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ROTATIONAL REPRESENTATIONS OF STOCHASTIC
MATRICES

By JoHN HaIGH'
University of Guelph

Let (p;) be the matrix of a recurrent Markov chain with stationary vector
w > 0, and let {J;} be a partition of the unit circle into sets J;, ---, J,,
m(J;) = m;, where m is Lebesgue measure. Suppose f; defines rotation
through distance t. The conditions under which p; can be written as
m(f(J)) N J;)/m(J) for all i and j, where each J; is the union of at most b(n)
arcs, have recently been examined by Steve Alpern and Joel Cohen. Cohen
conjectured that b(n) = n — 1, and proved b(2) = 1. Alpern proved that
Cohen’s conjecture was false for n sufficiently large, and gave bounds for b(n).
We give a construction that shows that b(3) = 2, and prove that b(n) is
nondecreasing.

1. Introduction. Let m denote Lebesgue measure on X = [0, 1), and let
fi(x) = x + t(mod 1) be the shift transformation on X. Given any partition
J={J:i=1,2, ..., n, m(J;) > 0} of X, Cohen (1981) pointed out that if

(1) pij = m(fe(J:) N J)/m(J)

then P = (p;) is the matrix of a recurrent Markov chain on {1, 2, - - -, n}, with
stationary vector © = (my, ---, m,), 7 = m(J;). Conversely, given a stochastic
matrix P, Cohen considered whether a representation of P in the form (1) exists,
when each J; is the union of at most b(n) intervals. He conjectured that, if P is
irreducible, such a representation always exists, and that b(n) = n — 1; proved
this conjecture when n = 2; and showed that, for any n, there was some irreducible
matrix P for which b(n) = n — 1.

Alpern (1983) showed that it was possible to extend the class of matrices
from irreducible to recurrent, and used an elegant construction to show that,
given any recurrent P, such a representation is possible, with t = 1/t,, t, =
lem. (1,2, - .-, n), and b(n) < ¢(n), where

(2) c(n) = to(n* — n + 1) < exp(Bn)

for some constant 8. In itself, this does not disprove Cohen’s conjecture, that
b(n) = n — 1, for some more parsimonious construction might exist. But Alpern
also constructed particular stochastic matrices that imply that the conjecture is
false, at least for n = 6 and n = 8.

We shall prove that, when P is recurrent, then b(3) = 2. We shall also show
that, in contrast to the 2 X 2 case, essentially different representations of P
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might exist when n = 3. Finally, we show that b(n) = b(n — 1), and use Alpern’s
construction to make an explicit conjecture about b(n).

2. The case n = 3. Given any 3 X 3 recurrent matrix P with stationary
vector w, we have
3) m = mPu + TPy + wps; 1=1,2,3
4) ™ = mipn + WP+ mps 1=1,2,3.
Equating the two expressions for =; in (3) and (4), we have
(5) TeP21 — M1 P12 = M1 P13 — W3P31 = W3P3z — T2P23 = U (say).

It turns out to be more convenient to define f,(x) = x + ¢ (mod 2), and work on
the interval [0, 2), so that m(J;) = 27;. We now specify the division points x;, x,,
..., x5, that partition [0, 2) into the six intervals in the order shown, by fixing
the lengths of these intervals.

I L, I L, I I
I | | I | |

)
xo=0 X1 X2 X3 X4 X5 x =2=0

We choose
(6) m(I;y) = 2m; — mipa, m(lix) = mips

and we define t = 1 — v (v as in (5)). Then, writing fi(x;) = y;, we can easily
calculate the values of yo, ---, ¥s, and verify that these points are juxtaposed
with xo, - - -, x¢ as shown

Ll Ll I
I |------1 [-=----1 |

0=xo Y3 Y4 X1 Xz Y5 Yo X3 X4 N1 Y2 X5 X6 =2

(i.e., that xy < y3, y4 < x; etc.) and that
X3 = Yo = 2mP13 Y1 — X4 = 2m P12
(7 X1 — Y4 = 2WePa1 Y5 — X2 = 2WyPo3
X5 — Y2 = 2m3Psp Y3 — Xo = 2m3Pa1.

Thus, if J; = I;; U I5, clearly m(J;) = 2;, and relations (7) show that (1) holds
for {p;: i # j}; but, since the sets {J;} partition [0, 2), (1) also holds for {p;}.
Hence any 3 X 3 recurrent matrix has a representation of the form (1), with each
J; being the union of at most 2 intervals.

