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ABSOLUTE CONTINUITY OF STABLE SEMINORMS

By T. Byczkowski AND K. SAMOTIS
Wroctaw Technical University

Suppose that E is a complete separable real metric vector space. It is
proved that if X is a symmetric E-valued p-stable random vector, 0 < p < 2,
and ¢ is a lower semicontinuous, a.s. finite seminorm, then the distribution of
g(X) is absolutely continuous apart from a possible jump. If, additionally, ¢
is strictly convex or 0 < p < 1, then the distribution of g(X) is either
absolutely continuous or degenerate at 0. This result settles, in particular, the
problem of absolute continuity of the supremum of stable sequences, extend-
ing thus Tsirel’son’s theorem.

1. Introduction. Properties of the distribution of the supremum of sep-
arable Gaussian processes play an important role in theory as well as applications
and have been extensively investigated for many years. For the Wiener process
W(¢), the distribution of max|W(¢)| is absolutely continuous and its density can
be expressed explicitly. For stationary Gaussian processes the absolute continuity
of the supremum was proved in [17]; for general separable Gaussian processes
this problem was solved in [16].

The continuity of the distribution of the supremum (in fact, of an arbitrary
measurable seminorm) for p-stable measures, 0 < p < 1, was established in [18].
It was also shown there that for p = 1 this distribution can have at most one
atom. When p > 1, [14] provides a simple example of a seminorm which is
positive and constant a.s. In the same paper the problem of absolute continuity
for separable or strictly convex seminorms is solved, by means of a representation
of p-stable measures as mixtures of Gaussian measures and applying known
results for Gaussian measures.

This paper proposes an approach based on a version of the Lévy-Khinchine
formula. Our presentation is quite general, in the context of complete separable
metric vector spaces. Readers interested only in locally convex or Banach space
cases can use [4] or [3], instead of Theorem 3.1. Although our main motivation is
the case of stable measures on R* with the supremum seminorm, nonlocally
convex applications are also of some interest. A fairly general example (including
the previous one) is provided by stable measures on the space L,(m) of all
measurable functions on a finite separable measure space with convergence in
measure m and the essential supremum seminorm.

2. Preliminaries. In this section we introduce some notation and terminol-
ogy and collect basic facts needed in the sequel.

For standard concepts of weak convergence, tightness, properties of convolu-
tion of probability measures, etc., the reader is referred to, e.g., [4], [11].
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Throughout the whole paper E will stand for a complete separable metric
vector space over the real numbers. Let D be an additive subsemigroup of

= (0, ), dense in R*. A family (p,), < p of probability measures on E is called
a convolution semigroup if

Be*Ps = Myis

for all t, s € D; it is called continuous if p, converges weakly to §, (the point
mass at 0) as ¢t = 0 + , ¢ € D; it is called symmetric if all p,s are symmetric. The
most typical situation is when D = R* and we then simply write (¢,),. o-

A Borel measurable function q: E — [0, co] is called a measurable pseudonorm
if it is subadditive, i.e., g(x + ¥) < q(x) + q(y), for all x, y € E, if ¢(0) = 0, and
if it is monotonic, i.e., g(ax) < q(bx) whenever |a| < |b| for all x € E; q is called
a measurable seminorm 1f additionally, g(ax) = |a|q(x) for all a € R and
x € E.

Next, we state some inequalities needed in the sequel. The first two of them
are taken from [1] and [2]; the remaining ones are versions of the Lévy Inequality

(see [9]).

LEMMA 2.1. Let q be a measurable pseudonorm on E and let X,Y be
independent E-valued random vectors. Then for every ¢, 8 > 0 we have:

) P(g(X + Y)>e) = P{g(X) > (1+8)e} - P{q(Y) < 8¢)
: +P{g(Y) > (1 + 8)e) - P(q(X) < B¢},
Pg(X+Y)>e} <P{q(X)>(1-08)e} +P{q(Y)>(1—8)e}

(b) +P(q(X) > 8¢) - P(q(Y) > 3¢).

