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IDENTIFIABILITY OF CONTINUOUS MIXTURES OF
UNKNOWN GAUSSIAN DISTRIBUTIONS

By C. BRuUNI AND G. KocH

Universita di Roma

The problem of the identifiability of the mixing distribution and of the '
unknown parameters for a continuous mixture of Gaussian distributions is
considered. Relevance of the problem under various analytical, statistical, and
applicative points of view is stressed. Uniqueness of the mixing distribution
and of the mean and variance functions for the mixed Gaussian distribution is
proved. Furthermore, their continuous dependence on the mixture itself is
proved under suitable topologies. These results also extend to the multidimen-
sional case and to the case of non-Gaussian distributions, and/or signed
mixing measure.

1. Problem statement. Given a mixture of a possibly uncountable family of
Gaussian distributions, with unknown mean values and variances, we consider
here the problem of recovering the mixing distribution and the mean value and
variance functions as well.

Formally, we consider the equation:

(11) () = [ Nt No)u(ay),

where x € R?, D is a compact subset of R”, p is a probability measure on D,
A = (m, X) denotes the pair of mean value vector function m and variance matrix
function X defined on D, and N denotes the p-dimensional Gaussian density:

N(x: ()

(1.2) B 1 { 1 Ta i }
G 3 (T M) S - m)
With no loss of generality, D may be assumed to be connected by adding to it
suitable subsets in R”™ with zero p measure. The problem is the one of identifia-
bility of A, pu; that is, given an f with the representation (1.1), whether it is
possible to uniquely (and continuously) associate to it a pair (A, p).

Various motivations appear to be relevant for this problem, under analytical,
statistical, applicative points of view.

Within an analytical context, the problem (restricted to the identifiability of
p) reduces to the solution of a classical Fredholm integral equation with the
assumptions that the kernel is Gaussian and the solution is a probability
measure. The restriction to a kernel with some specific structure is crucial. As is
well known, this equation does not admit unique solution in the general case [7].
On the other hand, within that structure the kernel is allowed to be unknown,
and the mixing distribution is not necessarily assumed to have a density with
respect to Lebesgue measure.
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1342 C. BRUNI AND G. KOCH

In respect to identifying a distribution, the problem looks like that of investi-
gating whether {N(x;A(y)), x € R"} constitutes a determining class for the
measure p [3], [20] with the additional difficulty that here A is unknown.

As far as the statistical relevance is concerned, we recall that the problem of
identifiability of mixtures of Gaussian distributions has been widely investigated,
especially in the case of finite mixtures [8], [23]-[26], [29]. It is also currently of
actual interest, and the papers [11], [15] are evidence of that. In the infinite
mixture case, compactness of the support D of mixing distribution is necessary
for identifiability [23]; results for non-Gaussian mixed distributions are reported
in [1], [9], [11], [12], [15], [19], [22], [28].

On a probabilistic ground, we note that (1.1) defines the probability density of
a random variable X, such that its conditional density with respect to another
variable Y is Gaussian. The identifiability problem essentially means recovering
the marginal distribution p of Y, and the specific Gaussian density N that
describes conditioning of X on Y (or equivalently its first two moments A as
functions of Y) from the knowledge of just the marginal density of X.

The positive solution we give to the problem implies, among other results that,
under broad regularity assumptions on A and within obvious equivalence classes,
given random variables X, Y}, Y, if X is Gaussian conditioned on either Y, or Y,,
then Y, and Y, have the same distribution (and the densities of X conditioned on
either Y] or Y, coincide).

From an applicative point of view, one faces just this problem when one wishes
to draw the distribution of a given population (particles, cells, fishes, etc.)
according to a certain character, but it is experimentally observable only for the
distribution of the same population according to another character (and of course
one knows something about the conditional distribution of one character with
respect to the other, for instance that it has to be Gaussian).

This latter remark is indeed the key to appreciation of the relevance of the
problem in a broad applicative context. With little imagination one can figure out
quite a long series of different applicative fields to which the same problem can be
tailored.,

For instance in [17] the issue is the determination of adsorption energy
distribution from that one of sites covered at equilibrium at a certain pressure.

In [5] the fluorescence distribution of a cell sample obtained through cyto-
fluorometric procedures is exploited to recover the distribution of the same
sample according to its DNA content.

Other applications are conceivable in the context of pattern recognition, for
instance in reconstruction of the subject in blurred pictures (astronomy, aero-
space recognition, etc.).

For other examples of application of the same problem in the finite mixture
case, we refer to [6], [8].

