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It is proved that if X, is a diffusion generated by the operator L =
Y% 3 a;(x)0*/0x:0x; + 3 uobi(x)d/dx, having periodic coefficients, then
A VY3 Xy — Auobt), t = 0, converges in distribution to a Brownian motion as
A — . Here b is the mean of b(x) = (by(x), - - -, br(x)) with respect to the
invariant distribution for the diffusion induced on the torus T* = [0, 1)*. The
dispersion matrix of the limiting Brownian motion is also computed. In case
b = 0 this result was obtained by Bensoussan, Lions and Papanicolaou (1978).
(See Theorem 4.3, page 401, as well as the author’s remarks on page 529.)
The case b # 0 is of interest in understanding how solute dispersion in a
porous medium behaves as the liquid velocity increases in magnitude.

1. The limit theorem. Let L =% Y%, a;j(x)0%/dx:9x; + 31 uobi(x)d/dx;
be a differential operator (k = 1), whose coefficients satisfy the following
assumptions.

Assumptions. (1) For each x the (k X k) matrix ((a;j(x))) is symmetric and
positive definite; (2) the functions a;;(x), b;(x) are real valued and periodic, i.e.,
a;(x + v) = a;(x), bi(x + v) = bi(x) for all x and all vectors v with integers as
coordinates (1 < i, j < k); (3) the functions a;;(x) have bounded second order
derivatives, and b;(x) have continuous first order derivatives; (4) uo is a real
parameter.

Let (Q, o7 P™) be a probability space on which are defined (1) a random
vector X, with values in R* and distribution 7, and (2) a standard k-dimensional
Brownian motion {B, = (B, .., B®): t = 0} which is independent of X,. In
case 7’ ({x}) = 1, P™" will also be denoted by P*. E™" denotes expectation under
P,

Let {X;: t = 0} be the solution (continuous, nonanticipative) to It6’s stochastic
integral equation

t

t
(1.1) Xe=Xo+ f uob(X,) ds + f o(X,) dB,, (X;= (X, ---, X)),
0 0

where o(x) is the positive square root of ((a;;(x))). The P -distribution of
{X.;:t = 0} is a probability measure on (the Borel sigmafield of) the space
C([0, ---): R*) of continuous functions on [0, ®) into R* endowed with
the topology of uniform convergence on compact subsets of [0, ©). Note that
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386 R. BHATTACHARYA

{X:: t = 0} is a Markov process. Let p(, x, ) be the transition probability density
(with respect to Lebesgue measure on R*) of this Markov process. Because of
periodicity of the coefficients one has

(1.2) plt;x,y) =pt;x+ v,y +v)

for every vector v with integral coordinates.
We shall write

(1.3)  x=(x"(mod 1), ---, x®(mod 1)) (x = (x©, ..., x®) € R,
(14) X,= X,(mod 1) = (X®(mod 1), ---, X#(mod 1))

In view of (1.2), X, is a Markov process on the state space T* = [0, 1)* having
the transition probablllty density function (with respect to Lebesgue measure on
[0, 1)%)

(1.5) P(t; %, ¥) = Tiezr p(t; x, ¥y +v), (x,y €[0, *).

Assumptions (1)-(3) imply, by the maximum principle (Fnedman 1975,
Chapter 6),

(1.6) inf, yepaprp(t; x, y) >0, (t>0).
Therefore,
1.7 inf, yep,*0 (¢ x, y) >0, (t> 0).

This implies Déblin’s condition and irreducibility (Doob, 1953, Theorem 2.1,
page 256; Bensoussan, Lions and Papanicolaou, 1978, Theorem 3.2, page 373),
and the existence of a probability density =(x) on [0, 1) and positive constants
¢, B such that

(1.8) f Dbt x, y)7(x) dx = 7(y) ae. (dy) on [0, 1)*
[0,1)

and

(1.9) SUP.efo,1)* J{; o [P 25 y) = w(y)| dy < ce™ (¢>0)

The following proposition is easy to prove.

PROPOSITION 1. The P*-distribution of {X, — x: t = 0} is the same as the
P*-distribution of {X, — x: t = 0}.