LEMMA 2.2. Let X,,..., X, be E-valued independent and symmetric random
vectors and let q be a measurable pseudonorm. Then for every ¢ > 0 we have

2
(a) P{ max g(X,) > e} < 2P{q((1/2) ;Xi) > e/2},

1<j<2

(b) {lriljaz(nq(i ) e}s2P{q((1/2)§:1Xi)>e/2}.

A convolution semigroup (,), < p is called g-continuous if for every ¢ > 0 we
have lim,_,_ 4, p,{q > €} = 0. Observe that if g generates the topology of E
then the g-continuity of convolution semigroups reduces to the usual continuity.
It follows easily by Lemma 2.1(b) that if (v,),cp and (k,), p are g-continuous
then so is (v, * k,), < p- If we assume that (v,), p and (x,),< p are symmetric then
Lemma 2.2(a) implies that the converse is also true.

LEMMA 2.3. Let q be a measurable pseudonorm on E and let (v,),cp and
(k;);c p be two symmetric convolution semigroups on E. If (v,*k,),cp IS q-

continuous then so are (V,),c p and (k,);c p-

Now, we need one more result (for the proof, see [5]).
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LEMMA 2.4. Let q be a measurable pseudonorm and let (p,),., be a
g-continuous convolution semigroup on E. Then for all ¢ > 0 the following holds:

(2.1) limsup (1/¢)p,{q > &} < .
t—>0+
Moreover, if a =1 — 2p,{q > ¢/5} > 0, then
(2.2) limsup(1/¢)p,{q > e} < —Ina.
t—0+

3. Lévy-Khinchine formula. In this section we state and prove an abstract
version of the Lévy-Khinchine formula in a form suitable for our purposes.
Instead of considering infinitely divisible distributions, as in [15], we work here
with continuous convolution semigroups. The advantage of our technique is that
we obtain more effective formulas, especially, the uniqueness of the Lévy mea-
sure.

We begin with a definition. Let » be a finite Borel measure on E. For every
t > 0 define

e o]
exp(tv) = e "B Y (th/k!)p*k
k=0

It is clear that the above series is convergent in the total variation norm and
defines a convolution semigroup. Observe that if ¢ — 0 + , then exp(¢») converges
to 8, in the total variation norm. In particular, exp(¢») is g-continuous, for every
measurable pseudonorm gq.

Now, we are able to formulate and prove our version of the Lévy—Khinchine
formula.

THEOREM 3.1. Let (u,),- o be a symmetric continuous convolution semigroup

" on E. Then there exists a nonnegative measure v such that for every open

neighbourhood U of 0 v|y. is finite and (1/t)p |- converges weakly to v|y. as

t - 0+, whenever v(dU) = 0. Moreover, the following decomposition holds:
p‘t =K t * .Yt’

with «,, v, satisfying:

(1) (K2)ss 05 (V2)e> o are symmetric and continuous convolution semigroups,
(i) v, = lim exp(¢v| F, ), where F, is any increasing sequence of Borel subsets
such that v|p is “finite and ﬂ = {0},
(iii) lim, +(1 /t)y,|Uc = ¥|ye for ever:y open neighborhood U of 0 such that
v(dU) =
@iv) lim, ,, +(1 / t)x (U°) = 0 for every open neighbourhood U of 0.

Proor. Let g be a pseudonorm generating the topology of E. Let us choose a
sequence 7, of positive numbers-which decreases to 0. Using elementary facts
from the abstract semigroup theory (see, e.g., [8] Chapter X) we obtain that
exp((s/t)p,) converges weakly to p,, as £ — 0 + for every s > 0. Since

exp((s/t)p,) = exp((s/8)1l(g= ) *exD((5/8)el (g <))
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standard compactness arguments [11] and the symmetry of all measures implies
the existence of a sequence ¢’ decreasing to 0 such that for a finite measure »®
and probability measures k(™ we have:

(/1 Dol gy = 7™ and exp((5/2Dtpl(g2yy) = K

for all s € Q* (positive rationals) and all positive integers n. Denote exp(s»™)
by y{™. Then we obtain p, = k(™ *y(™ for all s € @*. Choosing again an
appropriate subsequence n’ we obtain that there exist probability measures «,
and v,, s € @™, such that k(") =k, y{") = y,,and p, =k *v, forall s € @*.
Moreover, (k);< g+ and (¥;)s< o+ are symmetric convolution semigroups: hence,
by Lemma 2.3, they are continuous on @*. Therefore, they can be uniquely
extended, as continuous convolution semigroups, to R* [13]. Hence we obtain

(3.1) ps =k *y, forall s> 0.