In the next section some technical tools are provided. Regularity assumptions
on A and equivalence classes for the solution are dealt with by introducing the
appropriate sets of functions to which A is assumed to belong. Also, a lemma is
proved, which will be crucial in the proof of the main result: Assuming

(1.3) fDN(x; AMy))u(dy) = fDN(x; X(y)w(dy),
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then by repeated differentiation of both sides of (1.3) and heavily exploiting the
asymptotic behavior of the Gaussian kernel, we prove that the nth derivatives of
both sides of (1.3) are sums of terms such that equality holds termwise.

In Section 3 we give the main result, that is uniqueness and continuity of the
solution of (1.1) in the scalar case (p = n = 1). As far as uniqueness is concerned,
it is shown that using the terms in the derivatives of (1.3), a set of functions can
be defined that is a basis for the space of continuous functions along suitable
curves in R 2 parametrized by y through A, N'. Subsequent analysis and use of the
lemma lead first to establishing the equality A = X, and then p = p’.

Continuity is achieved by classical compactness arguments.

In Section 4 the extension to the multidimensional case is sketched; the case of
non-Gaussian and /or noncontinuous kernels is discussed; the possible embedding
of 4 measures in the larger class of signed measures is also mentioned.

2. Notation and preliminary results. In the scalar case, let D be a
compact subset of R. Let A = (A;,A;) denote the two-component function
defined on D, whose components represent, respectively, the mean value function
m and the variance function o2 of the family of Gaussian densities {N(-; A(¥)),
y € D}.

We now introduce some sets of functions A to account for the regularity
conditions and the specific hypotheses requested in the proof of the main results.

The first set is defined as follows:

A= {}‘ € CY(D): [\ ()| < K, < 0,0 <5, <Ay(y) <5< 00,
A [+]Aa(y)| < Ky < 0,V y € D}
and clearly accounts for uniformity and regularity of A, as well as the very

meaning of A, (variance function).
A second set within which the basic uniqueness result can be proved is:

A, = any subset of A, with the property
YVANEAN,, VyyeD: ANy =Ny)=y=y.
We observe that this property is crucial. Should it not hold, identifiability

cannot be guaranteed any more. Indeed, if there exist y, y’, ¥ # ¥’ such that
A(y) = N(y’) then identity (1.3) holds with g, u’ Dirac measures, respectively, in

¥y .
The A ,-type sets can be easily chosen sufficiently large and adapted to specific
applications. For instance if D does not contain the origin, we may define:

A, = {)‘: A(y) = Cye,
Ao(y) = Cyly|?, @, B fixed: C{ < C, < C{,0 < C5 < Cy < Cy'}.

By restricting the choice for one component, the other one can vary in a larger
set, for instance, as it occurs in the following case:

Ay={A:M(y) =3 Ay € CHD),0 < s, < Ny(¥) < 85, [Ap(9)| < Co}.

One might also account for discontinuities in A, at the expenses of some
restriction on the measure p, as will be pointed out in Section 4.
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As far as continuity of the identifiable pair (A,p) with respect to f is
concerned, classical results of functional analysis can be exploited provided we
take compact subsets of A,. A possibility is considering

A ; = any subset of A, with property
3¢y:R > R*, ¢ continuousat 0, y(x) =0=x=0
such that V A, N € A,,V 5,y € D:
INy) =N(y) =¥ (y— ).
Notice that any subset A, is a subset of a A, set.
Finally, as will be shown in the next section, a weaker identifiability result

that is identifiability modulo some suitable change of variable on D may be
established if A, is substituted by the following set:

Ay={AeA:Ny)=Ny)=y=)5
A, A, monotonic, |A,(¥)|+|Ay(¥)|> 0,V y € D}.
Notice that a A ,-type set does not necessarily contain, nor is contained in, a
A ,-type set.
On all these sets, the topology is that induced by the usual sup norm.
Let us denote by #(D) the set of signed measures with support in D and
bounded variation equipped with the vague topology [3]. Let #(D) c #(D) be

the set of probability measures. On 2(D) vague topology becomes the weak
topology, i.e., for {u,}, u € (D)

po=p it [o(Nrdy) = [o(uldy), Vo< C(D).

We define the operator T: A, X #(D) — H(R), where H(R) is the space of
integrable analytic functions on R with the sup norm:

(2.1) f= T p): £(x) = [ NGx; My))n(dy)-

It is easily seen that T is separately uniformly continuous with respect to A
and p, and is therefore continuous on A, X #(D).

For p € #(D), ¢ € C(D), ¢op denotes the element in .#(D) whose
Radon-Nikodym derivative with respect to p is ¢.