Next consider the discrete parameter stochastic process
(1.10) Y,=X,— Xna m=12,...).

Denote by #, the sigmafield generated by {X,: 0 < s < t}. By the Markov
property and Proposition 1, the conditional distribution of the stochastic process
{Xmin-1— Xn-i:m=1,2, ...} given Z,,; is the same as the P*-distribution of
{Xn—t:m=1,2,--.}Jwithx =X, ;. But {X,: m=0,1,2, ---} is a stationary
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sequence under P". Hence the (unconditional) P"-distribution of {X+n—1 — X,1:
m=1,2, ...} equals the P™-distribution of {X,, — Xo:m =1, 2, - - -}. In particular,
the P"—distribution of {Ym+n—1 = (Xm+n—l - Xn—l) - (Xm—1+n—l - Xn—l): m = 1,
2, -- -} is the same as the P™-distribution of {Y,, = (X,, — Xo) — (Xpn—1 — Xo):
m =1, 2, -..}. This proves that {Y,: m =1, 2, ...} is a stationary sequence
under P,

Now let B be a Borel subset of (R*)Z", where Z* = {1, 2, - --}. Then

P"({Ypin+jij=1,2, ---} € B)/Fm
(1.11) = E"(P*({Y;:j= 1,2, ---} € B)/%,)
= E"(f Xnen)/Fm) = E"(f Kn)/ Xm),
where f(x) = P*({Y;:j=1,2, ---} € B). By (1.8), (1.9)

IE(f(Xm+n)/Xm) - wa(Xm+n)|
(L12) [ owem X av = [ e ay ‘ -
[0,1) [0,1)

<c | fllxe™® < ce™P".

Combining (1.11), (1.12) and recalling the definition of ¢-mixing (Billingsley,
1968, page 166) one arrives at the following result.

PROPOSITION 2. Under P~ the sequence {Y,,:m =1, 2, - - .} defined by (1.10)
is stationary and ¢-mixing, with a ¢-mixing coefficient which decays to zero
exponentially fast.

Consider the real Hilbert space L*([0, 1)*, =) with inner product and norm

(1.13) (f, 8) = Ll)kf(y)g(y)r(y) dy, Ifll = «f, FNY2

Let {T}:t > 0} be the strongly continuous semigroup of contractions on this space
defined by

(1.14) (Tef)(x) = J{; g P& % 2)f() dy, (x €0, 1)").
Let A be the infinitesimal generator of this semigroup on the domain 94. Let
%4 be the range of A. Then %4 = 1%, the set of all functions f in L3([0, 1)&, =)

such that (f, 1) = 0, and given any f € 1* there exists a unique element g in
24 N 1+ such that (Bhattacharya, 1982, Theorem 2.1 and Remark 2.3.1)

(1.15) A= &)= —J; (Tef)(x) dt.

We will denote this element by ALf:
(1.16) g = Ailf.
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Now write
bi= (b, 1), b= (b, ---, ba),
1.17) a; = (ay, 1y, a= ((@)),
g=Adb:—b), 1=sis<k).

Under Assumptions (1)-(4), g is (equivalent to) a twice continuously differenti-
able function, when extended to R* periodically, and = (y) is a continuously
differentiable periodic function (Bensoussan et al., 1978, 386-401).

The main result of this article may be stated as follows.

THEOREM 3. Under Assumptions (1)-(4), no matter what the initial distri-
bution '’ is, the stochastic process

(1.18) {Zox = NV3( X\ — Aupth):t = 0}
converges weakly, as A — ®, to a Brownian motion with zero drift and dispersion
matrix D = ((D;)) given by

Dii = —utz)(bi’ gJ) - u(2)<bj’ g;) + 617

. +f {-()2" i(at~() () + g(y) Z* i(a-( ) ( ))}d
o L0\ 81Y) 2= G (@YD) T 8LY) Zurma ) RGN 4.