By construction it follows that for all £ > n,,_; with the property »"){q = ¢} =
v(*~D(q = ¢} = 0 we have v™| . , = »""D| . Define

(3.2) v =limy™)| ., .
It is not difficult to check that » is o-additive. Clearly, »|,. ., = v(”)|{ g>e fOT
&€=,
Using the same arguments as to get (3.1) we obtain that for all n
(3.3) ¥, = A xexp(sv(™) forall s > 0,

for some symmetric continuous convolution semigroup A?. (3.1) and (3.3) to-
gether give

(3.4) pe =k * NP xexp(s¥™), se R,

By (3.4) and elementary inclusions of the type needed to prove Lemma 2.1(a) we
obtain

(1/8)14l (g m(A)

0 = {qssn}(l/s)exp(8v‘"’)((A —x) N {g>(1+8)n}) (XD *«k,)(dx)

for all &,m >0 and 0 <6 < 1, and all s > 0. Now, the right-hand side of (3.5)
converges to »("(A N {q > (1 + 8)n}), whenever A is open and such that »(9A)
= 0. We thus have obtained

(3‘6) lim(];'nf(l/s)p‘sl(q>n}(A) = V(n)(A N {q > 7’})
s—0+ .

for A as above and all > 0 such that »{qg =7} = 0.
. By construction of » we obtain, for ns as above

(3.7) sl_i;l(])l+ (l/s)l'l'sl(q>n) = V|(¢I>’7)'

Applying Lemma 2.1(a) to (3.4) and using (3.7) we obtain for n > g, that
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lim, _, ,,(1/8)k,* X\?{q > n} = 0. Using this lemma once again we get

(3.8) lil‘(l)‘l (1/s)k,{g>n} =0 foralln >0,
s—0+
(3.9) 1i1(1)1 (1/8)NP{g>n} =0 forally>n,.
50+

Furthermore, using (3.2) and arguing as we did to get (3.6), we get
(3.10) liminf(l/s)ys|(q>,,)(A) >v™(A N {q>n}),
s—0+

for all n > n,, such that »{q = 5} = 0. Now, applying a version of Lemma 2.1(b)
to (3.3), we obtain

(1/8)¥elg> (4) < [(1/8)exp(s9™)((4 = x) N {g > (1~ 8)n})N(dkx)

+(1/s)ANM{q > (1 — 8)n}

+(1/s)exp(s»™){q > 87} A™{q > 87}
for all n > 0 and 0 < é < 1. By virtue of (3.9), if (1 — &)n > 7, is such that
v{g =1 — 8)n} = 0 and »{q = n} = 0, we obtain
(3.11) limsup (1/5)¥,l (g5 (4) < »(A N {q >n})

s—>0+

for all open subsets A with the property »(dA) = 0. This, together with (3.10)
gives the part (iii) of the conclusion.

To complete the proof of the theorem it suffices to show that if » = lim, »®
= lim,, '™, where »™, »"(™ are two increasing sequences of finite and symmetric
measures, and if exp(¢»‘™) and exp(¢»"(™) are conditionally compact, then the
weak limits of exp(#r(™) and exp(t»’™) exist, as n — o, and are identical. This
is, however, quite standard and can be found in [15].

The measure v defined, by virtue of Theorem 3.1, as lim »™), will be called the
Lévy measure of the convolution semigroup (g,),.,. The semigroup vy, =
lim exp(¢r(™) will be denoted in the sequel by exp(t»).

COROLLARY 3.2. Suppose that q is a lower semicontinuous seminorm and
that (p,),- o is @ symmetric continuous and g-continuous convolution semigroup
on E such that p,{q < o0} =1 forallt > 0. Assume, further, that ., = exp(tv),
where the Lévy measure v is infinite and such that v{q = 0} = 0. Let n,= o
and let m,, be a decreasing to 0 sequence of positive numbers such that v(V,) > 0,
where V, = {x: n,<q(x)<n,_,}, n=1,.... Denote V,= 3, A, =»(V,), B,
=X oA, and F,=U%, ..V, n=0,1,.... Then we have

o0
3.12 =e B Y ((1/RY)(#]pe) ™) % ki) + &= Puicm)
My F¢ ¢ ¢

k=1 :
forn =1,..., where k{"” = exp(tv| ), and the above series is convergent in the
total variation norm. .