As a preliminary result, we establish the following lemma:

LEMMA. Let A,N € A, p, W € (D). If
(2.2) T(A,p) = T(N,p),
then
(2.3) T(A’lph,k):T(Al"Vh,k)’ h=0,1,...k, £=0,1,2,...,
where ,, , and Y}, , denote
N N
(2.4) ¢h,k=)\_k°ﬂ: \Vh,k=ﬁ°ﬂ', h=0,1,...k, k=0,1,2,....
2 2
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ProoF. Equation (2.3), for A = k = 0, is already guaranteed by (2.2). Thus
by induction the lemma is proved as soon as we show that (2.3) implies:

(2-5/) T(}\"Ph,k+1) = T(N"Vh,k+l)’
(2"5”) T(A,‘Ph+1,k+1) = T(N,\Vh+1,k+1)'
By differentiating both sides of (2.3) we get:

x[(T(A, ¥p e1)(®) = (TN, ¥ 421))(%)]

= (T(}‘, ‘Ph+1,k+1))(x) _(T(}", ‘Vh+1,k+1))(x)-

We first observe that (2.5’) and (2.6) imply (2.5”). It is then enough to prove
(2.5"). By contradiction, let us assume that there exists a sequence {x;} dense in
R and diverging to + co, such that

(27) (T(}" ¢h,k+1))(xi) #* (T(}‘,’ ‘Vh,k+1))(xi)’ i = 1’2"“ .

If this were not the case, analyticity would imply (2.5").
Denoting by |v| the total variation measure of » € #(D), we make a pre-
liminary observation that Eq. (2.7) clearly excludes the possibility that |y, ,|and

|5, | both vanish.
Assume now that one of them, for instance |y, ,| vanishes. Recalling (2.7), Eq.

(2.6) yields
(2.8) x, = A(x;),
where

(2.9) A(x;) = [(T(}‘, Ve 1,k+1))(xi)] [(T(}" ‘Ph,k+1))(xi)] o

and the contradiction will follow from the fact that A(x;) is bounded as
x; = + 0. To show this, let us define

(2.10) A, =p — esssup{A,(»)} = inf{t: Ay(y) < ¢, p-a.e.in D},

(2.6)

A = p — esssup{A,(¥): Ay(y) = Ay}
= infinf{¢: A\ (¥) < ¢, p-a.e. on the set in D where A,(y) > A, — e},

>0

(2.11)

(2.12) A, =|A op| — esssup{Ay(¥)} = inf{t: Ay(¥) < ¢, |A,oplae.in D},
A, = [\ opu| — esssup{A,(y): A(y) = 7\2}
(2.13) = inginf{t: A(y) < ¢ |\ oplae. inthesetin D
where Ay(y) = A, — ¢}.

Note that if A, # 0, then A, = A, and A, = A,
For &, &, > 0 arbitrarily small we have that

(IO ))()

=1 uniformlyin e = (g, ¢&,),
(2.14) x;= 00 Cr’s(xi;e) Y (1 2)

r=0,1...s,s=0,1...,
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where
(2.15) C, (x;¢) = fDN(xi; AN, (dy), r=1,...s,5s=1,2,...,

where D=D N {y: N, — &, <A(¥) <A, A, — &, <Ayy) < \,} and Co, (%, €),
§=0,1,2,... is defined in the same way but with A;, X, in the place of A, A,,
respectively.

Indeed, exploiting the Gaussian nature of the kernel in (2.1) it is possible to
show that:

1
(2.16 (04, )0 = i1+ 0 1|
13
where O(1/x;) converges to zero uniformly in e. Moreover, because of the
continuity of A, and the definition of A, and A,, in the integration set of (2.15)
A, is either strictly positive or strictly negative, |{, /|-a.e.. From positivity of N
and , it follows that, for all x;s, C, (x; ¢) is different from zero and definitively
keeps the same sign for decreasing &,.
It follows from above that

C X5 €
(2.17) lim A(x;) = lim Crorin(®i )
X, 00 x,— o Ch,k+1(xi;£)

and, recalling the definition (2.15) and the positivity (or negativity) of A, in the
integration set, the limit in (2.17) is seen to be constrained in the interval
[A, — &, A0 (or [A,A, —g]) for A=0, or in the interval [\, — ¢, A,] (or
[ALA, — &) for A > 0.

Finally, we assume both |y, .|, |{}, x| nonvanishing. Recalling (2.7), Eq. (2.6)
yields

(2.18) x; = A(x;)B(x,),

where

1- [(T(}\', ‘Vh+1,k+1))(xi)] [(T(A"I’h+l,k+l))(xi)] -
1= [(TN, ¥, ks D)@ (T ) (2]

and the contradiction will follow from the fact that B(x;) is also bounded as
x; = +oo.

