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THE COUPLED BRANCHING PROCESS IN
RANDOM ENVIRONMENT

By A. GREVEN

Universitit Heidelberg

We consider a Markov process (7)), g+ On (N)S (S = Z%) with initial
distribution p and the following time evolution: At rate bL,q(y,x)n(y) a
particle is born at site x; at rate dn(x) a particle dies at site x. All particles
perform independent from each other continuous time random walk with
kernel p(x, y) and rate m. All particles at a site x die at rate D(x). Here
D(x) are random variables taking the values D, D, .(D, > D, > 0). We
assume {D(x)},cg to be stationary and ergodic. This paper studies the
features of the model for p(x, y), g(x, y) symmetric.

We calculate the exponential growth rate A of ( n4(x)) (with E denoting
conditional expectation with respect to the environment) and show that A is
nonrandom and strictly bigger than b — d- E(D(x)), if D, > D,. We have

=b-d- D,

Introduce the process (7)), c g+ by setting §f(x) = (E’(n;‘(x))r Ink(x). A
critical phenomenon with respect to the parameter p := D](c? + ED(x)) !
occurs in the sense that for p > p'® the quantity £ (7¥(x))? grows exponen-
tially fast, while for p < p@, A > 0 the exponential growth rate of E(%#(x))>
is 0. p'® is the same as for a system with D(x) = D, and can be calculated
explicitly.

0. Introduction.

0.1. The model and its main features. We consider the Markov process
(M*), e r+ With state space (N)S (S = Z %), initial distribution p, and the following
time evolution:

(i) Birth of a particle at site x occurs at rate bX < sq(y, x)n(y).
(i) Death of one particle at site x occurs at rate dn(x).

(iii) All particles perform independent from each other a continuous time random
walk with rate m and transition kernel p(x, y).

(iv) All particles at site x die at rate D(x). Here {D(x)}, ¢ is a collection of
random variables with values D,, D, € R* (D, > D,).

For the construction of processes of this type we refer the reader to [4], [9].
Other models of branching processes in random environment are studied in [2],
[56], and [6].

It is not essential that D(x) assume only two values D,, D,. We could
generalize our results easily to the case where D(x) takes values in a finite
interval; then our D, and D, are replaced by the essential infimum respectively

Received December 1983; revised April 1985.

AMS 1980 subject classification. Primary 60K35.

Key words and phrases. Infinite particle systems, random environment.

1133

%SJ
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ /2

X o

The Annals of Probability. STOR ®

WWww.jstor.org



1134 A. GREVEN

supremum of the random variables D(x). The notation would become quite
complicated though so we focus here on the case where all the weight is
concentrated on the extreme points.

There are two main reasons why such an evolution seems to be of interest:

(i) In many infinite particle systems that have been studied the assumption that
the underlying mechanism is translation invariant is crucial for the methods
of analysis to work [7], [8], [9]. In many of these systems though it would be
interesting to know if essential features of the ergodic theory of the process
(for example critical phenomena) are also present if the process lives in a
random environment. For example, how does the basic contact process
behave for recovering rates that are site (hence object) dependent and given
at random at time 0? Can blocks of quickly recovering objects dominate the
behavior of the process as far as the question of the persistence of infection is
concerned? We will show that in our model such a phenomenon of domina-
tion occurs. This can also be viewed as a stability property of the process (see
remarks below), the question being if small changes in the evolution mecha-
nism will or will not affect certain features of the process.

(i) Another reason to study the coupled branching process is in our view that it
would be nice to have a population growth model that takes into account
some interaction between the population and the environment. We started in
[4] to study a branching random walk with additional (constant) site killing
rates. It is of course much more natural to consider these rates as having a
spatial structure and being assigned at random. Other efforts in this direction
were done by D. Dawson [2]. He studied a model with a site dependent
branching mechanism: the branching distribution at a site is assigned at
random at time 0 and mean 1. The case of varying mean has been treated by
Greven [5], [6].

In this paper we will consider first the mean particle density at a site and show
that its exponential growth rate is no longer b — (d + E(D(x))) as in classical
models [1]. Such a phenomenon is common for evolution in random environ-
ments. For a simple random walk in random environment E log[a/(1 — a)] =0
is the criterion for recurrence in one dimension, replacing the classical E(incre-
ments) = 0 [10].