ProOOF. First let the initial distributions be 7w (x) dx. Write
Sp=Yi+ -+ + Y, — nuob =30y (Vi — tob) = Xo — Xo — nuob,

(1.20) W, m S[nt] N (t — ([nt]/n)) Ying+ ,
Jn vn

where [nt] is the integer part of nt. Then, in view of Proposition 2, {W,,:t = 0}
converges in distribution to a Brownian motion with zero drift, as n — o. (See
Billingsley, 1968, Theorem 20.1, page 174, where the result is stated for
W!, = Spy/Vn. It is easy to check that max{| W,, — W{,|:0 <t =T} —0in
probability for every T'> 0.)

Now, fix a T > 0 arbitrarily and note that

maX05t<T| Wt,n - Zt,nl

(1.21) Xo| + |uob 1 —
= [Xo] + luob| + — MaXjemspprMaXose'<i | Xm+er — Xm — t'Uob|.

v n

The sequence max{| Xmsr — Xm — t'uob|:0 < t’ < 1} is stationary. Also, the
exponential martingale inequality (Friedman, 1975, page 93) may be used to
prove that the common distribution of this sequence has finite moments of all
orders. Chebyshev’s inequality may be used now to show that the last summand
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on the right side of (1.21) converges to zero in probability, as n — «. Hence
{Z..:t = 0} converges in distribution to a Brownian motion.
Now let the initial distribution be #’, different from =. In view of (1.12) one
has
limm—-msupB I PW,({Ymﬂ':j = 1» 2’ o ’} € B)

(1.22) ,
_PW({Ym+j:] = 17 27 "'} eB)l = O’

where the supremum is taken over all Borel subsets B of (R*)Z".
Define _
Sm,n = Yma + .0+ Ym+n - nuOby
(1'23) Wt,m,n — Sm,[nt] + (t - ([nt]/n))Ym+[nt]+l .

vn vn

It follows from (1.22) that the (variation) norm distance between the measures
induced by W, , under P™ and W,,,, under P™ (on C([0, ®) : R¥)) goes to zero as
m — oo, uniformly for all n. Also for every positive integer m and every T > 0,
whatever the initial distribution «’,

maxOStsTl Wt,m,n - Wt,nl

1
= —— MaXi<r=(nT] I Yr + Yr+1 + ..o+ Yr+m—1|
(1.24) no
b
+mlbluo
vn

by the same type of moment estimates as used for (1.21). If y is a real bounded
continuous function on C([0, ®):R*), then by (1.24),

lim sup, . | E¥¢(W.,) — E"(W,,) |
< lim sup, . | E"Y(W,,) = E"Y(W;m,) |
+ lim sup, o | E"Y(W; nn) — E™Y(W,,) |
= lim sup, .o | E"Y(Wi ) — E"W(W,,) |.

But the last expression in (1.25) goes to zero as m — . The proof of convergence
to a Brownian motion is completed by observing that max{|Z,, — Z.y|:
0 = t = T} goes to zero for every sample point, as A — .

It remains to compute D;;. Let us first show that {| Z;|?: A = 1} is uniformly
integrable with respect to P™. One has

— 0 in probability as n — oo,

(1.25)

A A 4
E"|Z8\|* = X""E"(uo f bi(X,) ds + f Yra 0i(X,) dBY + X - quT,-)
0 0

A 4
(1.26) =< >\*233{E*(Xg>)4 + uéE*( fo (bi(X,) — b) ds)

A 4
+ E”( J; Yra 0 X,) dBé”) }
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It is known that (McKean, 1969, page 40)

A 4
(1.27) E"( f e 0 (Xs) dBff’) < c\?
0

for some ¢; which does not depend on \. Also, writing f(x) = b;(x) — b;, one has

A 4 A 4
E”( fo (b:i(X,) = by) dS) = E”( fo f(Xs) dS)

A A A A
=24 f f f f Ef(X,)f (Xo)f (Xo)f (Xs,) dsy dss ds, ds
(1.28) 0 Ya Ya Y

A LN LA A
=24 J; _[ _[ f (fy Togmorf (Toysy(f (Toy=s,f)))) dss dsy dsz dss

A A A A
=24 f f f f 22| 1| | f |3 Plerse=BC~) ds, ds; ds, ds,.
0 s S s

The last inequality follows from (1.12) (with n replaced by s):
I Tof o = sup, | Tof (x)] = cll f ™,
(1.29) [<f, Teg)| = I(f, Tg — E"@))| =< | fIl | Tg — E™9)|

