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ON ITO STOCHASTIC INTEGRATION WITH RESPECT TO
p-STABLE MOTION: INNER CLOCK, INTEGRABILITY OF
SAMPLE PATHS, DOUBLE AND MULTIPLE INTEGRALS

By J. RosiNsk1! aAND W. A. WOYCZYNSKI

Case Western Reserve University

The paper studies in detail the sample paths of Itd-type stochastic
integrals with respect to p-stable motion M(¢), ¢ > 0. These results, in turn,
permit an analysis of the concept of multiple p-stable integrals of the form

[ [t ty) aM(t) - dM(2,),

and, in particular, a full description of functions of two variables f(¢,, t,) for
which the double stochastic integral [[f(¢,, ¢,) dM(¢t,) dM(t,) exists.

1. Introduction. In recent years several authors attempted to extend It6’s
theory of multiple Wiener integrals to various classes of non-Gaussian processes
[cf. e.g., Lin (1981), Surgailis (1981), and Engel (1982)] assuming, however, the
existence of high moments of integrator processes. Stable processes pose a special
problem in this context because of their poor integrability properties. The
multiple integrals for them were studied by Surgailis (1981) and by the authors
(1984) but the results obtained in these two papers were far from conclusive.
Their completion requires an in-depth study of the sample path behavior of the
single p-stable 1t6-type stochastic integrals and this is the starting point of the
present paper.

Section 2 contains a construction of the Itd-type stochastic integrals with
respect to a p-stable motion M for processes with almost surely p-integrable
sample paths. The existence of such integrals follows also from the work of
Kallenberg (1975) on integration with respect to processes with stationary and
independent increments. We feel, however, that the construction presented here
is more natural and gives more insight into the inner structure of the integral. As
an intermediate step in the construction, which corresponds to I1t&’s L2-theory for
Brownian integrals, we show that the stochastic integral F — [‘FdM = X(¢) is
an isomorphic embedding of the class of adapted processes F for which E[|F|? dt
< oo into the class of processes X with trajectories in D[0, o0) and such that
P(sup,| X(¢)] > A) = O(A™?), A = oo. The upper estimate needed to establish the
above isomorphism is fundamental in the construction of the integral [FdM and
was obtained by Giné and Marcus (1983). The final step in the construction
adapts to L” an approach to L%stochastic integrals that can be found [e.g.,
Tkeda and Watanabe (1981), page 52].
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Section 3 introduces a notion of the inner clock for the p-stable integral. Such
a random change of time is a familiar device in the theory of Brownian integrals
and, more generally, in the study of local L2-martingales with continuous sample
paths. As far as processes with discontinuous paths are concerned, we have not
encountered this method before. The inner clock permits the transfer of informa-
tion about the sample path behavior of the p-stable motion to sample paths of
stochastic integrals. In particular, the asymptotic behavior of stochastic integrals
can be dealt with using this method (Corollary 3.1). However, our most important
application of the change of time formula comes in Section 4 where we present a
formal approach to stochastic integration and show that the p-integrability of
sample paths of F is not only sufficient but also necessary for the existence of
[FdM.

The results of Sections 2—4 permit an analysis of the concept of multiple
stochastic integral with respect to the p-stable motion. We deal here only with
integrals over the n-dimensional tetrahedron {0 <t¢ <¢,< -+ <¢,=T)
rather than over the cube [0, T']". The integration over the cube requires also
consideration of integrals over diagonal sets which leads to problems that are of a
different, partly combinatorial nature [cf. Engel (1982) and Rosihski and
Woyczyhski (1984) where also the abstract products of random measures and
multiple integrals based thereon are studied]. In the case of double p-stable
integrals, 1 < p < 2, we are able to give a full characterization of functions of two
variables that are dM X dM-integrable [see the paper by Cambanis, Rosinski,
and Woyczynhski (1983) for connections with the theory of p-stable quadratic
forms]. Our approach here turns out to be more successful than a double
Fourier-Haar expansion approach that was used by Szulga and Woyczyhski
(1983) and which, so far, yielded only sufficient conditions of dM X dM-
integrability.

The proof of Theorem 5.2 requires a study of measurability and integrability
of sample paths of a symmetric p-stable process. We do it in Section 6 [see the
paper of Cambanis and Miller (1980) for previous work in this direction and other
references]. The section contains a description of p-stable measurable processes
that have p-integrable sample paths. A characterization of such processes, which,
as far as we know, was an open problem for quite a while, is equivalent to the
characterization of deterministic M-integrable functions with values in L7
[cf. Rosinski (1984)] and to the characterization of 6,-radonifying operators into
LP. This result should be compared with results of Kwapieh [quoted without
proof in Linde’s book (1983)], Giné and Zinn (1983), and Cambanis, Rosinski, and
Woyczynski (1983) concerning 6,-radonifying operators into the sequence
space [”.