In our model the exponential growth rate of the mean particle density is
completely determined by the lowest value D, of the site killing rate as long as the
kernels p(x,y) and q(x,y) are symmetric. In asymmelric cases this is, in
general, not true.

The behavior of the second moments of the particle density at a site paral-
lels that in the “deterministic case” [ D(x) = D,], E denoting conditional expec-
tation with respect to the environment: the exponential growth rate of
E(nk(x)(Enk(x))~")?is 0 if the quantity p = D,(d + E(D(x))) ! is smaller than
p@, and bigger than 0 if p > p®. The behavior of the variance of the particle
density is governed by the value D, alone. This remains true if we allow D(x) to
range in a finite interval and replace D, by the essential infimum of D(x) in the
above statement.
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These two facts can be viewed as a stability result: Disturb a given symmetric
system by adding some additional site killing and the behavior of the first and
second moments will not change very much, provided the system was not
stationary at the beginning. In the latter case it will now die out instead of being
stable. We also have the fact that systems with symmetric kernels p(x, y),
q(x, y) are “stable” as opposed to the ones with asymmetric kernels, where the
growth rate decreases if we add more site killing at random to the original
system. In the other direction leaving out site killing at certain sites will always

have immense effects.
The following assumptions will be made throughout this paper:

(a) {D(x)}, g is stationary and shift ergodic.

©.1) Prob(D(x) =D,,forallx € [ —n, n]d) > 0,forall n € N,
1
Prob(D(x) = D,) > 0.

[For example, (0.1) holds in the i.i.d. case.]

(b) The kernel p(x, y) + g(x, y) is irreducible [if m = 0 or b = 0 assume that
q(x, y) respectively p(x, y) are irreducible].
p(x, y), q(x, y) are symmetric.

(c) The initial distribution p is translation invariant, shift ergodic, and satisfies
(0.2) E*(n*(x)) < oo.
We will always denote the ¢ algebra generated by the random environment
{D(x)}, e by 2. We write:
(0.3) E(X)=E(X\|2).
0.2. The results in detail. Our main interest is focused on the behavior of the

mean particle density E(n%(x)) and of E(n¥(x))? for t - oo. We define the
following characteristic parameters of our model:

(0-4) d = B(D(x)),
(0.5) d=d+d.
Under the assumptions summarized in part (0.1) we have:
THEOREM 1.
(a)
1 -
(0.6) lim [?log(E(n”t(x)))] =b—(D,+d) =\ as.
t— o0
In the case where (b — (d + D,)) = 0 we have:
(0.7) lim E(n¥(x)) =0 iff D,> D,.
t— o0
(b)

(0.8) tlim (e ™ME(n¥(x))) =0 'iff D,> D,.
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COROLLARY.

tim | tog(B(nz(e)| = 0 - (D, + @) =2,

Note that this says that, contrary to the deterministic case [ D(x) = D, ] or the
case of a branching random walk (D, = D, = 0), for no values of the parameters
do we have an invariant measure.

More interesting is the fact that only the smallest value of D(x) matters for
the exponential growth rate of the mean particle density. Note that this result
depends on the symmetry assumption on the kernels. In general it does not hold
that A = b — d — D,. An example is the situation S = Z', p(x, y) = q(x, y), and
p(x,x + 1) = 1. In this case our methods show that A < b — d — D,.

In order to get a more detailed picture of the behavior of P (nt) for t —» o0 it
is natural to introduce the following normalized process (%)), c g+

(0.9) at(x) = o (x)nf(x) with a(x) = E(n}(x)).
The normalized process has, of course, the property
(0.10) E(a(x))=1 forall xe€z% teR".
The following parameter will be important for the behavior of E(#§*(x))%:
(0.11) p=Dd .
THEOREM 2.
(a)

1 ~ .
(0.12) lim inf(?logE(ﬁ;‘(x))z) >0 a.s., ifA=0andp>p? orX<0,
t— o0

1 . .
(0.13) lim sup( ;log E(ﬁ;‘(x))z) =0 a.s., ifA=0andp<p?®.
t— o0

(b) The critical value p® can be calculated as follows:

G;(0,0)) -

1
1 2) — | —
(0.14) p (2m+b

with ‘
Mx, y) = 3(r(x, y) + r(y,x)),

. b = ’ + b b
(0.15) r(x,y) — bq(x y) p— bp(x y)
G, = ¥ #

n=0
Note that -
1 -1
0.16 < pP e |~ G0,0) <1
(0.16) p(>)p 5 +b;( ) )
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Note that the critical value is the same as for the deterministic system
D(x)=D

REMARK. If we consider E(n,(x))*, k = 3,4,...we encounter the very same
phenomena as in Theorem 2: There are critical values p'*> where exponential
growth of these moments starts occurring and these critical values are the same
as for the system with D(x) = D,. The methods of proof are very similar to the
ones used for Theorems 1 and 2 here so we leave the details to the reader
(compare [4], [5]).

1. Proof of Theorem 1.

1.1. A duality relation. In order to prove our Theorem 1 we will express the
quantity E*(n,(x)) in terms of a dual process (£{*)),c g+ Con51der the Markov
process (£§*)),cg+ on (N)S with initial distribution 8-1,,,, and the following
time evolution [compare (0.15) for the definition of r(x, y)]

(i) At rate (m + b)&(x)r(y, x) the following transition occurs:
¢ &(-1,,+1,)+¢  (motion from x to y).
(ii) At rate (ci — D(y))": § > £+ £())1(,, (duplication).
(iii) At rate (d — D(y))™: £ > £ — &( ¥)1,, (extinction).

We can define now the total population N,(x) as:

(1.1) N(x) = X &9(y).

yeS

We will prove the following duality relation between (n*),c g+ and (£{*}),cg+-

PROPOSITION 1. Define p := E*(n(x)). Then
(1.2) E(N/(x)) = (pe =~ D) E(nf(x)).

PRrOOF. Define ‘
(1.3) f(x)=E(nt(x)),  [(x,n)=n(x).

By G we denote the generator of the coupled branching process (n,). We have, as
a straightforward calculation shows,

(61(x, ey = (m + ) E r(z.00n(2) = n(x)

yeS

(1.4)
+(d - D(x))n(x) +(b — d)n(x).

From the construction of the process (compare [4], [7]) we obtain via (1.4) the



1138 A. GREVEN

following system of differential equations for { f(x)}, c 74

E1@ = (m+ 0) £ A0 ~ i)

(1.5) y€S

+(d= D) f(x) + (b = d)f(x).
Now introduce f(x) = e ~®~%,(x). Then (1.5) can be written as

d R A ~
—f(x) = (m+ b)( X r(y,2)f(y) _ft(x))

yeS
+(d - D(x)) " f(x) - (d - D(x)) fi(x).

A straightforward calculation shows that the function {¢ — E(N/(x))}, g also
fulfills the system (1.6) of differential equations. Since the functions ¢ —
{(f(x)}ees t = {E(N(x))}, g take both values in [°(S) for t € R* and both
fulfill (1.6) we immediately obtain the assertion of Proposition 1.

(1.6)

1.2. The evaluation of E(NJ(u)) as a large deviation problem. We want to
calculate E(N,(z)). We will need the following:

(1.7) (M,),cq+: Poisson process with rate (m + b);
(1.8) (X,)pen: random walk with kernel 7(x, y)
[= r(y,x)] starting at the point u.
Denote by # the o algebra generated by (M,),(X,). The following set is crucial
for the evolution of N,(u):
(1.9) A = {x|D(x) = D,}.
Denote by n the number of jumps up to time ¢, by ¢, the jump times of M,, and
by x, the points reached. An elementary calculation now shows

n—1

E(N,(u)|#) = exp % (‘i_ Dl)(tk+1 — t)14(x,)

(1.10) - nil(D2 - j)(tk+1 = t)lea(xy)

-exp((¢ = £,)[La(x,)(d = D;) = 1ea(x,)(D, = d)]).
If we denote the number of jumps of (M,), g+ before time ¢ by n(¢) we obtain
from (1.10) that for u € A
E(N(w)n(t)=n; X, =x,,..., X, = x,)
(1.11) :

Therefore

- z & .t
(1.12) E(N,(u)) = et@=D0 ) (e“;T)prob(Xi(”) €A,i<n)
n=0 *
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where £ = (m + b)t. Now note that this implies that if we have for a sequence
a,\0; M, C A:

1
(1.13) lim i—log(prob(X}‘” €A,i<n))
n-oo | NN

<a, foralueM,,

(1.14) prob( X{* hits M, forsomei € N) =1 forallu € S.