Proor. We first show that for all n > 0 we have
(3.13) v{q > 1} < o0.
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By Theorem 3.1 we have (1/8)p | (.1 > ¢; = ?l¢j->¢)» When £ = 0 + , and where
[| - || is a pseudonorm generating the topoiogy of E, for all continuity points ¢ of
O(u) = »{|| - || > u}. Thus, by Lemma 2.4 and by the fact that {q > 7} is open we
obtain

v({g>n) 0 (i1l >¢}) < liTgEf(l/t)(ﬂtl(ll'IPs)){q > n}

< limsup(1/¢)p,{q > n} < co.

t—>0+
If ¢ tends to 0, we obtain
(3.14) v{q >n} < limsup(1/t)u.{q > n}.
t—>0+

Now, (3.12) is an immediate consequence of the equality
exp(tv). = exp(tv|p ) *exp(tv|y, ).

Now, let (p,),-, be a symmetric continuous convolution semigroup on E.
(By)s> o is called symmetric p-stable, 0 < p < 2, if p, = exp(¢v), ¢ > 0, and
(3.15) v(sA) = (1/sP)v(A)
for all Borel sets A and all s > 0. It is not difficult to see that (3.15) is equivalent
to the property p,(A) = p,(s/PA) for all ¢,s > 0 and all Borel sets A. In

particular, any such semigroup is g-continuous for every measurable seminorm ¢
such that p,{qg < o0} = 1.

4. Absolute continuity of seminorms in R". The following lemma is quite
elementary and intuitive. Since we were unable to find a suitable reference, we
present a simple proof for the sake of completeness.

LEMMA 4.1. Letn > 1andletf: R" — [0,0) be a convex function such that
lim,, ., f(r)= + 0. Let n,,n, be real numbers such that m = inf f(r) < n, <
No. Then there exists a positive constant K such that

(4.1) L({reR™t, <f(r)<ty}) <K(t,— t,)
for each t,, t, satisfying n, < t, < t, < n,. L stands here for the n-dimensional
Lebesgue measure. Hence if N is of linear Lebesgue measure 0 and m & N, then

(42) L(f1(N)) =o.

Proor. Fixr; € R” suchthat f(r,) = m.Denote S"~' = (y € R™ |ly| = 1},
where ||| is the usual Euclidean norm in R™. Observe that for each fixed
y € S ! we have that f(r, + py) is a nondecreasing, convex, unbounded func-
tion of p where p > 0. Moreover, it is strictly increasing on {p > 0: f(r, + py) >
m}. Now, let p/(y) be the only positive number p for which f(r, + py) = ¢ for
each fixed y € S~ ! and ¢ > m. By the preceding observation we get

to— t, t,—m
>
Ptz(Y) - Pt,(Y) Pt,(Y)

(4.3)
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for each y € S™~! whenever m < t; < ¢,. On the other hand,

M = sup{p(y): m<t<m,,yeSr'}= sup{pnz(y): y € S"‘l} < + o0,

since p, is a continuous function on the compact set S"~ 1
Integrating in polar coordinates we obtain for any ¢,, ¢, such that t, > ¢, > m:

L({r € R™ t, < f(r) < t,})

= fs __s(dy) f PDon=1dp

P (¥)

(4.4)

= (1/n)fsnl[(p¢2(y) - ;ot,(Y))k{lo(m,(y))k(pzz(y))"_k_1 s(dy),

where s denotes the surface measure on S”~'. Now, if n, < ¢, < ¢, <7, then
(4.4) together with (4.2) and the fact that M < o, give (4.1) with

K=(M"/n, - m)fsnﬂlS(dy)-

COROLLARY 4.2. Let E be a separable metric vector space and let q be a finite
measurable seminorm on E. Suppose that s;, j=1,...,n, and y are some
elements of E. Denote

mf{ (X:‘, rs;+y

ir=(r,...,1,) ER"}.
Then
f I]N q( Z rjsj +y
R" j=1

for each N of linear Lebesgue measure 0 that does not contain the point m.