2. Construction of the Ité-type stochastic integrals for a p-stable mo-
tion. Let (22, #, P) be a probability space and let {%,)},. , be a right continu-
ous, increasing family of P-complete sub-o-fields of #.

DEFINITION 2.1.  An {%,}-adapted process (M(t)), . , with all sample paths in
D[0, o) is said to be an {.%,}-p-stable motion, 0 < p < 2, if for every 0 < s < ¢,
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and A € R
(2.1) E{exp[iN(M(¢) — M(s))|I%} = exp[— (¢ - s)AP].

The term “stable motion” sounds like a terrible misnomer, if one looks at the
stable motion’s trajectories, but it is handy, and was used before and certainly
does not seem much worse in that respect than “Brownian motion.” Observe that
the above definition implies that the increments M(¢) — M(s), s < ¢, are inde-
pendent of % so that, in particular, they are also independent of o{M(r):
r < s}. Hence, an {#,}-p-stable motion has always stationary and independent
p-stable symmetric increments. The reason for considering the {%,}-p-stable
motion, rather than the regular p-stable motion with respect to the natural
o-fields will be apparent later on and its introduction is very natural in the theory
of stochastic integration. We will, however, suppress the prefix “{%#,)-” whenever
its appearance is not essential.

The space of all real measurable processes F = {F(¢, w)},5, on £ X [0, o)
adapted to {#,}, and such that for every T' > 0

1/p

(22) 1Pl = (B[ 1F(s, ) ds ] < oo

will be denoted by L”(L?) and will be needed in the construction of the
stochastic integral with respect to M. We identify F and F’ in LP(LP) if
|F — F'||, v = 0 for every T > 0.

As usual, a simple process is a process of the form

(2.3) F(t, 0) = oo @) ,0(t) + E%(w)lu ta1(8),

where 0 = t0 <t{, <. <t, <. >0 and ¢, is F -measurable for every
n=20,12,..., and for snnple F the stochastic integral is defined as follows:

(24) /ZF(S, (0) d]W(S, w) =d,"l§_:0(Pi(w)(M(ti+l’ w) — M(tw w))

+q>n(w)(M(t, w) - M(tn’ ‘*’))

if t,<t<t,,,, n=0,1,2,.... Clearly the above integral is a process with
almost all sample paths in D[0, o).

In the case when M is a Brownian motion the stochastic integral F —
/¢ FdM is an isomorphic embedding from L?(L?) into the space of square
integrable martingales with almost all continuous sample paths. Our next result
is a complete analogue of the above phenomenon.

Denote by AP(L*) the set of all #-adapted measurable processes X(¢), ¢ > 0,
with almost all sample paths in D[O0, oo) such that for every T > 0 the weak-L?
norm

(2.5) (sup}\"P{ sup|X(¢t) > }\})l/p

A>0 t<T
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is finite. It is easy to see that AP(L>) is a complete metric linear space for any p,
O<p<2

THEOREM 2.1. There exist constants c,, c, > 0 such that for any simple
process F € LP(L?) andany T > 0

(2.6) cllF|IZ r < sup}\pP{ sup

t<T
so that the mapping F — (FdM extends to an isomorphic embedding of LP(LP)
into AP(L>®). In other words, for each F € LP(LP) there exists a stochastic
process in AP(L®), also denoted by [{FdM, t > 0, which satisfies the inequali-
ties (2.6) and which for simple F coincides with the stochastic integral (2.4).

fthM, > A} < GIFIZ 7,

ProorF. The upper estimate of (2.6) is due to Giné and Marcus (1983),
Theorem 3.5. We shall prove the lower estimate.

Let F € L?(L?) be a simple process given by (2.4) with ¢, < T < ¢,,,. Put
AM, = M(t)) — M(ty),...,AM,_, = M(¢,) — M(t,_,), AM, = M(T)—- M(t,).
Then, for any A > 0 and K > 0,

{sup
t<T

However, the right-hand side is equal to

Z ®,AM;