Then we can conclude from (1.12) with straightforward analysis that
1 3
(1.15) lim (zln EM(u)) =d—- D, forallues,
t— oo

which would prove together with Proposition 1 our Theorem 1(a). So it remains
to prove the large deviation result (1.13) for symmetric random walks (irreduc-
ible) on Z %. However, since A by assumption (0.1) has the property that for every
k the cubes x + [—k, k]¢ that lie in A have positive density, we only have to
prove that, with the definition

1
(1.16) gy = lim (;lnprob{X,gO) €[-N,N]%forall k < n}|,

n—oo
we have
(1.17) lim supgy =0

N—- oo

since we then can choose M, = {x|x + [—k, k]? € A}, a, = q,. The above rela-
tion holds for symmetric random walks as shown in Lemma 0. We mention first
the brief idea: The random walk (suppose for a second we have simple random
walk) can leave the cube only from the boundary points. The walk restricted to
the cube spends only a with N 7 co to 0 decreasing portion of time at the
boundary. This “implies” (1.17). The reader will notice immediately that this
. need not hold in asymmetric situations. More precisely we proceed as follows:

LEMMA 0. For a symmetric random walk (X,), cn on Z° starting at 0 (state
space Z%) we have

N- o

1
(1.18) lim ( lim ;prob(Xi e[-N,N]%fori= 1,...,n)) = 0.
t— o0

Proor oF LEMMA 0: Denote by (X/2) the random walk obtained by restrict-
ing the walk with kernel r(x,y) to the cube B [with kernel rg(x,y)=
r(x, y)X, < gr(%, 2)) '] Define lz(x) = L pr(x, ). Since r(x, y) = r(y, x) we
can assume without loss of generality that eg(x) > 0 for x € B. Now we estimate
as follows:

J
prob*}( X, € Bforall k <j) = E("}exp( Y long(X]B))

(1.19) k=0

> exp(—E{x) i llong(Xf) ')
k=0
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If we denote by 7 the invariant measure of the chain (X?) (assume |B| < o;
note that without loss of generality for our purposes we can assume this chain to
be ergodic) we obtain:

k. E®|logly( X2
L | ,ffl( 2l o2 E ) llogla(x)
1
(1.20) - 5oy Sesl)lloges()
x€eB
1

i)
|B| |
The first identity follows from the fact that since r(x, y) is symmetric [g(x)
fulfills the detailed balance conditions with respect to rp as one easily checks.
The second identity follows from the definition of eg(x).

If we choose B =[—n,n], the right side in (1.20) will converge to 0 for
n — o0, since the proportion of points with [z(x) < 1 — & tends to zero for every
positive e. Then we can conclude from (1.19) and (1.20) that

(1.21)

== X 1(x)]logly(x)| + 0
x€B

1
lim sup lim sup(; lnprob{X,go) e[-N,N]%forall k < n}) =0. O

N-—>oo n—oo

1.3. Proof of Theorem 1(b). The statements (0.6), (0.7) of our Theorem 1
follow immediately from the fact that we conclude from (1.10) and Proposition 1:
If (X/*)), cg+ is a random walk with rate (m + b) and kernel 7(x, y), starting at
point x; then

_ ~ ¢
(1.22) E(nt(x)) < pEexp(}\t —(D, - D1)fol(x,§*>ecA) ds)
so that
. - ¢
(1.23) e ME(n}(x)) < pEexp(—(D2 - D1)[)1(x§*)e0A) dg)

The right hand side of the above inequality tends to 0 since CA is under our
assumptions that: D, > D, and {D(x)}, ¢ stationary ergodic together with (0.1),
of course visited infinitely often by the random walk. O

2. Proof of Theorem 2.

2.1. The differential equations for E(n*(x)n*(y)): A duality relation. We
define ’

(2.1) f(x, y;m) = n(x)n(y) = 8(x, y)n(x)  f(x;m)=n(x),
(2-2) ft(xy y) = EM( f(x’ Ys m)) ft(x) = E”f(x;nz)-
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We denote by G the generator of our process (7,).