_ To ~sth this, we define 7\’2, 7\’1, 7\’2, 7\’1, C/,, respectively, similar to
Ags A Ag, Ay, G but for the primed quantities.
Let us consider the quantities ¥, (D,), ¥, (D/) where
(2.20) D,=Dn{y: A — & <M(y) <A, h;— g, <Ay(y) < A,
and similarly for D/. Assume at first A, # 0. Then
1-Cy, x;;€)Crt xX;€
(2.21) lim B(xt) — lim h+/1,k+1( ) }i—l;l,k-!—l( )
x> oo x>t 1= Cpppy(x58)Ch (x5 €)

(2.19) B(x;) =
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For & small enough, ¢, (. D) is different from zero (as already shown for C, ,)
because of the assumption A, # 0.

If both ¢, (D,), ¥, (D) are nonpositive, or nonnegative, the following
inequalities hold for x; sufficiently large:

;,s(ﬁs,)N(xt’X, - 8) Cr,,s(xi; £)
4 DINGX) - C(w0)
o ¥ (DON(xs X)
B 11’, s(D)N(xl;}\ - ),
where A — e = (A, — &, A, — ¢&,) and similarly for N-—e If Y, (D)), - (D)
have different signs, 1nequa11t1es in (2.22) are reversed. The asymptotic be-
haviours for x; > +oo of the lower and upper bound in (2. 22), in the case
A, # }\2, are given, respectively, by exp{xz(N —A)2AN,) ™ of (x; €) and
exp{x2(>\’ - >\2)(2>\ Ny)~ “Nf (x;; €) where p} , p' ; converge to 1, for each x;, as
€, 1 0. In the case A, = A2, but A # N, the same asymptotic behav10urs are
glven by exp{xz(}\/ }\ )(A2) } r, s(xv 8) and exp{xl(}\’ 1)(A2) l} T, s(xv 8):
where 87,8, converge again to 1, for each x,, as €|0. Finally, if Ay =Ny,
>\ =N\, the ratio C! (x;e)C; X(x;; &) turns out to.be essentially independent of
and as ¢ 0 converges to a bounded value independent of r, s. In conclusion, in
a11 cases the limit (2.21) is bounded.

If A, =0, but X, # 0, we simply exchange primed by unprimed quantities and
repeat the argument. If A; = X, = 0 we introduce the quantities LA substitut-
ing the esssup with the essinf in definitions (2.11), (2.13) and similarly for X, N,
Then a similar procedure can be set up to prove that A(x;), B(x;) are bounded
quantities as x; » —oo. The situation in which A, =N, =7, =N, =0 essen-
tially corresponds to A, =N\, =0, which case was already con31dered at the
beginning. O

(2.22)

3. Main results. We are now in a position to state the main result of this
work, which appears to be a relevant step forth in the problem of identifiability
of nonfinite Gaussian mixtures.

THEOREM 1. Given \,X € A,, p,p € P(D), if
(3'1) T(}\,p.) = T(Nn"")’
then p = and A = X (p-a.e.).

PROOF. Obviously there are no results on A, X outside the support of p. On
the other hand the assumptions on A, N could be in fact relaxed by only
considering their behavior on the support of p.

.Let us consider the curves in R?:

€= {(£,m): £=7 (), n=2y(»), y€ D},

(3.2) —((&m): £=X(»), 1= N(2), y€ DY,
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and a function ¢ € C([ —k,, k,] X [s;, s,]) such that
(3.3) o(&m) =1, (&) €,

N(y)  (N(y) +2ky)°
M) +2k)" N(y)

(¢,m) € €, r, s nonnegativé integers.

(3.4) ¢(&,m) =

Notice that (3.3), (3.4) do not contradict each other due to the assumption
AN E A,

In C([—#k,, k] X[s),8,]) we now consider the algebra generated by the
functions 1/v, ¢/7. It is clearly formed by the functions {¢"/7%, h=0,1,...k;
k =0,1,...} which separate the points and contain the identity function. Then
the Stone—Weierstrass theorem (see for instance [21]) guarantees that the linear
subspace generated by the algebra is dense in C([ — k&, £,] X [s,, s,]). Therefore ¢
can be represented as:

00 gh
(3.5) o(£,m)= X ani
O<h<k n
for suitable coefficients {a,, ,}, and because of the very definition of ¢:

2 N()

(36) ¢(§,"7)|<g Z ah kA ( ) 1’

