*(sp €T, X € A — {x})
’ with respect to 1(x)E*(Xgr € A — {x}).

The fact that (x, ¥) — 1p(x)Fr(x, y) are & X & measurable follows from the
fact that for ' € 7, g € &, x — E*(sg € T; g(Xz)) is & measurable, Doob’s
lemma and the fact that F° € & Formula (4.16) in this case is a direct consequence
of (A.11) and the results of Section 3.

Recalling Remark 4.17

{(s, w): Yo (0) # Yi(w), *q(Ys(w), Ye-(w)) = 0 or ®, Fy(Y,-(w), Ys(w)) > 0}

is evanescent, hence by redefining Fy(x, y) = Fr(x, y¥) = 0 for all (x, y) with
*q(y, x) = 0 or o, we do not affect either the & X & measurability of Fr or any
of the above.
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