LEMMA 1.

[Gf(x, y; -)](n)
= (m+0)-( T r(z0)f(z, 35m) + (2, 9)(z,50) = 21(x, 3i.m)

ze8S
23) +[(d- D(x)) +(d - D()] f(x, y;n)
+8(x, y)D(x)f(x, y;m)
+2(b — d)f(x, y;m)
+q(y,x)f(x,m) +q(x, y)f(y,n)

In order to obtain a transparent system of differential equations from Lemma
1 we introduce

(2.4) f(x, y)=e 26-d+D (x y) withr:=X~(b—d).

From Lemma 1 we can obtain, using the methods in [4], [7], that

i) = (m 0 T a0z, 9) + 1z, 9)f2) - 2k, )

ze8S
(2.5) +[(d - D(x)) +(d - D(y)) - 27] Fi(x, %)
+8(x, y)D(x) f(x, y)
+e  Xo=d I g(y, x)f(x) + q(x, ) f(¥)).

This system of differential equations is still too complicated to treat, so we
study first solutions {ft(x, ¥}z, yes of the system obtained by deleting in (2.5)
the last row. For this system we can obtain now a duality relation. In the end we
will prove that f:(x, y) approximates f;(x, y) well enough for our purposes.

Consider the process ({{*?}), g+ With state space NS x NS (S = Z¢); initial
distribution 8(§51(x_y)). The process will be defined in terms of the (£,),cr as
introduced in Section 1.1 (environment fixed).

Take independent versions of the dual processes (£{*)),c g+, (£{7?),c+ and
define W,(x; y) as follows: Whenever £{*} and £{*} are concentrated on the same
point say z, an exponential clock with rate D(z) starts ticking, W(x, y) =
# {the random clock rang for some z € S prior to time ¢}.

(2.6) Ni(x)= X &7(z), NXy)= ¥ &(2).

zeS z€S
Then define {{*”} by setting
(27) $2 = EOE)E(2)2M00, B = N (x)NA()

(2122

This process is well defined and a straightforward calculation shows that

(E¢ (v 21}, , fulfills the same system of differential equations as {e?"f(x, y)), ,,
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so the following duality relation holds:

PROPOSITION 2.

(2.8) f:(x, y)ert = B[ ¥ £(2,)E7(2,)2% = Vfy(2,, 22))'

21,29
This proposition allows us immediately to conclude:

COROLLARY. Suppose inf, [u(n(x) > 0,7m(y) > 0)] > 0. Then
(2.9) G E(5=7) < e?f(x, y) < ¢, E(§57).

For general p (2.9) can be replaced by a more complicated statement. To keep
the notation more concise we will always argue for the above situation though.
This means that for our purposes it is sufficient to study E({{*”)).

We proceed now by representing E({(*?) in the form E(exp(-)). We will
need: (X}),en,(X?),en are independent versions of a random walk with
transition kernel 7(x, y) (= r(y,x)), starting in the points u,v. (M}),cr+
(M}?),cg+ are independent Poisson processes with rate (m + b).

The two above ingredients allow us to construct two continuous time random
walks (X)), cr+, (X2);cr+ An elementary calculation shows now, that:

ProrposITION 3. A := {x|D(x) = D,},

. ¢ t
E(ft(u,v)) = Eexp[fl_/(;l(xéeA) + 1(XfeA)ds + 72_/(;1(XS'=X3€CA)ds
t t
+73[)1(X;=X3)d9 - 74/(;1(X§€CA) + 1ix2eca) 95|
(210 7=d-D, ==D,-D, 7=D, 1,=D—d.

2.2. The asymptotic behavior of E({f**)).

PROPOSITION 4.