)dr1 ceedr,=0

ProoF. Define T: R® —» E by

n

T(ry,...,r,) = X rs;

J=1

Assume that q o T is nonconstant, since otherwise the corollary is trivial. Then
there exists an integer k, 1 < k < n, and linear operators T;: R" — R* and T):
R* - E such that peT = poT,oT,, T(R") = R* and that g o T}, is a norm on
R*. Then the function f defined on R* by f(r) = q(Ty(r) + y) satisfies the
assumptions of Lemma 4.1. Hence for each set N of linear Lebesgue measure 0
such that m & N we have L(f“'(N)) = 0. Since {r € R™ q(X}_,r;s; + y) € N}
= T, Y(f~'(N)) and since the preimage by a nonzero surjective linear operator of
a set of Lebesgue measure 0 is again a set of Lebesgue measure 0, the corollary
follows.
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REMARK 4.3. Lemma 4.1 can be also derived from the Brunn-—Minkowski
Theorem (see, e.g., [7]).

5. The main theorem. We begin with two lemmas, the second one may be
of independent interest.

LEMMA 5.1. Let (p,),-o = (exp(tv)),-, be a symmetric convolution semi-
group on E and let q be a measurable seminorm such that p,{q < 00} = 1.
Assume that v{q = 0} = 0. Let ™ = exp(»| (g<n))- Then there exists a constant
¢ > 0 such that for every € > 0 we have

(5.1) lim k™{g >c+¢} =0,
7—0+

(5.2) liminfk™{q > ¢ — &} > 1/2.
n—-0+

Proor. Let n,= oo and let 5, be a decreasing to 0 sequence of positive
numbers. We first show that (5.1) and (5.2) hold for this sequence. Denote
Vo= {x: m,<qx)<m, ) and F,=U,,,.,V;, n=0,1,.... Let (X,), be a
sequence of independent E-valued random vectors with distributions exp(»|y;),
respectively. By Theorem 3.1(ii) it follows that the series X% , . ; X; converges
with probability 1 to a random vector with the distribution exp(v|, ) for
n=0,1,.... Observe that for n = 0 we get u,. Denote Z, = (X2 ,., X,). (X,);
are independent, hence, by the Kolmogorov 0-1 Law we obtain that limsup Z, =
¢ < oo with probability 1. Next, denote Z{¥) = max,_;_,. Z,,; When m - oo,
then Z{® converges pointwise to Z**) = sup; . , Z,, ;- Hence for every k and every
¢ > 0 there exists m,, such that for m > m, we have P(Z®) — Z(F) > ¢} < 1/k.
By Lemma 2.2(b) we obtain P{Z{®) > a} < 2P(Z, > a}. Thus, we get P{Z(*® >
o+ ¢ —1/k <2P{Z, > a}. Since Z'® decreases to limsupZ,, as k - o, we
finally obtain P{limsup Z, > a} < liminf2P{Z, > a} for all a > 0.

Suppose now that a < ¢. Then we have

(5.3) liminf P{Z, > a} > 1/2.
Next, dividing X2 ; X; into two parts and applying Lemma 2.2(a) we get:

P{max(q(g‘,lXi),q(i:%HXi)) > a} < 2P{q(i§1Xi) > a}.

By this inequality we obtain that 1 — 2u,{q > a} < P{Z, < a}, which, together
with (5.3), gives that 2p,{q > a} > 1/2 for every a < c¢. Thus ¢ = oo implies that
pi{q < o0} < 3/4, which gives the contradiction. Hence ¢ < oo, what concludes
the proof of the lemma if we show that ¢ does not depend on the choice of 7,,.
Indeed, (5.3) then yields (5.2), while (5.1) is a consequence of the following
obvious inequality: limsup P{Z, > a} < P{limsupZ, > a}.