=clfll - 2lgle™,

applied first to g = f(Ty—s,(f(Ts,~,))) and s = s, — s;, and then to g = f and
s = 84 — s3. A straightforward evaluation of the last multiple integral in (1.28)
yields

A 4
(1.30) E*( L (bi(Xs) — by) ds) =< co\%,

where ¢, does not depend on \. Using (1.27), (1.30) in (1.26) one gets the desired
uniform integrability. It now follows that

Dy = lim\_E"Z$\Z1}
1 * » _
= lim " [uﬁE"(J; (B:(X,) — b)) dS-J; (b;(Xs) — b)) dS)
A A
(1.31) + uoE'< J; (b:(X,) — b;) ds- J; Sia1 0in(Xs) dB§")
A A
+ uOE“.(‘[ (bj(Xs) - 5]) ds"j; Zf=1 o'ir(Xs) ngr))

A A
+ Ew(f 25=1 0ir(Xs) ngr).f Zr};l Ujr(Xs) ng”):I
0 0
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By Theorem 2.1 and Remark 2.3.1 in Bhattacharya (1982) and relation (1.30)
one has

2 A A
limy e %\9 E"(f (bi(X,) — b) ds - f (b;(X;) — b;) ds)
(1.32) ° 7

= ud((—b: — bi, &) + (=bj — bj, &)) = —ud((bi, &) + (b), &)).
Also, from a standard result in stochastic integrals (Friedman, 1975, Chapter 4),

A A
E"( f Sk 6ix(X,) dBY - f Yk 0 Xs) dB§”>
(1.33) ? 0

A A
= J; E* Tk, 0:(X,)0j(X,)) ds = J; a; ds = \a@j.

It remains to estimate the second and third terms in (1.31). For this estimation
we make use of the definition of stochastic integrals as limits (at least in L? w.r.t.
the product measure P™ X ds on Q X [0, A]). One has

A A
Tha E( fo (b«(X.) — b;) ds - j 0r(X.) dBff’)

A t
= Y E"( J; <(bi(Xt) - b) J; a;r(Xs) dBﬁ”) dt),

using the orthogonality of b;(X;) — b; and the stochastic integral over [t, A]. Fix
e > 0, sufficiently small. Then

A t 2
E"( f <(bi(Xt) - 5:)( f a;r(Xs) dB§”) dt))
0 (t—e)VO

A t
= E"<2 sup{| bi(x)|: x € R¥} - (J; f a(X,) dBY

(t—e)VO
A 2
= C3E"<f dt)
0
A t 2
= cg)\E"(f <f ;- (X5) dB,(,')) dt)
0 (t—e)VO

A ¢
= 3\ f (f (E"03(X,)) ds) dt < cy\%
0 (t-e)VO

for appropriate positive constants ¢y, c4. It is, therefore, enough to evaluate the
last expression in (1.34) with ¢ replaced by ¢t — e. Now, writing E*f (X;) = T.f (x),

(1.34)

)

t
f Ujr(Xs) dB :(3’.)

(t—e)VO

(1.35)
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one has
A t—e
Fa E"( J; <(bi(Xt) - b) J; 0;r(X;) dBﬁ”) dt)
A
= i limuoE'< J; (b:(Xe) — BZNED™ 650 Xomn)
(1.36) (B{+vn — BSW) dt)

A
=Yr limhwE'< J{: (SR T menyn(bi — b)) (Xmanyn)

« 0;(Xomn) (B+yn — BER)} dt)-
By It6’s lemma (Friedman, 1975, page 90) one has
Tom+1yn(d; — 5)(Xim1n)

= To—menn(bi — 5:)(Xmn)

(m+1)h
(1.37) + f LTt—(m+1)h(bi - b_l)(XS) dS

h

(m+1h _
+ f grad Ti—m+nn(b; — b:)(X,)o (X,) dB.