@
1 o -
(2.11) lim sup(;logE(f(”’“)‘)) <27 forp < p®.
t— o0
(i)
1 .=
(2.12) lim inf(;logE(gt(u,u))) > 27 forp > p®.
t— o0

[Here r=d— D, = A — (b - d).]
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PROOF.

(i) From Proposition 3 we can conclude that

E(¢{=») < E(exp(2rlt + T3ft1(X:=st) ds))

(2.13) 0

=e27tE~eXp(Tft1 1 2 dS)
3), Loxt=xz)

Now write for abbreviation g,(x, y) = E* ) exp(7, 51 x1_ x2) ds). We obtain
the following system of differential equations:

iz, 9) = (m+ 5)( Lr(e, 0082 3) + Br(z, e, 2) - 28,(x, )

V4
(2.14) + 738,(x, y)8(x, y),
8l(x,y) =1.
This system has been studied in [4] Section 1 and gives for our situation
sup(g,(x,x)) < o0 if p <p®,
(2.15) ¢
g(x,x)<K-t ifp=p®?,
(2.13) and (2.15) together allow us to conclude (2.11).
(ii) Here the main idea is again that large cubes where D(x) = D, will determine
the behavior of the moments at least in the logarithmic scale. The first

important step for a rigorous proof will be formulated in (2.20). First we need
some more notation.

Consider the following functions:
(2.16) P, p(t) = E{x’x)l(xgeB,Xﬁerorsst)-
(X!),cm+ are independent copies of the random walk with rate (m + b) and
kernel r(x, y).
(2.17) d? y(¢) = E(exp(r,DE(¢t))), Bc B,
DE(t) = time the walk (X!, X2) restricted to B x B

(2.18) spends on the diagonal of B X B,

-1
restricted £ with kernels: ( Y F(x, y)) r(x, y))

yEB

Foraset Bc A =[2z|D(z) = D,] and a point x € B we have by Proposition 3
that )

(2.19) Efz(x’x) = E’exp( stg( t))l(xg eB,X2eB,s< t)ezf't?
this implies, since x € B C B, that
(2.20) E(S2®) 2 p, 5(t) dF 5(t) >
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or as an immediate consequence
(2.21) %logl?( frn)) > ;log[dffB(t)] ~ %llOg[Px,B(t)] |+ 2r.
To finish our proof we need the following two lemmas:

LEMMA 2. Define

1 .
(2.22) a, = liminf lim (—logde(t)),
B1S t—-w\ ¢ e

where B, = [—n,n]% Then liminf,_, . a, > a > 0 where a is the solution of
the equation

m+b
with r(t7 % ) = Ef:oe_t' (tn/n');'n’ ;'(x’ y) = %(r(x7 y) + r(y7x))

-1
(2.23) fe ~p(¢,0,0) dt = ( ) , a € R* (sincep > p?)

LEMMA 3.

1 ~
(2.24) lim (limsup(—logpO B(t))) =0, B,=[-n,n]%
n-o\ the \I o
If we apply these lemmas to (2.21) we have for u € [—n,n]?+ u € A and

n = ng

1 o -
(2.25) liminf?logE( {wu}) > 27 for p > p®@.
t— o0

Since points u with the properties required above have positive density by
assumption, we can reach from any given point (x, x) such a point (u, u) by the
random walk (X}, X?) with positive probability. (Here we use that the random
environment is stationary and ergodic.) Therefore (2.25) implies:

1 o
(2.26) A lim inf(;log E({t(u»u))) > 27 for p > p?® o
t— o0

uesS

It remains now to prove our Lemmas 2, 3.

2.3. Proof of Lemma 2. First we need to introduce the following notation:
L, L stands for the generator of the walk (X, X2),cr+ respectively the one
restricted to B X B. By d, p(t) we abbreviate dS 4(¢) (i.e., the quantity for the
unrestricted walk). A theorem of Donsker and Varadhan [3] says now that

(227) Jim (%log E exp( 'r3DfB(t))) = sup (r3u(B) — Ig(p))