To prove this remaining part, suppose that 7/, is another sequence decreasing
t0*0 and the corresponding constant ¢’ < c. Let &, be such that }, ,; <1, <) .
Applying Lemma 2.2(a) again we see that

1 - 2c"{q > a} < k™){q < a}.
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If a is such that ¢’ < a <e¢, then the above inequality and the ver-
sion of (5.1) written for 7, show that «"){q > a} — 0, while, by (5.3) we get
liminf k(g > a} > 1/2. This contradiction completes the proof of this part
and concludes the proof of the lemma.

LEMMA 5.2. Let (p,),- o= (exp(t»)),-, be a symmetric p-stable convolution
semigroup on E, 0 < p < 2, and let q¢ be a measurable seminorm. Assiime that
pi{q < 0} = 1. Then the following conditions are equivalent:

(i) q is bounded, p, as.,
(ii) »{g > 0} =0,
(iii) g = const., p, as.

PROOF. Suppose that g is almost surely bounded. Let U, be a decreasing
sequence of open neighbourhoods of 0 such that U, = E, NY_, U, = {0}. Let
V,=U,_;\U,, n=1,..., and let (X;); be a sequence of independent E-valued
random vectors with distributions exp(v|y ), respectively, i = 1,.... As in the
proof of Lemma 5.1 we obtain that ¥ ,,, X; is distributed like exp(»|y ),
n=1,..., and that limsup q(X ,., X;) = ¢ < o0, pn, a.s. Denote exp(v|, ) by
x‘™. By Lemma 2.2(a) we have i

1 —-2p,{q > e} < exp(|ye){q < e}x™{q < ¢}.

Therefore, if ¢ is greater than the essential upper bound of g then exp(»|;<){q >
¢} = 0. In particular, (»|,.){q > ¢} = 0. When n > oo we obtain that »{q > ¢} =
0. By this fact and by (3."15) we obtain (ii).

Now, assume (ii) and let U,,V,, x'™, n=1,..., the constant ¢ and the

sequence ( X,), be as in the first part of the proof. Note that for fixed n and 7 > 0
we obtain, by Lemma 2.1(b)

(Plue) * (Plye){a > m} < 2(vlye){g > (1 —e)n} + ((Vlug){q > 8’7})2 =0.

By the obvious induction we obtain that exp(v|y<){q > n} = 0 for every n >0
and each n=1,.... From this fact and since for each &> 0 there holds
x™{q < c+ ¢ > 1asn — o, we obtain

pi{g < ¢ + 2e} = exp(¥[ye) X x™{(x, ¥): q(x +y) < ¢ + 2¢}
> exp(vluﬁ) X x™(x,y): g(x) <eq(y)<c+e}—>1

Hence q < ¢, p, a.s. Next, observe that if (X2, X;) is convergent in probabil-
ity as n — co, then choosing subsequences convergent almost surely and using
(5.1) and (5.2) we obtain that limq(X® ,., X;) = ¢, as. This, in turn, implies
that '

m{g < ¢ — e} = exp(v|yc) X x™{(x, ¥): g(x) < e/2,q9(x +y) < c— ¢}
<x™{g<c—¢e/2} >0.

Therefore, it is sufficient to show that q(X%, ., X;) converges in probability.
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Suppose, to the contrary, that this is not true. Then there exists an ¢ > 0 such

that
P{w: > e} > ¢

for some increasing subsequence k; — co. By the triangle inequality we then get

kg —1
{q> ¢ =P{w: q( h Xj) >£} > .

k2l—|

o ) -o[5x)

k21—l k21

kg —1

Uy

k2l—l

exp|»

This, however, gives the contradiction, because the left-hand side of the above
formula vanishes for all ¢ > 0. This proves that (ii) implies (iii) and, clearly,
completes the proof. )

The next lemma is a version of Lemma 2.1 in [10]. We first introduce some
notation. Suppose that p, = exp(fr) is a symmetric p-stable convolution semi-
group on E, 0 < p < 2, and that q is a lower semicontinuous seminorm such that
pi{g < oo} = 1. Let S, = {x: g(x) = 1}. Now, for any x € E such that g(x) # 0,
q(x) # o, define @(x) = (q(x), x/q(x)) € R*X S,. Let B be a Borel subset of
S,- Denote

Irl,rz(B) = {x: rl < q(x) < r2,x/q(x) € B}
for r;, r, € R" such that r; < r,. If »| ;. ¢ # O then (3.13) and (3.15) imply that
there exists a finite Borel measure ¢ and S, such that
(" 1+p
(1, (B)) = [ (/o0 dr [ Vy(s)a(ds)

(5.4)
= fs fR+"q>(Ir,,r2(B))(r, s)(1/r'*P) dro(ds).