h

Now (t’, x) — LT (b; — b;)(x) is bounded on [¢/2, A\] X R*, since this function is
continuous on [¢/2, A\] X R* (Friedman, 1975, Chapter 6) and periodic in x.
Hence, for h < ¢/2, the first integral in (1.37) is bounded above by csh. Also,

x — grad Ty (b; — b;)(x)

is differentiable with a derivative which is continuous on [¢/2, A] X R*. Since
this derivative is also periodic, the second integrand in (1.37) differs from

grad T m+1)n(b; — b:)(Xmn) 0 (Xmn)
by a quantity smaller than cgh. Therefore, the second integral differs from
grad Ti—(m+1n(b; — b:)(Xmn)o (Xmn) Bm+1yr — Bmn)

by a quantity whose square has expectation less than c;h2 In view of this it is
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easy to check that (1.36) equals
H k g ‘u’[ [(t—e)/h) k 8
hmhlo Yra1 A E 'lzm-o Er’=l g‘ Tem+vn(bi — Bz) (Ximn)
X <Zf~-1 v (Xmn) (Blriyn — B:::))]Ujr(xmh)(Bg,)u.l)h - Bf,’.},)} dt

9
0x,-

A
= limpyo 3t J; E"{Eﬁf&i” " [Zﬁ-l ( Te-imevn(bi = E))(th)

X Ur'r(th)o'jr(th)(B:;)H.l)h - Bf;};)zjl} dt

A t—e
(1.38) = J‘; J; < k1 E’{(% Ti-o(b; — E))(X,)aj,,(xa)}> ds dt
= f f ) [ = f <i Te-o(bi — b-i))(x)ajr’(x)ﬂ’(x) dx] ds dt
o <o o, \O%x, i

= _fx IH [Ek' f Te-s(bi = Bi)(x) 2 (ajr(x)7 (x)) dx] ds dt
o o r'=1 [0,1)" t—s\Ui i, axr, jr

A t—c
__[] 9
- 1 f[ " [ T - B30 as)( 32 5 (@rw()) df de.

J; Ti—o(b; — b)(x) ds

Since

(1.39) = f Ty(b; — b;)(x) ds

t &
= f Ty(b; — bi)(x) ds — —gi(x) — J‘; Ty(b; — b))(x) ds,
uniformly in x € [0, 1)* as t — o, (1.38), (1.35), (1.34) yield

A A
lim)\—m % 21};1 E'(f (bi(Xs) - BL) ds - f o'jr(Xs) dB.'(;r))
0 0
(1.40)

= f gi(x)<25'=1 9 (ajr'(x)r(x))> dx.
[0,1)% X,

Using (1.32), (1.33), and (1.40) in (1.31) one obtains the desired result (1.19).
Q.E.D.

Extensions. 1. The functional central limit theorem proved above holds if
Assumption (3) is replaced by (3’):a;(x) are continuous and b;(x) are Borel
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measurable and bounded. The proof of convergence to a Brownian motion may
be carried out as above. An alternative proof in this case may also be given by
the renewal method (see Bhattacharya and Ramasubramanian, 1982). In com-
puting Dj all the steps can be justified, except (1.40). This is the main reason
why the smoothness assumption (3) was made.

II. Let B, be an open ball of radius r with center at the (lattice) point », where
0 <r<?%. Let B = UB,, the union being over all » in Z*. Consider the diffusion
on R*\B whose transition probability density function p(t; x, y) satisfies the
equation dp/dt = Lp in the interior and a Neumann boundary condition on 9B
(e.g., vanishing of the conormal derivative Phiar (% — v;)a;(x)dp/dx; on dB). If
{X:: t = 0} is this diffusion, then {X,: t = 0} is a diffusion on T*\B, where B is
the image of B under the map x — #. The diffusion on the torus is ergodic and
its transition probability density p(t; x, y) is bounded away from zero (for each
t > 0). Therefore, Propositions 1, 2 carry over to this case, and as a consequence
so does the first part of the proof of Theorem 3. Hence {A~"%(X\, — Auotb):
t = 0} converges to a Brownian motion with zero drift, as A — . Here
b= Jr8 bi(x)7 (x)dx, 7(x) dx being the invariant probability for p.