O<h<k
i HED)
o(&m)le = L vy
( )|<¢ O(hz,k) h,k}\ée(y)
h<k

(3.7)
No() (Ny(y) + 2k,)°

(M) +2R) X5()
On the other hand, because of the above lemma, we have
h

A
)\,Xgou

Arh
(38) T =T)\’,>\—,lkoy’), h=0,1,...k, k=0,1,...,
2

which integrated over R yields

1( ) 1 ( )
= d h=0,1,...k, k=0,1
(39) fx n(dy) ka( Y (@),
By linear combination of (3.9) with coefficients «,, ; and exploiting the uniform
convergence of the series, from (3.6), (3.7) we get
_j‘ () (Xl(y)"‘2k1)s
(M(y) + 2k,) Ny()

for r, s arbitrary nonnegative integers.

(3.10) w(dy)
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This amounts to saying that A = X, p’-a.e. The same result clearly can be
shown to hold also p-a.e. Then (3.9) becomes:

N N
(3.11) fDszE—i’;p(dy) =/Dﬁié—';%u’(dy), R=0,1,...k k=0,1,....

Let us now consider the algebra in C(D) generated by 1/A,, A, /A,. Clearly, it is
formed by the functions {N?/N%, h = 0,1,...k, £ =0,1...} and again satisfies
the assumptions of the Stone—Weierstrass theorem. Therefore it is a determining
class and (3.11) implies p = p’. O

REMARK. Let us define on A, X #(D) the equivalence

’

(3.12) AMp)~N,w)epu=w and A=X, pae.

and let A, denote the space of equivalence classes in A, X #(D). Let #Z(A,) be
the range of T restricted to A,.
Then Theorem 1 states a one-to-one correspondence between A, and %(A4,).
Let now A, denote the space of equivalence classes in A; X #(D), equipped
with the product topology induced by the uniform convergence in A; and the
weak convergence in (D). We have the following result:

THEOREM 2. The operator T™': #(A;) — A, is continuous.

ProOF. We first note that T~ ! is well defined on %(A;), since A; C A,. Now
P(D) is compact because D is such. A ; on its own is compact, since it is a closed
subset of A, which is compact due to the Ascoli-Arzela theorem. The compact-
ness of A, in the product topology follows. This and continuity of T: A; — #(A;)

_imply continuity of T~ on %#(A3). O

Theorem 1 states a uniqueness result in a set of A functions, with the property
that any two functions belonging to the set itself cannot take the same value for
different values of their arguments. The following theorem yields a weaker
uniqueness result in which this property is loosened at the expense of some
monotonicity assumption.

THEOREM 3. Given \,N € A, p, . € P(D), if
(3.1) TN, p) = T(N, ),

then there exists a strictly monotonic C' function h from D onto D, uniquely
defined on the support of u, such that

(3.13) w(dh(y)) = u(dy),
(3.14) X(h(y) =Ny), pae.

ProoF. The proof will be developed for the case of nondecreasing (compo-
nent wise) A, X’; but it can be easily adapted with minor adjustments to the more
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general monotonic case. Once again, there are no results (nor assumptions) on A
(X') outside the support of p (p).

Because of the assumptions on A,, ¥ and ¥’ defined in (3.2) turn out to be
simple regular curves parametrically represented by A, N, respectively. Consider
now the compact set I' € D defined by:

I' = {y in the support of pu: 3 ¥’ in the support of

Wi AMy) =N(»)}
Due to the definition of A ,, a unique y’ corresponds in the sense of (3.15) to each
yeTl.

First of all, we observe that I' cannot be empty, since otherwise A, N would
belong to a A ,-type set and therefore, due to Theorem 1, (3.13), (3.14) would hold
with A(y) =y, so that I' = D.

Due to monotonicity assumptions for A, X, the quantities A, A,, defined in
(2.11), (2.10), reduce, respectively, to the p-esssup A,(¥) and the p-esssup A o(y) in
D. Similarly A,, A, coincide, respectively, to the u-essinfA(y) and the p-
essinf Ay(y) in D. Similar notation will be used for primed quantities.

A first remark is that A = (A, A,) coincides with X' = (X,, X,), since otherwise
(3.1) would not hold as x — oo. This implies that y = u-esssup y in D, for which
A(y) = A, belongs to I" (and corresponds to ¥’ = p’-esssup y in D).

Denote now by ¥, 5, Yespectively, the p-essinf y and p-essinfy in D [for
which A(¥) = A, A(¥) =NX]._

(i) Assume first that A = X (in which case y € T and corresponds to y’), or
else that ¥ ¢ T and y’ does not correspond to any point in I'. This amounts to
assuming that either %, ¢’ coincide at their initial points on the support of u, p’
or that neither one of these two initial points belongs to the other curve.