Lp(u)

with —Ix(p) = inf (f du)
u>0
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To proceed further note that for our purposes we can assume that r(0,x) has
finite range (since the exponential decay rate for the probability that up to time ¢
no jump of size bigger than n occurred can be made arbitrarily small by making
n large). Now write in (2.27) sup,(-) = sup,(sup,(-)) (this is straightforward
analysis using the special properties of .#,) where #, contains all probability
measures concentrated on C, with C,1S,|C,| < co. Then for each ., the
functionals I(p), I(u) agree for p € 4, if B is big enough. Therefore we have
for a fixed set B:

(2.28)

B1S
which shows (2.22). Now we go back to our special situation and define

1 o 1
lim inf (lim;logEexp(TanB(t))) > lim (;logEexp(Tan’B(t)))
t— o0
1
(2.29) a, = lim (;logEexp('@nyB(t))).
t— o0 "

Specialising (2.27) to our situation with sets B, = [ —n, n]¢ substituted for B we
obtain:

1
a, = lim | F108do,5(0)] = sup (r(diag(B,  B,)) ~ (1)),
t o neA

t— 00
so that
1
(2.30) liminfa, > lim (;logdoyp(t)), D = diag(S X S).
n— oo t— o0

In order to evaluate the right hand side explicitly we note that the
{(R(x)}res hfx) = EO%exp(rs[q1 x1_ x2_) ds) fulfill, by the Feynman-Kac
formula, the following differential equations [L denotes the generator of
(‘)(s1 - st)sEIR*]:

d
(2.31) = 7(x) = (Lh) o) + 75d0(x).-
In [4] Section 2 we studied this system using renewal theory to obtain that
(2.32) h,(0) ~ c-e** with a being the solution of (2.23).
t— o0

Since d,, p(t) = h,(0) this proves our assertion (2.23).

Proor oF LEMMA 3. This is a special case of Lemma 0 (Section 1) if we
consider the random walk (X®, X®) as a 2d-dimensional symmetric walk and
apply Lemma 0 to [— N, N2

2.4. Proof of Theorem 2. From Proposition 4 and Proposition 2 and the
Corollary we obtain

w liminf (¢ ~'log f,(x,x)) > 0 forp >p® as.,

2.33 e .
(2.33) limsup (¢ ~'log f(x,x)) <0 forp < p® as.

t— o0
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Lemma 4 below tells us that the above statement holds also for the function
f{(x, x). Since the definition f,(x,x)= E(n*(x))? - E(n¥(x)) and therefore for
A > 0 by (0.6): (1/¢)log E(R(x))? ~,_. (1/t)log f(x, x). We are done in the case
A > 0. The case A < 0 is a trivial consequence of Lemma 4(b) below.

LEMMA 4. Denote \=b—d— D, and hy(x) = E(n(x))e . Then we
have:

(a)
(2.34) A>20 p (<)p<2>: f(x, y) < f(x, y) + K (+K¢t?),
(b)

(2.35) A<O0  filx,¥)=fix, y) + ce0,

(© '

(2.36) f(x, y) = fi(x, ¥).

To prove this lemma one uses the following well known fact: Let U,, V, be two
semigroups of operators on some L*, with generators L,, L,. Then

(2.37) V(f)=U(F) +fO’U,_s(LD ~ L)V,(f)ds.

If we apply this to our situation, i.e., we consider L*(S X S) & L*(S) [denote an
element of this space in the form (f, A) with f € L*(S X 8), h € L*(S)] and
define

(2.38) Ut( fos ho) = (f:’ht)’ Vt( fos ho) = (f:, ht)'
Then we obtain after some calculations [note by (1.23) A,(x) < pe ~*!] that:
(2.39) 0 < fi(x,5) = fi(x, 5)

<c ~(/:h,_s(x, y)e %ds + ‘/(;th,_s(y,x)e'zsds),

where {h(x, ¥)}, yes is the solution of (2.5) deleting the last row, with initial
conditions hy(x, y) = 4(x, y) (= 3(q(x, ¥) + q(¥, x))).

If p<p® then h(x,y) < C for all s€ R"* [by (2.8), (2.13), (2.15)], so that
the right side of (2.39) is bounded by (for A > 0):

(2.40) 5[‘e-28ds <K, byKt*forp=p.®
0
This proves (a). Parts (b) and (c) are immediate conseduences of formula (2.37).
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