Cohen also asked whether such a representation, using the minimum number
of intervals, was unique up to cyclic permutations of the sets {I;}. The answer is
that it may not be unique. Suppose 71 p1; = |v| and m2p22 = | v| (this is clearly
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possible, since it can happen that v = 0), and choose
m(ly) = mpu + P12 + ToPn
m(lz1) = m2Pgs + Tap2s + w3 P32
m(I3) = m3pss
and
m(ly) = 2m; — m(l;;) for i=1,2, 3.

Then, placing the intervals on [0, 2) in the order Iy, Iy, Is;, L5, Iz, I, and
choosing t = 1 — v, it is again straightforward to verify that the division points
in these intervals are mapped in the order

l ) l l -
| | | | I | )
% =0 Yo X1 Y5 X X3 Yo X4 Y1 X5 Yo Y3 Xg = 2

and that results similar to (7), that guarantee (1), hold. If, of course, m;p; = |v|
for each of i = 1, 2, 3, there are two more, different, decompositions of J;, J5, J3
into at most two intervals, that will yield (1).

Notice that, in all the above examples, we had t =1 — v or t = 1 + v. These
cases are not essentially different, as, even when v # 0, the decompositions can
be paired off, with each pair corresponding to an ordering of six intervals with a
“forward” shift 1 — v, and a reverse ordering of the same intervals, with a
“backward” shift 1 + v.

Cohen (1981), who worked chiefly with the 2 X 2 case, was not much concerned
with the one case in which P is recurrent, but reducible, namely the identity
matrix, since this is trivial. However, both Alpern’s (1983) construction, and
those given above, work equally well with reducible or irreducible matrices,
provided only that they are recurrent.

3. The cases n = 4. The proof that b(3) = 2 relies on being able to write
m; in the two different ways (3) and (4) which, via (5), lead to the value of ¢ and
the decomposition (6). There is no obvious parallel of (5) when n = 4.

Alpern’s construction leads, via (2), to be upper bound ¢(3) = 42. An exami-
nation of the details shows that the upper bound in the 3 X 3 case can actually
be reduced from 42 to about 10, but it also becomes apparent that this construc-
tion is rather extravagant in the number of intervals it can generate, since we
now know that b(3) = 2.

The basis of Cohen’s conjecture, that b(n) = n — 1, was to use a matrix that
is very close to the identity matrix. In his Lemma 2, which disproves this
conjecture, Alpern used a matrix corresponding to a reducible Markov chain with
cyclic classes of sizes 1, ¢y, ¢, - - -, ¢,. Thus, if we partition any positive integer
masm=c;+c;+ --- + ¢, and define

8) H(m) = Max{l.c.m. (¢i, ¢z, - - -, ¢,): all partitions},
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Alpern’s result implies that b(n) = H(n — 1). We offer the conjecture that
b(n) = H(n — 1). Some values are
n 2 345 6 7 8 9 10 11 12 13
Hn-1) 1 2 3 4 6 6 12 15 20 30 30 60
The permutation matrix (p;) used to prove b(n) = H(n — 1) is recurrent,
but reducible. From it, define @ = (g;), where g; = ¢ when p; = 0, and ¢; =
1 — &(n — 1) when p; = 1, where e is strictly positive, but very small. Only
minor changes in the argument used for (p;) are needed to show that b(n) =
H(n — 1) for the irreducible matrix Q.
We now prove that b(n) = b(n — 1). Note that, if our conjecture that
b(n) = H(n — 1) is true, the table of values of H(n — 1) shows that we do not

have the strict inequality b(n) > b(n — 1), for all values of n.

PRrROOF. Let Py be some (n — 1) X (n — 1) recurrent matrix in which any
rotational representation requires some J; to contain b(n — 1) intervals. Let P;
be the n X n matrix whose principal submatrix is Py, and p,, = 1. Suppose
m(J,) = a, and that P; has a representation in which every oJ; is the union of at
most r intervals. Since f:(J,) = J,, we see that the intervals in J, can be split
into families, each family consisting of equally sized intervals whose left endpoints
are a multiple of ¢t = p/k apart.

Remove this J, from [0, 1), coalesce the remaining intervals, define
t = p(1 — a)/k; this gives a representation of P, on [0, 1 — a), using at most r
intervals, so r = b(n — 1); but b(n) = r, so b(n) = b(n — 1).0
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