LEMMA 53. Let (p,),-, be a symmetric p-stable convolution semigroup,
0 < p <2, and let q be a lower semicontinuous seminorm such that p,{q < oo}
= 1. Assume that v| .o # 0. Then for all y € E and all positive numbers
My, Mg, ¢, such that n, < n, the following holds:

U} dr
(5:5) (Plm<geny)(® a(x+y) <t} = [ [T na(rs +3)50(ds).
Sq Uit r

Proor. Observe that by (2.2) and (3.14) we obtain
(5.6) v{g =} =0.

‘:Hence, we may assume that g(x) < oo for all x € E. Then the formula (5.5) is a
simple consequence of (5.4). All that has to be proved is that the sets {x:
q(x +y) < t,m <q(x) <n,} belong to the o-algebra generated by the sets of
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the type I, ,(B). This is a consequence of the following easy to check formula:

{x:g(x+y)<t,m <q(x)<n}= U I (B, .)

m<n<n<nr,ReQ’
where

={sESq:q(rs+y)<t,r1<r<r2}

N {s€8,: q(rs +y) <t}.
re(r, nNQ*

LATRS)

THEOREM 5.4. Let (p,),> o be a symmetric p-stable convolution semigroup on
E, 0<p <2, and let q be a lower semicontinuous seminorm. Assume that
p{q < 0} =1 and let F(u) = p,{q < u}. Then F(u) is absolutely continuous
except possibly at u, = inf{u > 0: F(u) > 0}. If, additionally, 0 <p <1lorqis
strictly convex then F is either absolutely continuous or degenerate at 0.

ProOF. We first prove the theorem under the additional assumption that the
Lévy measure » of (¢,),- o has the property

(5.7) v{qg=0}=0.

We divide the proof into several steps.
Step 1. In this step we show that the following holds:

(5.8) limgxp(vl{qs,,}){q >¢) =0 wheneverp,{qg <e} > 0.
=0+

To prove this, let (X;); be a sequence of independent random vectors defined as
in Lemma 5.1. Note that the series £%_, X, converges a.s.; hence X7 _,,, X,
converges a.s. to 0 as k — co. Therefore, ¥*_, X, — £2_, ., X, converges a.s. to

©_ X, as k > co. Since ¢ is lower semicontinuous, we obtain

) k 0
q( Y Xn) < liminfq( YXx, - Y X,| as.
n=1 n=1 n=k+1

Denote Y = ¢(X2_, X,)and Y, = q(C%*_, X,, — Z%_, ., X,,). Then, for every § > 0
we have

(5.9) lim P{Y, - Y> —8) = 1.
It is evident that
(V,<e-8,Y,-Y> -8} c{Y=<¢Y,<¢Y,—-Y> -8}
c{Y<eV,<e)

Dl £ x)sedf £1) =]

n=k+1 n=1

(5.10)

Comparing (5.9), (5.10) and using the fact that Y,, Y have the same distributions



310 T. BYCZKOWSKI AND K. SAMOTIJ

as §,, we obtain:
p{g <e— 98} =1ilrenP{Yks.€—8,Yk— Y> -§)

(5.11) < limian{q( f X,,) <e, q( f X,,) < s}

n=k+1 n=1
< limsup y®{q < ¢} - liminfk®{q < ¢},

where vy, k® are the distributions of ¥*_, X, and ¥*_,,, X, respectively.
Next, since {g < ¢} is closed, we get limsup y*){q < ¢} < p,{q < ¢}. Therefore,
(5.11) implies

(5.12) pi{g <€} <p{g<e}- liminfx®{q <¢}.

It is easy to see that (5.12) completes the proof of this step.