From the theory of simple curves, the existence follows, on each connected
component of T, of a strictly monotonic C! function, such that (3.14) holds (see
for instance [16]). Moreover, due to monotonicity properties of A, X, a strictly
monotonic C! function h: D — D can be built, such that it coincides with those
already found when restricted to each component of T'.

Clearly A and XN(A(-)) are such that if A(y) = N(h())) then y=3 and
therefore they belong to a A,-type set.

By the change of variable y’ = A(y) in the right hand side of (3.1), on the
basis of Theorem 1, the equalities (3.13), (3.14) follow. Uniqueness of such A on
the support of u follows from monotonicity assumptions on A, X’.

Incidentally, notice that (3.14) implies that I" indeed is the whole support of u.

(ii) Suppose now that y ¢ T, but y’ corresponds to some point y* in I'. Then
y* > y. By repeating the procedure in (i), we can establish the existence and
uniqueness of the requested A: [ y*, y] = D. By an obvious change of variable,
from (3.1) we get

fDN(x; AMy))u(dy) = fDN(x; X(y)w(dy)

(3.15)

- f[ . y]N(x; N(R(y))w(dh(y))-
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Let us introduce p* € #(D) such that
p*(dy) = w(dh(y)), yel»5]
p* (D -[y*,5]) =o0.

Then, no matter how we extend 2 € C* on D — [y*, ¥], we have
T(A, 1) = [ N(x; N(»))a(dy) = [ N(x; X(h(2))p*(dy) = T(X(A(-)), 1)
D D

By Theorem 1, p = p* and in particular we get
(D -[y* 5] =0.
This contradicts y < y*, since, by definition, y = p — essinf y in D.

(iii) In case ¥ € T, but ¥’ does not correspond to any point in T, it is enough
to exchange primed and unprimed quantities to again arrive at a contradiction. O

REMARK. Let us restrict A, to its subset A, defined by
As={Ae€ A My)=Ay)=y=2 A, A, monotonic;
M) [+]Ao(5)|= K3 >0,V y €D,
3y:R > R", ¢ continuousat 0, y(x) =0=x=0

such that [ A(y) = A(») [ = ¥(y — )}

Denoting by A, the space of equivalence classes in A, X (D) with respect to
the equivalence defined by (3.13), (3.14), we may repeat the compactness argu-
ment already used in Theorem 2 to prove continuity of 7" Z(A) — A;.

REMARK. The results obtained in this section clearly contain as a particular
case those results already known for finite Gaussian mixtures (in which case p is
restricted to be atomic) [8], [11], [15], [23]-[26], [29]. Of course, in this case no
continuity properties for A are requested. Moreover, Theorem 3 holds without
introducing monotonicity assumptions.

4. Additional results.

(a) Choice of topologies. The choice of the topology of H(R) (induced by the
sup norm) is unessential, in the sense that the continuity properties of 7' and 7!
are preserved under other suitable topologies.

For instance, let us substitute H(R) by the space H (R) of integrable analytic
functions on R, with the norm )

+ o0
(4.1) 2= [ " F2(x)q™(x) ds,
.— 0
where [*2g%(x)dx = @ < o0 and inf, . ;¢%(x) > 0, for any finite interval I.

It is immediately verified that convergence in H(R) implies convergence in

H (R). Furthermore, convergence in %#(A;) as a subset of H (R) implies conver-
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gence in %#(A;) as a subset of H(R), #(A;) being a set of continuous uniformly
bounded functions, uniformly vanishing at infinity. These implications allow to
preservation of continuity of T and T~! when the norm (4.1) is adopted and
therefore support possible (numerical) inversion algorithms for T' based on
minimization of quadratic error indices [5].

On the other hand, the choice of the weak topology on #(D) is crucial as far
as the continuity of 77! is concerned.

Indeed one can easily verify that the choice of a stronger topology on 2(D),
like that induced by the total variation norm, destroys the continuity of 7!
Thus, algorithms aimed at the numerical inversion of T appear to be ill-condi-
tioned when analyzed in the light of the stronger kind of topology [2], [17], [27],
[30]. On the contrary, no ill-conditioning phenomenon arises when the weak
topology is adopted [5]; and the latter appears to be sufficiently fine for most
applicative problems. In that respect, we remark that the choice of a parametri-
zation for the unknown p, and consequently the convergence of ps in the sense of
convergence of the sets of parameters thus attached to them, corresponds to a
choice for the topology itself. It may thus be understood that an improper choice
for unknown parameters (like the samples of a possible density for p) can lead to
ill-conditioned problems and call for regularization procedures [10], [17], [18].