Jj=0

> }\} > P{ sup|¢pkAMk| > 2}\}

k<n

deJW’>>\} > P{sup

Y P{lppAMy| < 2X,...,|¢p_1AM,_,| < 2\, |9, AM,| > 2\}

k=0

n
> Y E{I[Iq)OAMOI <2\, .., |9 1AM, | < 2\, |e, < K]
k=0

xP[|AMk| >

2\ ]}
‘%k M

Pl

Since AM, is a p-stable symmetric r.v. there exists a constant c, > 0 such
that for a > 1, P(|AM,| > a) > c,a"PAt, for small enough A¢,’s, where A¢, = ¢,
LA, =t,—t,_,, At, = T — t,. Therefore if 2\ /K > 1 we obtain

sup)\”P{ sup|deM| > )x}

A>0 t<T
>c,27" Z E{I[lp,AM;| < 2X,..., |9, AM,_;| < 2)\, |9, < K Jl,P}At,,
k=0
where the left-hand side is now independent of A. Letting A - o0, K — o0 on

the right-hand side, but preserving the relationship 2A/K > 1, we obtain the
required lower estimate with ¢,'= ¢,277. O

With the hindsight of the above theorem the proof of the following proposition
is a straightforward adaptation of the proof of statement (iv) from Proposition
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1.1 p. 50 of Ikeda and Watanabe (1981) (which dealt with the Brownian motion).
We will omit it.

ProOPOSITION 2.1. Let F € LP(L?) and 7 be an (%,)-stopping time. Then
a.s.

["Fam = [I(= = s)Fdm
0 0
for every t > 0.

The above proposition permits the construction of the p-stable stochastic
integral for a process F from the class LZ; (to be defined below) by gluing the
integral together pathwise from pieces that are integrals of processes F,, € L?(L”)
which form a certain particular approximating sequence for F. The class L2, is
much wider than L?(L?) and the results of Section 4 show that it is a maximal
class for which [FdM can be sensibly defined. Also, as it turns out (Theorem 4.1),
there is nothing special about the particular sequence (2.7) we use the construc-
tion that follows. Any other approximating sequence will do.

We denote by L2, the family of all real measurable (#,)-adapted processes F'
on © X [0, ) such that for every T > 0, [|F(¢, w)|P dt < oo as.

For every F € L?, we define stopping times

(@) = inf{t: [1F(s, @) ds > n} An,
0

n=12,..., sothat 7,700 as. Let
(2.7) F(s,0)=1I(1(w)=>s)F(s,w).
Since

[1E (s, 0) ds = ["|F(s, 0) ds < n,

we get that F, € LP(L”). In view of Proposition 2.1 the following consistency

condition is satisfied:
“"F,aM = [F,dM as, m<n.
0 0

Therefore the process

(2.8) Y(¢t) =d,f‘F,,dM fort<r,,
0

n=12,..., is well defined and has a.a. sample paths in D[0, c0). We shall call
the process Y(t), t > 0, the stochastic integral of F € L2, with respect to M, and
denote it by [{FdM, t > 0.

.REMARK 2.1. It should be noted that the above construction of the stochastic
integral depends only on the tail behavior of the p-stable distribution and can be
immediately extended to a wider class of integrators that includes p-stable
processes as a particular case. Namely, let X(¢), ¢ >0, be an {%}-adapted
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stochastic process with symmetric, independent increments and sample paths in
D[0, ), and let m be a Borel measure on R, which is finite on every finite
interval. Assume that for each T > 0 there exist a, b, ¢, > 0 such that for all
0<s<t<Tandaz=a,

(2.9) aa~?m((s, t]) < P{|X(¢t) — X(s)|> a} < ba"Pm((s, t]),

and denote by L?(L”(m)) the set of all measurable {.%#,}-adapted processes such
that for every T' > 0

UF . = [E [1F@r dm(t)]l/p < w.

Then, for any integrator X satisfying (2.9) there exist constants ¢, c, > 0
(depending on T') such that for every process F € LP(L?(m))

[‘Fax|> A} < &IFIZ o r
0

clllFlll‘,’, m TS iu;())}\pP{ su;’;
> t<

[the upper estimate is again due to Giné and Marcus (1983)] and the extension of
the integral [FdX to F € L? (m) follows verbatim the lines preceding this
remark.

3. Inner clock of the p-stable stochastic integral. In this section we
prove results about the time substitution, or, more precisely, random time change
in the stochastic integrals that parallel the known results for Brownian integrals.
The next proposition, concerning complex exponential martingales, is technical in
nature but it is not without intrinsic interest. It is well known in case p = 2 [see
e.g., Ikeda and Watanabe (1981), Theorem 5.3].

PROPOSITION 3.1. Let F € LP(LP) be such that
(3.1) Eexp{aftlFll’ ds} < o0
0
for every a > 0 and t > 0. Then for every A € R
Zy(t) =4 exp{i)\fthM + I [1Fp ds}
0 0
is a complex-valued { #,}-martingale.