Step 2. We prove that if F(¢) > 0 then F is absolutely continuous on (e, o).
To do this, we apply Corollary 3.2. By virtue of (5.6) we may assume that
q(x) < oo for all x € E. Let 0, = o and let 7, be a decreasing to 0 sequence of
positive numbers. Denote, as in this corollary, B8, =»{q >n,} and «™ =
exp(?|, < 4.,)- Formula (3.12) then gives

(5.13) m{g €N} = e“l*..kgl (l/k!)f(vl{P,,n))*k{x: g(x +y) € N}x™(dy)

+e FrM{g € N}

for n=1,..., and all Borel subsets N of R*. Now, by Step 1 we have
k"){q > &} - 0 as n - oo. Since also e A= — 0, it is enough to show that for all
Borel subsets N C (¢, o0) such that |[N| = 0 we have

k
(5.14) j;ﬁ }(vl{q>nn})* {x: g(x +y) € N}x'™(dy) = 0,

for all positive integers n and k. By Lemma 5.3 the expression under the integral
sign is equal to

o o k dr, -+ dr,
(5.15) /an fn |N(q(zrjsj+y))————o(dsl)---o(dsk).

j=1 (rp oo m)'™?

By Corollary 4.2, (5.15) is 0 whenever

k
(5.16) m= ir:fq( Yors;+ y) <e.

j=1

However, since we integrate (5.15) over the set {y: g(y) < €} and it is easily seen
that m < g(y), (56.14) follows.

Step 3. We prove that if g is, additionally, strictly convex then F is
absolutely continuous on R*.

Recall that ¢ is said to be strictly convex if the equality g(x) = q(y) =
g((x + y)/2) implies that x = y.
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Let N be a set of linear Lebesgue measure 0. Using Corollary 4.2 and the fact
that the infimum in (5.16) is attained exactly at one point for each y, we deduce
that (5.15) vanishes. This implies that each term in the series (5.13) is 0.
Moreover, the last summand in (5.13) can be made arbitrarily small. Therefore,
p{g € N} =0.

Step 4. W prove here that if 0 < p < 1 then for all ¢ > 0 we have p,{q < ¢}
> 0. )

To show this we apply the idea of Proposition 3.1 in [12]. Namely, for every
t > 0 we have the following simple inequality:

p X pi{g(x) <t,q(y) <t} < py X p{g(x +y) <2t}

Since p, is p-stable, we obtain (u,{q < ¢})® < p,{q < at}, where a = 2'"1/P,
This clearly yields the conclusion of Step 4.

Step 5. In this step we eliminate the restriction (5.6). For this purpose, let us
write v = ¥ + »®, where »®. = »| ;. o, and »® = |, _,,. It is easy to see that
@D »@ are Lévy measures of some p-stable semigroups. Denote the correspond-
ing semigroups by (1), o, (1?), - o, respectively. By Steps 1 and 2 the function
FO(u) = p{Pq < u} is absolutely continuous on (u}, ), where uj = inf{u > 0:
F®(u) > 0}. On the other hand, by Lemma 5.2 we have that ¢ = const., p? as.
We show that ¢ = 0, p? a.s. By the proof of Lemma 5.2 we obtain

(exp(v®1ye)) (g > e} = 0
for all ¢ > 0 and all open neighbourhoods U, of 0. If now U, is decreasing with
N, U, = {0}, then exp(v(2)|U:) = u® as n — oo. Since {q > ¢} is open, we obtain
pP{qg > ¢} < liminfexp(v(mlu’f){q > e} =0.

Hence g = 0, p a.s. By the triangle inequality we get g(x + y) = g(x) for p®
almost all y € E and thus

Fu) = p,{q>u}
= x pP{(x, y): g(x + y) < u}
= puP{q < u} = FO(u)

This completes the proof of this step and of our theorem.

ExaAMPLE 5.5. Let E = R® be the countable product of real lines with the
product topology. Let (u,),- o be a symmetric p-stable convolution semigroup on
E, 0 < p < 2, and let q(x) = sup|x,|. Suppose that p,{g < co} = 1. By Theorem
5.4 F(u) = p,{q < u} is absolutely continuous on (u,, ), where u, = inf{u > 0:
F(u) > 0}.If 0 < p < 1 then F(u) > 0 for all > 0 and F is absolutely continu-
ous on R*.
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