2. Concluding remarks. Suppose the diffusion matrix is af, where «
is a positive constant and I is the k X k identity matrix. Suppose also that
div b(x) = 0 for all x. In this case = (x) = 1, i.e., the invariant distribution is the
uniform distribution on the torus. In various examples of this type numerical
computation of the diagonal elements D;; of the dispersion matrix D, using (1.19),
shows that D;; increase with w,; at first approximately quadratically, and then at
higher values possibly at a linear rate. These computations as well as their
significance in modelling solute transport in porous media will appear in Bhat-
tacharya and Gupta (1984). However, D can be explicitly computed for the case
k =1 for general periodic functions b(x) and a(x) > 0; this computation shows
that D goes to zero as uy — . This is not really a great surprise. For, in the one
dimensional case, as u, increases X, winds around the same path (the circle)
faster; the fluctuations become less important and X, — wo\b is close to zero for
large A. In two or higher dimensions this does not happen unless the coordinates
are separated. Detailed computations will appear in the article mentioned above.

Note also that in case ((aj(x))) = al, and div b(x) = 0 for all x, the last two
terms in (1.19) vanish. In particular, one has

(2.1) D; = —2u(b;, &) + a.

In problems of interest in solute dispersion the first term dominates (and goes
to infinity as u, goes to infinity).

Check also that in this model the first term in (2.1) remains the same if the
period is taken to be uy, while the factor u, in the drift is taken to be 1. Thus
asymptotic steady increase in dispersion with respect to the magnitude of the
mean (liquid) velocity is equivalent to its asymptotic steady increase with respect
to the spatial scale of heterogeneity. This is the so-called scale effect which has
also been observed repeatedly in hydrological experiments (Molinary et al., 1977).
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Of course, in the context of solute dispersion in porous media, the
assumption of a periodic liquid velocity field is much too idealized. Unfortunately,
this seems to be the only broad class of drift functions with nonzero mean (or
large scale average of some sort) for which the central limit theorem has been
proved. There is a novel central limit theorem type result due to Papanicolaou
and Varadhan (1979) for the case of an L in divergence form:

L =% Yk, (3/0x)(Xk: a;(x)9/9x;),

with the functions a;;(x) almost periodic in the sense of Bohr. But the divergence
theorem shows that in this case the large scale volume average of the drift is
zero, which (in the context of solute transport) says that the higher scale velocity
of the liquid is zero. This makes the result inapplicable to the present context.
An appropriate extension of the result together with a perturbation expansion of
the dispersion coefficients in a parameter like u, would be of much interest.

An entirely different type of model has been considered by Gelhar and Axness
(1983) and independently by Winter, Newman and Neuman (1983). The results
of Winter et al. (1983) are somewhat more general. In their model they take
((a;(x))) = I, and the drift as u + ¢U(x), where u is a constant (mean) vector, ¢
is a small parameter and U(x) is a mean zero stationary ergodic random field
(indexed by the spatial parameter x). Assuming that the central limit theorem
does hold, Winter et al. (1983) obtain a perturbation expansion of the dispersion
matrix of the limiting Gaussian distribution (or Brownian motion). It would be
important to prove such a central limit theorem. For the case u = 0, div b = 0,
Papanicolaou and Pironeau (1981) have proved that {¢X,.2:t = 0} converges to a
Brownian motion as ¢ | 0, and have computed the dispersion matrix of the
limiting Brownian motion. The case of nonzero mean velocity, however, is the
one of importance for solute dispersion in porous media, and this case remains
open.

Acknowledgment. Thanks are due to the referee for providing an alter-
native proof of Theorem 3 along the lines of Bensoussan, Lions and Papanicolaou
(1978). The weak convergence part of the present proof as well as the computation
of the dispersion coming from the drift (which in many applications constitutes
the dominant part) seem to extend more immediately to the cases mentioned
under Extensions. The author would also like to thank the Associate Editor for
providing a direct proof that the dispersion matrix (1.19) coincides with the
expression [+ (I — uo V g). a(x)(I — up V g)* dr appearing in Bensoussan (1978,
page 401.)
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