Proor. We will prove the proposition first for a bounded and simple process
F € LP(LP) given by (2.3). Using the notation from the proof of Theorem 2.1

Zp(t) = exp{i}\ Y @AM, + AP Y I(p.kIpAtk}'
k=0 k=0

Henge, for s < ¢, say s € [¢,,, t,,.1), m < n, we obtain that

B(Zu(t)%) - zp<s>E(j1jn v,w;),
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where

Vm = exp{ix(pm(M(tm+l) - M(S)) + IAIPI(PmIP(tm+1 - S)}
and

V, = exp{iAg,AM, + \]Plp,PAt,), k=m+1,.

Since E(V,|#)=1 and E(V,|#,)=1 for k=m+1,...,n, we get that
{Zg(t), #,} is a martingale. '

Let now F € L?(L”) be bounded, say |F| < C. Then there exists a sequence of
simple processes (F,) C LP(L?) such that for every T > 0, ||F, — F||, 7 — 0 as
n — oo. Define G,(t) = F(¢t) if |[F(t)] < C, = —=C if F(t) < —C,and = C if
F(t)= C. Then G,€ L?(L?), n=1,2,..., are simple processes such that
|G,| < C for every n, and for every T >0, ||G F|,,7 = 0 as n — oo. There-
fore Z(t) - Zy(t) in P and since |Z;(t)| < exp{t])\C]P} for every n and since
(Zg (), 'z, ) is a martingale (by the first part of the proof) we obtain that
(ZF(t), %#,) is also a martingale.

Finally, if F satisfies (3.1), then Z.(¢) can be approximated in L' by Z .« (t) as
k — o, where F*¥) = FI(|F| < k). O

THEOREM 3.1. Let F € LP, be such that 1(u) = 4 [y|F|Pdt > 0 as. as
u— oo. If

4 (t) = inf{u: 7(u) >t} and &, =F -,
then the time-changed stochastic integral
M(t) = [ “Fam
0

is an {,}-p-stable motion. Consequently, a.s. for each t > 0

fO ‘FaM = ¥ (=(t)),

i.e., the stochastic integral with respect to a p-stable motion is nothing but
another p-stable motion with a randomly changed time scale.

PROOF. Observe that for every fixed ¢, 77(¢) is an %,,,=N,.,% =

Z,-stopping time, u > 0. Moreover, ¢t — 77Y(¢) is a right-continuous nondecreas-
ing function, so that M has almost all paths in D[0, o).

To begin, assume additionally that F satisfies condition (3.1). The complex
exponential martingale (Z(u), %,) from Proposition 3.1 satisfies the equality

(3.2) Zy(77X(t)) = exp(iAMI(¢) + \PE).

By the Optional Sampling Theorem [cf. e.g., Ikeda and Watanabe (1981), page
34] for each integer N and s < ¢

(3.3) E(Zp(7'(t) AN)F 1y n) = Ze(r7'(s) AN).
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Since, for each ¢,

EIZF(T_I(t) AN)- ZF(T_I(t))I

=/ |Zg(N) - Zy(+7X(¢))|dP
{"Y(t)>N)
(3.4)

< '[{T_l(mN}IZF(N) P+ [ |Zp(7X(2)) | dP

Y (#)>N)
< 2exp(tA\P)P{r"(t) > N} - 0
as N - oo, we have that
E|E[Zy(r (), - Zp(17(s))|
< E|E[Zp(r (O] = E[Ze(r (ONF ) n]|

+E|Z(17(8) ~ Zp(17(t) A N))|
+E|E[Zp(17Y(t) A N)Fmi ) 0 v = Ze(17Y(s) A N)|
+E|Zy(77Y(s) AN) - Zp(17Y(s))|~ 0

as N — co. Here, the convergence to 0 of the first summand is justified by the
fact that &) . v 1 &, as N > o, of the second and fourth by (3.4) and of the
third by (3.3).

Therefore,

E[Zp(r ()] = 2(r7X(s)) as.
which, in conjunction with (3.2), gives that
E [exp{iA(M(t) ~ M(s)) }i#,] = exp[ — (¢ ~ s)AI”].

Hence M is an (#,)-p-stable motion.

Now, the removal of the additional restriction that F satisfies (3.1) can be
accomplished by the truncation argument, considering, instead of an arbitrary
process F' satisfying assumptions of the theorem, its restriction F, defined by
(2.7) which is the same as F up to time T,. O

COROLLARY 3.1. Let 0 < p < 2, the process F € Lp,, m(u) = [{|FP dt, and
let 9: R™— R™ be increasing. Then

j:FdM‘/q)(T(t))=O or ;w a.s.