(b) Multidimensional case. 'The main results of Section 3, namely Theorems
1 and 2, hold also in the multidimensional case (p > 1, n > 1), modulo some
suitable modifications in the definition of A, i = 1,2,3. The situation in which
n > 1isindeed already included in the formulation of the theorems, since in their
proof (as well as in the proof of the lemma) the dimensionality of y plays no role.

As far as the general case is concerned, definitions and proofs can be extended
following the same kind of arguments, at the expenses of an increase in the
formal complexity. Here, to give some hints on how one can proceed, we sketch
the extension of the proofs for the case p = 2, n > 1.

The vector A(y) is now five-dimensional, and its components include the
elements of the mean value vector m(y) and of the variance matrix X( y):

(42) m(y) = (M(2) ()",
-2 240)
The set A, is defined as

A= {}\E CY(D): [ \(y)|<k,<o0,i=1,...5,0<A(y),i=3,5;

o
No(Ne(2) = K(3)|2 81> 05 5 [Ai(y)| < ks < oo,VyeD}

. i=1
while A,, A, are defined as above. Denoting the inverse of ¥(y) by

o rei )
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and introducing the notations
¥y, = (a®brchs(Ma + Nyb) “(Ab + Age) ™) o,
(4.5)
Wy = (@mbrch(Na + Nyb) ™ (N + Nye) ™) o,
where h is the five-dimensional vector with integer components #;, the thesis
(2.3) of the lemma becomes

(46) T(A: ‘I’h) = T(X’ ‘I’;z)

To prove (4.6) we again proceed by induction. Equation (4.6) is already guaran-

teed by (2.2) for A = 0.
Let us denote by e(i), i = 1,2,...5, the five-dimensional vector with the ith

component equal to 1 and the other ones equal to 0. By differentiating both sides
of (4.6) we get

xl[(T(A"Ph+e(l)))(x) - (T(X»‘V}He(l)))(x)]
(4-7) +x, [(T()\, 1l’h+e(2)))(-’c) - (T(X, lV}He(z)))(i’c)]
= (T(A» ‘Ph+e(4)))(x) - (T(X» ‘Mz+e(4)))(x)

and

xl[(T(}\’ ‘Ph+e(2)))(x) _(T(X,‘Vh+e(2)))(x)]
(4.8) +25[(T(A Y1) (%) = (TN ¥ o)) ()]
= (T(}\, ‘I’h+e(5)))(x) - (T(N‘Vh+e(5)))(x)~

By setting one of the components of x equal to zero, and processing Eqs. (4.7),
“ (4.8) (in which the other component of x is the independent variable) in the same
way that we used for Eq. (2.6) in the lemma, the proof of (4.6) by induction can
be carried out.

The formulation of Theorem 1 is unchanged. To prove it, we define ¢, %’
according to (3.2) in R® and the set E = {({ € R |§| <k, < o0, i =1,2,...5;
0<¢,i=3,5; |£¢;— €2 > s, > 0). We consider ¢ € C(E) such that

#(¢)=1, ¢€¥CE,
o (N(y) + 2k)"
#&) = t=l—ll (A(y) +2k)"™
Again, the algebra generated by the functions in C(E)
{ €3 —§, €5 §:185 — £,6, ‘ —&é,+ 52&5}
5355_ 3’5355_ 3’5355_ 3’ 5355_ 3 ’ 5355_53

is such that its linear span is dense in C(E). Thus the same argument already
exploited in Theorem 1 leads us to the conclusion. No modification is needed for
Theorem 2 and its proof.

£ € €’ C E, r, nonnegative integers.
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(c) Non-Gaussian kernels. The results in Section 3 offer a useful tool to
completely solve the identifiability problem for mixtures of a wider class of
distributions, namely that one obtained by convex combinations of a finite
number of Gaussian distributions. This class is of paramount relevance in
application, since it includes a large variety of possible shapes (asymmetric,
multimodal, etc.).