(i) lim sup
-0

acéording as

fl<p"’(t)dt<oo or = oo.
0
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(ii) If 7(u) = o0 as. as u = oo then

limsup‘/thM}/tp('r(t))=O or =o0 as.
0

t— o0

according as
[>)
/ @ P(t)dt< oo or = oo.
1

ProoF. The proof of the above corollary follows immediately from Theorem
3.2 and from the classical Khinchin’s result [see e.g., Fristedt (1974), Theorem
11.2 and Corollary 11.3] describing asymptotic a.s. behavior at 0 and oo of the
stable motion itself.

4. A necessary and sufficient condition for the existence of the p-stable
stochastic integral. The inner clock formula proved in Section 3 makes a more
formal theory of stochastic integration suggested below workable.

DEFINITION 4.1. An {%,}-adapted measurable process F = {F(¢, w)},., is
said to be M-integrable (or dM(¢)-integrable) if there exists a sequence (F),) of
simple (%,)-adapted processes such that for each T > 0

(i) F, = F in measure dPdt on @ X [0, T],
(ii) [JF, dM converge a.s. uniformly in ¢ € [0,T'] as n — oo,

and if the limiting stochastic process in (ii) does not depend on the choice of a
sequence ( F,) satisfying conditions (i) and (ii). We will denote this limit process
by In(t), t = 0.

The next theorem describes the class of M-integrable processes and explains
the relationship of the above definition to the integral [FdM constructed in
Section 2.

THEOREM 4.1. The process F is M-integrable if and only if F € L?,. More-
over

I(t) = [Fam
0
a.s. foreacht > 0.

ProoF. Let F be M-integrable and F, satisfy (i) and (ii) of Definition 4.1.
Fix T > 0 and define G,,=F,—F, for 0<t<T and G,,=1 for t>T.
Clearly [°|G, .|’ ds = © and G,, € L?.. By condition (ii) of Definition 4.1
{G,,, dM — 0 a.s. uniformly in ¢t € [0, T']. Put

o, u)= qu”ds.
wn(#) = [[1Gond
By Theorem 3.1
M,,(t) = [*"G,,, dM
0
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is a new p-stable motion. Since for every ¢ > 0 we have

P{fOTIFn _Fpdt> e} = P(o,,(T) > &) < P{o;}(e) < T)

(4.1) ) t
< P{IMnm(s)l < Sugl/(;Gnm dMI} =dfpnma
t<

and since Z(Mnm(e)) = %(M(e)) has no atom at 0, we get that p,,, = 0 as
n, m — oo which implies that [T|F|? dt < oo a.s. Since T is arbitrary this shows
that Fe L7,

Now, to prove the converse, assume that F € L?,. The construction of the
stochastic integral in Section 2 displayed a sequence of nonnecessarily simple
processes (2.7) which satisfy (i) and (ii) of Definition 4.1. The upper estimate in
Theorem 2.1 permits the a.s. uniform approximation in [0, T'] of [{F, dM by
integrals of simple processes. Therefore, one can now obtain a sequence of simple
processes G, satisfying (i) and (ii) of Definition 4.1, and such that
lim, , . [{G,dM = [{FdM as. uniformly in ¢t € [0, T']. Now, let H, be another
sequence satisfying (i) and (ii). Exactly as in (4.1) we can show that for each T

fT|Gn ~ G, Pdt—>0 and [T|H,, —H, Pdt—0
0 0

in probability. Hence by (i)
(4.2) w(T) = ['1H, = G, dt > 0
0

in probability as n — c. Fix T' > 0 and define J, = H, — G, for 0 < ¢ < T and
J, =1for t > T. Then

M(t) = f’"_I(“Jn dM, t>0,
0
is another p-stable motion. Let ¢ > 0, § > 0. We have

/(‘)t(Hn_Gn)dM‘> e} {sup| (,,(t))|>£}

P{sup
t<T

- P{sulen(Tn(t))|> e, (T) < a}
t<T
+P{sup| 11,(r,(1)| > e, 7(T) > 8]
t<T
< P{supIMn(t)|> s} + P{7,(T) > 8}.
t<d

The last expression tends to zero as n — oo and then & -0 (Mn is a version of M
which is right-continuous with start at 0), so that

I;(t) = lim fO‘HndM- lim fG dM = fthM

n— oo

a.s. for each ¢t. O
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5. Multiple integration. Characterization of double p-stable stochastic
integrals. In this section we will define an n-tuple integral of a nonrandom
function of n-variables with respect to the p-stable motion.

DEFINITION 5.1. Let f = f(¢,...,¢,) be a real measurable function defined
on the n-dimensional tetrahedron A" = {(¢,,...,¢,): 0<¢ <t < --- <t,
< T}. The n-tuple integral

[ fdMx .- xam
A’l
is defined as the iterated integral
T( rt, t
L (o1t e ) ad(e) -+ adt(e, ) an(z,)
o \Yo 0 -
provided each of the %, -adapted stochastic processes (inner integrals)
4 ty
fo’*--- (“1(t0 oy by b 1) M) -+ AM(,),

k=2,...,nis dM(t,)-integrable on [0, T'] in the sense of Definition 4.1. If this is
the case, f is said to be dM X --- X dM-integrable on A"

Theorem 4.1 gives immediately the following criterion of dM X --- XdM-
integrability of f:

THEOREM 5.1. The function f = f(¢,,...,¢t,) isdM X --- XdM-integrable on
A™ if and only if the following conditions are satisfied:

fot"’|f(t1,t2,...,t,,)|”dt1<oo foreacht, < t,< -+ <t,<T,

s
0

foreacht; < --- <t, < T,
fT
0

The above theorem does not give, of course, explicit conditions for dM
X «++ XdM-integrability of f (except in case n = 1). Making these conditions
explicit requires characterizing those fs for which the stochastic processes repre-
sented by inner integrals have sample paths in L. For n > 2 such processes are
not p-stable, which makes the problem difficult to handle. In the case of double
integrals (n = 2) such a characterization is equivalent to the problem of as.
p-integrability on [0,T'] of sample paths of a general measurable p-stable
symmetric stochastic process (see Proposition 6.1), and is given for 1 <p <2 in
Theorem 6.3 which yields the following:

D
dt, <00 as.

ft2f(t1, ty,...,t,) dM(t,)
0

D
dt, < oo as.

/Otn... fo‘zf(tl,tz,...,tn)dM(tl) e dM(t,-,)
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THEOREM 5.2. Letf=f(¢,8),0<s <t < T be a real measurable function.
The double p-stable integral

ffdedM=fo‘f(t,s)dM(s)dM(t)
A? 0 Y0
exists if and only if

[£(2,8)[

; ) > dsdt < o0.
[ duf" 11w, 0)f du

(51) [ ! INCDIgERST

Proor. Let g(t, s) = f(¢, s)Ijp ;(s). Then by Theorem 5.1 the existence of
faz fdM X dM is equivalent to the p-integrability of a.a. sample paths of p-stable
process X(t) = [Jg(t, s) dM(s). By Theorem 6.2 the condition (6.4) [A,(8) < o0]
is necessary and sufficient for such integrability and is clearly equivalent to (5.1).

O

6. Measurability and integrability of sample paths of symmetric p-sta-
ble processes. Let X(t), ¢t € T, be a stochastic process with separable metric
space T as a parameter set. Recall that X is said to be a measurable process if
X(¢, w) is a jointly measurable mapping fromT X @ into R. Cohn (1972) [see also
the remark on page 206 of Hoffmann-Jergensen (1973)] has shown that X has a
measurable modification if and only if the mapping T 2 ¢t - X(¢) € L%(Q) is
Borel measurable and has separable range.

The following proposition complements the results of Bretagnolle, Dacunha-
Castelle, and Krivine (1966), Kuelbs (1973), and Cambanis and Miller (1980)
concerning the relationship between the measurability of a stable symmetric
process and the joint measurability of the kernel in the process’ integral represen-
tation.

PROPOSITION 6.1. A symmetric and p-stable process (X(t): t € T),0 <p < 2,
has a measurable modification if and only if it admits an integral representation

L(X(t): teT) =$<f01f(t, s)M(ds): t € 1r),

where f: T X [0,1] > R is jointly measurable and for each t€ T, f(t,-)€
L*[0,1].

Proor. Let Y(¢) = [}f(t, s) dM(s) be a version of X(t), t € T, where f is as
above. Observe that L”[0,1] 3 g - [;8(s) dM(s) € L%) is continuous and has
a separable range. By Fubini’s Theorem T > ¢ — f(t,-) € L?[0,1] is Borel
measurable. Thus the composition of these two functions: T > ¢t —
13 (¢, s) dM(s) € L%(Q) is Borel measurable and has a separable range. By the
result of Cohn (1972) Y has a measurable modification and, since measurability
depends only on two-dimensional distributions [cf. Hoffmann-Jergensen (1973)],
X also has a measurable modification.
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Conversely, if a symmetric p-stable process X has a measurable modification
then X has a separable range in L°(Q), and by Kuelbs’ (1973) result there exists
a collection of functions { f,},c ¢+ € L?[0,1] and a p-stable motion M such that