Let us consider the problem of solving the equation

(49) (@) = ¥ af N X)),

where » is a known integer; a; > 0,i = 1,...7; X/_a; = L, kP € P(D),i=1,...»
(and possibly p® = p, i = 1,...7). Each X¥) is assumed to belong to a A,type
set A, with the constraint 9? NR;=2,i,j=1,2,...v, i+ ] where %, is the
union of the ranges of elements of A(‘) One might then consider v dlsjomt closed
sets D,,... D, and » strictly monotonic C' functions A, from D, onto D, such
that Eq. (4.9), by suitable changes of variable, can be rewritten as

1(x) = T a N XO(RO(2)dn¥(2))
(4.10) =1 D

=éMdeW&L

where D is connected, D > U’_,D;, and A, fi(dz) are such that their restrictions
to D, are, respectively, XV(A(") and « p(‘)(dh(‘)(z)) Due to the above con-
structlon Eq. (4.6) must be solved with respect to A,ji where ji € P(D),
i(D-U_,D,)=0and A € A,, A, being the A,type set which follows from
the original assumptions on the A¥)s. Theorem 1 now guarantees uniqueness of
the solution (A, i), from which, by the inverse transformations defined by the
hs, the unique solution of the original problem (4.9) is easily obtained.

Further results on continuity of the inverse operator in (4.9) and uniqueness of
its solution in the sense of Theorem 3 can be similarly established by suitable
modifications of the hypotheses on the A¥s,

(d) Kernels with piecewise continuous parameter functions. The case of
kernels in which the parameter function satisfies the basic assumptions only in a
piecewise form can be handled by arguments similar to those of point (c) above,
provided p is assumed to be nonatomic (at least in the points of discontinuity for
).

(e) Signed measures. The result in Theorem 1 can be extended to the case of
u, ' € A (D). Indeed, let the Hahn decomposition for u, u’ be

p=pt-p,  w=pTopT
with supports D*, D~, D’*, D', respectively. Equation (3.1) may then be rewrit-
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ten as
L NG N (@) + [ N M) (d)

= [, NG X (dy) + [ NCx M) ().
By normalization

af N(xMp)wi(dy) +1—af N X)) (dy)
(4.11) b b
= [ NN (@) + (=) [ N M) (),

where a = [ln*ll/(Ip"]l + Iw"I) and @’ = /(W "l + #7]), with
p_i,puy, T, w0 € P(D), and ||p|| denoting the total variation of p.

It is possible now to consider a C! strictly monotonic function 4 from D onto
D, with D, closed and D, N D = @ and define by it a change of variable in the
second integral on both sides of (4.11). Then each side of (4.11) takes the form of
summation in (4.10):

(4.12) f[)N(x;i(Z))ﬂ(dZ) = /L_)N(x;mz))ﬂ'(dz),

where D = D U D, [i(dz) = p{(dz) + pi (dh(2)), ji'(dz) = pi*(dz) +
w1 (dh(2)), and X (X) is such that its restriction to D and D, is, respectively, A
(X) and X (h) (A(R)).

Note that neither one of the supports of i, ji’ contains (DN D’7) U (D, N
D{*) where D;t, D|* are the inverse images of D*, D’* under k. In D/(D™ N
D7) U (Dj N D{*) A\, X are such that A(z) = N(2’) = z = 2’; thus they can be
,assumed to belong to a A,-type set.

Theorem 1 now guarantees ji = i’ and A = X' (ji-a.e.). Therefore p = p’ and
A =N (p-a.e.).

5. Concluding remarks. We have shown that the problem of identifiability
of mixtures of Gaussian distributions is well posed in a quite general setting:
Given a density that is a mixture of Gaussian densities with possibly unknown
means and variances, it uniquely corresponds to a mixing distribution as well as
to a pair of functions for their mean and variance. Moreover, this correspondence
is continuous in both ways. Note that in [13], [14] a similar problem is discussed
with reference to mixtures of exponential distributions evidencing difficulties due
to lack of continuity and ill-conditioning.

Some of the assumptions we introduced (like compactness of D, or absence of
multiple points for A) are essential conditions for uniqueness and continuity
results. Other ones (such as Gaussianness of the kernel, continuity of its parame-
ter fynctions, positivity of mixing measures) can be relaxed, as mentioned in the
previous section.

As far as actual identification of the pair (A, p), which within a prescribed
subset of A, X #(D) corresponds to an experimentally given f, the effect of an
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additional error term in Eq. (1.1) cannot be disregarded. Besides the usual
measurement error, this term might have to account for approximations in the
kernel structure and/or for errors on f due to its determination as a frequency
distribution of a finite population sample [4].

In this context the identification problem becomes an estimation problem for
(A, ). An error functional is to be defined on the basis of the statistics of the
error term; then its minimum point is to be looked for within the prescribed
(A, p) set [see Section 4(a) above]. Now difficulties may well arise since this set is
not guaranteed to be convex (particularly with respect to parameters in A), so
that uniqueness of the global minimum point might not hold any more [4].

Investigation on how to properly set the above-mentioned problem and how to
solve it constitutes the object of future research work.

Acknowledgment. The authors are indebted to J. C. Willems and one of the
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