¥(1) = ['f(s) dM(s)

is a version of X[see also Cambanis and Miller (1980), Section 3]. Since L%(£2)
and L9(Q) topologies are equivalent on X(T) for 0 < ¢ < p, the function T > ¢
— X(t) € LYQ) is also Borel measurable. Hence the function

- (f1105) = o) as) = e BIX () - X))

is measurable for fixed ¢’. Separability of L*[0,1] givesthat T > ¢ — f, € L?[0,1]
is Borel measurable with separable range. By the continuity of the natural
embedding of L”[0,1] into L°[0, 1] the same holds for the function T = ¢ - f, €
L°[0,1]. Therefore, by Cohn’s (1972) theorem applied to the stochastic process
(f,: t € T), there exists a jointly measurable function f(¢,s), t€ T, s €[0,1]
such that for every t € T

[{s € [0,1]: fi(s) = f(t,s)}[=1,
where | | denotes the Lebesgue measure on [0, 1], so that Y(¢) = [4f(¢, s) dM(s)

a.s. O

Let (X(¢):t € T) be a measurable symmetric p-stable process and let p be a
o-finite Borel measure on T. Without loss of generality, in view of Proposition 6.1,
we shall assume that

(6.1) X(t) =j0‘f(t,s)dM(s), teT.

Below, we study the integrability properties of sample paths of the process
X(t). The following theorem is well known [cf. Linde (1983) and Cambanis and
Miller (1980) for other integrability results], and is easiest proved via techniques
of the probability theory in infinite dimensional spaces.

THEOREM 6.1. Assume X is a p-stable process given by (6.1). If
_/T|X(t)|pﬂ(dt) < oo as.
then
[ [ 9)Pu(ae) ds < oo.

However, the known results did not give a full characterization of symmetric
p-stable processes with p-integrable sample paths. Let us observe that such a
characterization problem is equivalent to the problem of description of 6,-
radonifying operators into L? [cf. Linde (1983) and Cambanis, Rosihski, and
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Woyczyhski (1983)] and is of fundamental importance in the theory of double
stochastic integrals with respect to a stable motion (see Section 5). Our next

theorem gives a solution to the above problem.

THEOREM 6.2. Let1 < p < 2. For a measurable symmetric p-stable process

(6.2) X(t)= ['f(t,s)aM(s), teT,
0
we have that .
(6.3) j 1X(¢)Pu(dt) < 0 as.
T
if and only if
AL(f)

116, ) [ ['1£(, 0) Pi(du) do
[t 8) |1+ 10g, — f'pf" . ds u(dt)
’ [ 1100 do [ | 1(u, 5)Fu(du)

(6.4) =f

T

< 0.

Proor. Note that by Theorem 6.1(ii) both (6.3) and (6.4) imply that
p— 1 P
1112 fo L1t 5)Pu(an) ds < co.

The characteristic functional of X (or equivalently, of the cylindrical measure
generated on RT by X) is given by the formula

65  Eew|i T a(0x()) = exp[— [ £ a0 ano)|

teT R teT

a € R™M (= sequences with finite support), where the measure m on RT can be
described as the distribution of the process V(¢) = V(¢,- ) which is defined as
follows:

-1/p
(65) Vitrs) =11 [ 1(65) du(o)]  1(c,9)

where t € T, s €[0,1], and ([0,1], ») plays the role of underlying probability
space with

(6.7) (ds) = 1 FI” [ 172, 9) (dt) d.
Indeed,
exp| - | £ a0 am(p)) - exo| -] £ et |

Y a(t)f(t,s)

_ exp(_ I5h

=Eexpi Y. a(t)X(t).

teT

X
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Note that all the sample paths of V(¢) have a constant (independent of s)
LP(T, p)-norm equal to || f || ,- Therefore, by Lemma 6.12 of Giné and Zinn (1983)
or Remark 3.15 of Marcus and Pisier (1983) [the idea thereof really goes back to a
paper by LePage, Woodroofe, and Zinn (1981)]; the process X(¢) has a.s. sample
paths in L?(T, p) if and only if the series

(6.8) Z;—We Vi(t teT,

converges a.s. in the LP(T, p.)-norm [or in L"(Q; L?(T, u)), 0 < r < oo], where
(¢,) are Bernoulli r.v.s, V;s are independent copies of the process V, and the
sequences (¢;) and (V)) are 1ndependent

Proposmon 5.2 of Cambams Rosinski, and Woyczynsk1 (1983) states that for
i.i.d. symmetric random variables &, &, §,,..
D

< cEl§)P

[« 9]

Z - l/pg

Jj=1

€17
1+ log, —— B )’

(6.9) c“1E|§|P(1 4 log, 1 )'< E
T Egp

where 0 < p < 2, and ¢ = ¢(p) is a numerical constant.
Since

D
ey V| u(a),

LP(T,p)

and since

A,,(f)=fTE,|V(t)l” EVOT

[note that E,|V(¢)]P = [4If(¢, s)IP ds], we get from (6.9) that

1+1og+'()' )( 9,

‘1A(f)<E l/peV

<cA,(f),

LP(T,p)

which shows that the condition Ap( f) < o is equivalent to the boundedness in
L?(Q; LP(T, p)) of the series (6.8), which in turn is equivalent to the convergence
of (6.8) in the LP(Q; LP(T, p))-norm by results of Hoffmann-Jergensen (1974)
and Kwapieh (1974). O

REFERENCES

BRETAGNOLLE, J., DACUNHA-CASTELLE, D. and J. L. KRIVINE (1966). Lois stables et espaces L?.
Ann. Inst. H. Poincaré, Sect. B: (N.S.) 2 231-259.

CAMBANIS, S. and MILLER, G. (1980). Some path properties of pth order and symmetric stable
processes. Ann. Probab. 8 1148-1156.

CAMBANIS, S., RosiNskI, J. and WoyczyNsKI, W. A. (1985). Convergence of quadratic forms in

. p-stable variables and 6,-radonifying operators. Ann. Probab. 13 885-897.

COHN D. L. (1972). Measurable ch01ce of limit points and the existence of separable and measurable
processes. Z. Wahrsch. verw. Gebiete 22 161-165.

ENGEL, D. D. (1982). The multiple stochastic integral. Mem. Amer. Math. Soc. 28.

FRISTEDT, B. (1974). Sample functions of stochastic processes with stationary, independent incre-
ments. Adv. in Probab. 2 241-396.



286 J. ROSINSKI AND W. A. WOYCZYNSKI

GINE, E. and MARcus, M. B. (1983). The central limit theorem for stochastic integrals with respect
to Lévy processes. Ann. Probab. 11 58-77.

GINE, E. and ZINN, J. (1983). Central limit theorems and weak laws of laws of large numbers in
certain Banach spaces. Z. Wahrsch. verw. Gebiete 62 323-354.

HOFFMANN-JORGENSEN, J. (1973). Existence of measurable modifications of stochastic processes. Z.
Wahrsch. verw. Gebiete 25 205-207.

HOFFMANN-JORGENSEN, J. (1974). Sums of independent Banach space valued random- variables.
Studia Math. 52 159-186.

IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes.
North-Holland, Amsterdam.

KALLENBERG, O. (1975). On the existence and path properties of stochastic integrals. Ann. Probab.
3 262-280.

KUELBS, J. (1973). A representation theorem for symmetric stable processes and stable measures on
H. Z. Wahrsch. verw. Gebiete 26 259-271.

KWAPIEN, S. (1974). On Banach spaces containing c¢,. Studia Math. 52 187-188.

LEPAGE, R., WOODROOFE, M. and ZINN, J. (1981). Convergence to a stable distribution via order
statistics. Ann. Probab. 9 624-632.

LiN, T. F. (1981). Multiple integrals of a homogeneous process with independent increments. Ann.
Probab. 9 529-532.

LINDE, W. (1983). Infinitely divisible and stable measures on Banach spaces. Teubner-Texte zur
Mathematik. Band 58, Leipzig.

MaRrcus, M. B. and PISIER, G. (1983). Characterizations of almost surely continuous p-stable
random Fourier series and strongly stationary processes. Acta Math. 152 245-301.

RosINsKI, J. (1984). Random integrals of Banach space valued functions. Studia Math. 78 15-38.

RosiNsKI, J. and WoyczyNskI, W. A. (1984). Products of random measures, multilinear random
forms and multiple stochastic integrals. In Proc. Measure Theory Conference, Oberwol-
fach 1983. Springer’s Lecture Notes in Math. 1089 294-315.

SURGAILIS, D. (1981). On L? and non-L? multiple stochastic integration. In Stochastic Differential
Systems, Lecture Notes in Control and Information Sciences 36 212-226.

SzuLca, J. and WoyczyNskr, W. A. (1983). Existence of a double random integral with respect to
stable measures, J. Multivariate Anal. 13 194-201.

CENTER FOR STOCHASTIC PROCESSES DEPARTMENT OF MATHEMATICS AND STATISTICS
DEPARTMENT OF STATISTICS CASE WESTERN RESERVE UNIVERSITY
UNIVERSITY OF NORTH CAROLINA AT UNIVERSITY CIRCLE

CHAPEL HiLL CLEVELAND, OHIO 44106

CHAPEL HiLL, NORTH CAROLINA 27514



